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Coverage Performance of the Non-Central F-based and Percentile Bootstrap
Confidence Intervals for Root Mean Square Standardized Effect Size in One-Way
Fixed-Effects ANOVA

Guili Zhang
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The coverage performance of the confidence intervals (Cls) for the Root Mean Square Standardized
Effect Size (RMSSE) was investigated in a balanced, one-way, fixed-effects, between-subjects ANOVA
design. The noncentral F distribution-based and the percentile bootstrap CI construction methods were
compared. The results indicated that the coverage probabilities of the CIs for RMSSE were not adequate.
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Introduction

Reporting an effect size (ES) in addition to or in
place of a hypothesis test has been
recommended by some statistical
methodologists since as early as the 1960s
because ESs are recognized as being more
appropriate and more informative (Cohen, 1965,
1994; Cumming & Finch, 2005; Finch et al.,
2002; Hays, 1963; Meehl, 1967; Nickerson,
2000; Steiger, 2004; Steiger & Fouladi, 1997).
In the last two decades, reporting an ES has
become mandatory in some editorial policies

(Murphy, 1997; Thompson, 1994) and is
strongly recommended for American
Psychological ~ Association journals. The
Publication =~ Manual of the American

Psychological Association (2001) states that it is
almost always necessary to include some index
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of ES or strength of relationship in the results
section of a research paper. The APA Task
Force on Statistical Inference (Wilkinson and
the Task Force on Statistical Inference, 1999)
also supports the report of ESs as well as the
obligation of researchers to provide confidence
intervals (CI) for all principal outcomes. A CI
for an ES is recommended as a superior
replacement for significance testing because this
CI contains all the information found in the
significance tests and vital information not
provided by the significance tests about the
magnitude of effects and precision of estimates
(Cohen, 1994; Cumming & Finch, 2001, 2005).
A CI indicates the range of population ESs with
which the data are consistent. By contrast, a
hypothesis test merely indicates whether the data
are consistent with a population ES of zero.
Because of the obvious advantages of Cls,
advocate on the use of ESs and ClIs for ESs is “a
rapidly rising tide” (Grissom & Kim, 2005).

Effect Size Indices and Confidence Intervals in
the Two-Group Case

A large number of ES indices have been
developed and proposed (Algina et al., 2005a).
For example, the number of commonly used ESs
measuring separation of two independent
samples alone has almost reached a dozen:
Cohen’s d (Cohen, 1965), Glass’s d, Hedges’ g
(Hedges & Olkin, 1985), two versions of
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Cohens d based on trimmed means and

Winsorized variances (dje suggested by Hogarty

& Kromrey, 2001 and d, suggested by Algina

and Keselman 2003b; Algina et al., 2005a), eta
squared, omega squared, McGraw and Wong’s
(1992) common language ES (CL), Cliff’s
dominance statistic (1993, 1996), Kraemer and

Andrews , (1982), Wilcox and Muska’s W

(1999), and Vargha and Delaney’s A (2000).
Research investigating the performance
of the various ES measures is fairly limited.
Hedges and Olkin (1985) suggested that
Cohen’s d evidenced a small sample bias.
Hogarty and Kromrey (2001) compared the
performance of nine ES indices when they were
used in the context of populations with various
levels of nonnormality and  variance
heterogeneity. The nine indices included

Cohen’s d, Cliff’s dominance statistic, g, 7/1* ,

CL, A, d;, a naive estimator of /¥ and a .632

bootstrap estimator of W. The results indicated
that Cohen’s d and Hedges’ g showed nontrivial
sensitivity to violations of normality and
homogeneity of variance, which confirmed the
concerns raised about the appropriateness of
using these indices as indicators of effects in
such populations (Kraemer & Andrews, 1982;

Wilcox & Muska, 1999). In addition, d;
evidenced severe bias under small sample
CL,y, and the

estimator of W only appeared to be slightly less
sensitive than Cohen’s d and Hedges’ g but
showed pronounced bias under small sample
size condition or nontrivial sensitivity to
violations of normality and homogeneity of
variance. Cliff’s dominance statistic and Vargha
and Delaney’s 4 showed better performances in
producing relatively unbiased estimates and
consistent standard errors.

Hess and Kromrey (2004) investigated
the performance of the CIs for Cohen’s d and
Cliff’s dominance statistic constructed by using
seven CI construction methods: the normal
theory Z band, the percentile bootstrap, the bias
corrected bootstrap, the bias corrected and
accelerated bootstrap (BCa), pivotal,
Studentized pivotal, and the Steiger and Fouladi

conditions. Indices naive
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interval inversion band. Monte Carlo methods
were used to compare CI estimates using
random samples generated from populations
under known and controlled conditions. Across
all of the conditions, all of the CI construction
methods provided better coverage probabilities
for Cliff’s dominance statistic than for Cohen’s
d, with the exception of the Pivotal Bootstrap
method.

Cohen’s d and Its Confidence Intervals

In the two-group independent samples
case, Cohen’s d is probably the most widely
accepted ES index for a pairwise contrast on
means and it is defined as follows:

:?2_1
S

d

(M

where )7] is the mean for the jth level (j = 1, 2),
and S is the square root of the pooled variance.
The number of observations in a level is denoted
by n;. Cohen’s d estimates:

S My, —

o

2)

where £, is the population mean for the jth

(7=1,2) level, and O is the population standard
deviation, assumed to be equal for both levels.

Reporting a CI for the ES is important
as was well put by Wilkinson et al. (1999), “it is
hard to imagine a situation in which reporting a
dichotomous reject-accept decision is better than
reporting an actual p value or, better still, a
confidence interval” (p. 599). Steiger and
Fouladi (1997) asserted that “a confidence
interval conveys more information, in a more
naturally usable form, than a significance test.”
Interests in the accuracy and usefulness of the
ESs have motivated explorations of the
usefulness and effectiveness of ClIs for ESs
(Algina & Keselman, 2003a, 2003b; Bird, 2002;
Cumming & Fitch, 2001).

An exact CI ford can be obtained by
using the noncentral ¢ distribution when the
sample data are normally distributed, the two
population have equal variances, and the scores
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are independently distributed (Algina et al,
2005a; Cumming & Fitch, 2001; Johnson &
Welch, 1940; Serlin & Lapsley, 1985; Steiger &
Fouladi, 1997). This CI is the same CI that Hess
& Kromrey (2004) referred to as the Steiger and
Fouladi inversion method. In this situation, the
noncentral ¢ distribution has two parameters: the
degrees of freedom, and the noncentrality
parameter A , which is given by

A= mn, (ﬂz_ﬂlj: mn, S (3)
\ n, +n, (o \/ n +n,

To find a 95% CI for O , we first use the
noncentral ¢ distribution to find a 95% CI for A,
then multiply the two end points of the interval

for Aby \/(n,+n,)/nn, to obtain the two end

points of a 95% CI for & . The lower limit of the
95% CI for A is the noncentrality parameter for
the noncentral ¢ distribution in which the
calculated ¢ statistic

\n+n, S

is the .975 quantile, and the upper limit of the
95% CI for A is the noncentrality parameter for
the noncentral ¢ distribution in which the
calculated ¢ statistic is the .025 quantile of the
distribution (Algina et. al., 2005a, 2006; Steiger
& Fouladi, 1997). Algina and Kesleman (2003a)
adapted this procedure for the dependent
samples case.

As noted previously when the
population data are normally distributed, the two
population have equal variances, and the scores
are independently distributed, the noncentral ¢
distribution-based CI is exact. However, when
sampling from nonnormal data, the noncentral ¢
distribution-based CI may not have adequate
coverage probability in both the independent
samples case (Algina & Keselman, 2003a;
Kelley, 2005) and dependent samples case
(Algina et al., 2005a). Failure to have adequate
coverage probability means, for example, that if
a nominal 95% CI for O is computed, the actual

58

probability that the CI contains the parameter
will be different than .95.

Kelley (2005) compared three methods
for constructing a CI around Cohen’s ES.
Specifically, he evaluated noncentral ¢
distribution-based, the percentile bootstrap, and
the BCa Cls through a set of simulation studies
that involves three conditions of nonnormality,
three cases of sample size, and six cases of
population ES. Kelley’s study indicated that the
noncentral ¢ distribution-based CI has inaccurate
coverage probability when data are nonnormal.
He concluded that when the assumptions of
parametric tests are violated, the integrity of the
results based on parametric statistical techniques
is suspect. The study by Algina et al. (2006)
detected the same problem with the noncentral ¢
distribution-based CI in the dependent samples
case. In addition, the results from the Hess and
Kromrey (2003, 2004) studies also pointed to
the inadequate coverage probability issue with
the Cls for Cohen’s d.

Results from recent studies indicated
that in the two-group case, the bootstrap CI is
preferable and should be used instead of the
noncentral ¢ distribution-based CI. Kelley (2005)
asserted that when the normality assumption is
false, a CI constructed with the BCa method is
more valid than the noncentral ¢ distribution-
based CI. When the normality assumption holds,
the BCa method will yield results consistent
with the parametric results. Therefore, he
recommends the use of the BCa method. Like
Kelley, Algina et al. (2006) also found that
under many conditions the BCa method worked
best, although in some cases of data
nonnormality, the BCa method did not control
probability coverage. By including a wider range
of nonnormality than was investigated by Kelly,
they found that the BCa method for setting a CI
around the population ES is indeed negatively
affected by nonnormality. Additionally, they
found that the coverage probability declines as
sample size decreases and the population ES
increases. It is apparent that even with the
nonparametric bootstrap construction methods,
problem still persists with CIs for Cohen’s J .

The work reported by Algina and
Keselman (2003b), Algina et al. (in press,
2005a), and Kelly (2005) indicated that in both
the independent samples and dependent samples
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cases, Cls for Cohen’s & may be misleading
because of poor coverage probability when data
are nonnormal. There is a second problem with
using Cohen’s O : although it is intended as a
measure of group separation, it is not always an
adequate measure of group separation. This
shortcoming was pointed out by Wilcox and
Keselman (2003), and is due to the fact that
O can be dramatically affected by outliers and
long-tailed distributions. Cohen’s O is defined
by using the usual population means and
variances, both of which are least-square
parameters. Least-square parameters are not
robust, meaning that a small change in the
population distribution can strongly affect the
parameters. In particular, the usual population
mean and variance can be greatly influenced by
the existence of extreme observations (outliers)
in a distribution. Slight changes in the
population distributions, changes that do not
have much effect on the separation of the
distributions, can substantially alter the value
of 0 . Therefore, O can be a very poor measure
of group separation, and can grossly
misrepresent the degree to which two
distributions differ (Algina et al., 2005b; Wilcox
& Keselman, 2003).

Root Mean Square Standardized Effect Size and
Its Confidence Intervals

Measures of ES in analysis of variance
(ANOVA) are measures of the degree of
association between a factor and the dependent
variable. When it comes to the one-way, fixed-
effects, between-subjects ANOVA case, the
available generalized ES measures are, but not

limited to, eta squared, omega squared,d

Cohen’s f and the Mean Square Standardized
Effect Size (RMSSE) (Olejnik & Algina, 2003;
Steiger & Fouladi, 1997). Eta squared and
omega squared are estimates of the degree of
association. Eta squared is the proportion of the
total sum of squares that is attributed to an
effect. It is calculated as the ratio of the effect
variance to the total variance. Omega squared is
an estimate of the dependent variable variance
accounted for by the independent variable in the
population for a fixed-effects model. The effect

size d_,  is an overall ES that is calculated by
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utilizing the smallest and the largest means

Y

-Y.
where d_ =% (Cohen, 1988), while

Cohen’s fand RMSSE are overall ESs that use
all of the means and are measures of the
standardized average effect in the population
across all of the levels of the independent
variable. Among these ES measures, the
RMSSE, proposed by Steiger and Fouladi
(1997), denoted by f "in our study, was part of
the focus of our investigation. RMSSE is a
standardized mean difference measure, a
generalization of Cohen’s &, and a variant of
Cohen’s f.

In a balanced, one-way, between-subjects,
fixed-effects design, f "is defined by Steiger &

Fouladi (1997) as follows:

)

where 4, is the mean for the jth level, & is the

grand mean, and o’ is the within-level
variance, which is assumed to be constant across
levels. Recall that Cohen (1969)

J

deﬁnedf:\/Z(,uj—,u)z/J(n—l)dz ,

j1
* . . .
so f* is a variation of Cohen’s f .

Consider a fixed-effects
ANOVA with n; observations in the jth group,

one-way,

and J groups. The F statistic is calculated by
using

w
where
J p—
2n,(¥, -1
MS, == T (7
and
J =
Z (Yt/ -Y)
MS, =4——— ®)
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In Equation 7 and 8, Y, is the ith score in group
ij

Js Yj is the sample mean for the group j, and

Y is the grand mean and is calculated by using

o J
_ 22k
Y: i=1 ;\:71 (9)

Based on expected mean squares in a
balanced design, f " can be estimated by using

A MS, —MS, 1
= |—8 "W — [_(F—-1
4 \/ nMS,, \/n( ) 10

if F2=land by using f* =0, otherwise.
Alternatively, based on the expected value of F
under normality f " can be estimated by using

f*:\/w(ﬁ'_l) (11)

n(N-J)

if £ >1and f " = Ootherwise. Both estimates
are very similar but the estimate in Equation 10
was used in our study because it does not require
the normality assumption in its derivation.

The CIs for Steiger and Fouladi’s f "can
be constructed based on the noncentral F
distribution (Steiger and Fouladi, 1997; Steiger,
2004). In a one-way, between-subjects, fixed-
effects ANOVA, the F statistic with J —1 and
N —J degrees of freedom has noncentrality
parameter

J
an (:uj _zu)z
j=1

 —2 (12)
o

ﬂ/:

Clearly in a balanced design
. A
= [———— 13
S /n( yay (13)
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To find a 100(1 - @)% (95% in our
study) CI for f ", we first use the noncentral F

distribution to find a 95% CI for A . Once the CI
on A is found, we transform the endpoints of
the CI for A by dividing 4 by (J—1)n and
then take the square root. The result is an exact
CI for /" in the analysis of variance, when its
assumptions are met. The lower limit of the 95%
CI for A is the noncentrality parameter for the
noncentral F distribution in which the calculated
F statistic is the .975 quantile. The upper limit of
the 95% CI for A is the noncentrality parameter
for the noncentral F distribution in which the

calculated F statistic is the .025 quantile of the
distribution.

Purposes of the Study

Constructing a CI for RMSSE by using
the noncentral F distribution is based on the
assumption that the data are drawn from normal
distributions. If data are not normally
distributed, the actual coverage probability of
the CI may or may not match the nominal level.
A method that may be useful for constructing CI

for f "is the percentile bootstrap (Efron and

Tibshirani, 1993). Therefore, the performance of
the percentile bootstrap on the construction of

Cls for /~ was examined in our current study.

The purpose of the study is to investigate the
coverage performance of the noncental F
distribution-based and the percentile bootstrap

CI for /.

Methodology

The noncentral F distribution-based and the
percentile bootstrap CIs were implemented for
all combinations of the following five factors:
(a) five population distributions including the
normal distribution and four additional cases
from the family of the g and % distributions that
are nonnormal (Hoaglin, 1983, Martinez &
Iglewicz, 1984); (b) two numbers of levels for
treatment groups: J = 3 and J = 6; (c) three cell
sample sizes in each treatment; (d) six values of
population = RMSSEs; (e¢) two  mean
configurations: the equally spaced mean
configuration and the one extreme mean



ZHANG & ALGINA

configuration. The nominal confidence level for
all intervals investigated was .95 and each
condition was replicated 2500 times. The
number of bootstrap replications in the bootstrap
procedure was 1000.

Conditions

Data for all five distributions were
generated from the g and % distributions: (a)
g=h=0, the standard normal distribution

(,=7,=0), where %, =\/ﬁl and is the
skewness, and ¥, = 3, and is the kurtosis, (b)

g=.76 and h=-.098, a distribution with the
skewness and kurtosis of an exponential
distribution (%, =2, »,=3), (¢) g=0and

h=.225(y,=0 Y, =154.84), (d)
g=h=.225 (7,=4.90 and y, =4673.80),
and (¢) g=0and h=.109 (¥ =0

¥, =6), a distribution with the skewness and

and

and

kurtosis of a double exponential distribution.
The four nonnormal distributions cover a wide
range of nonnormality including distributions
that are quite strongly nonnormal. Such a
selection of distributions allows the researcher to
investigate the performances of the Cls under a
wide range of data conditions. The goal is to
find which procedure or procedures are likely to
work well over a wide range of distributions
because it is impossible for any one simulation
to include every possible distribution that might
be encountered in real data or to anticipate what
types of distributions are realistic in all of social
and behavioral science fields.

The numbers of treatment groups
investigated were 3 and 6, which cover the likely
range encountered in most research in the social
and behavioral sciences. The sample sizes in
each treatment included were 20, 35, and 50.
Such a range seems fairly typical of sample sizes
used in social science research, although clearly
does not cover sample sizes found in very small
or very large studies.

The treatment group means followed
two mean configurations: the equally spaced
mean configuration and the one extreme mean
configuration, which will allow determination of
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whether results tend to

configurations.

generalize over

Six values of f~ were investigated: 0,
.1, .25, .40, .55, and .70. Defining

é‘max — /’tmax _ﬂmin (14)
o

as Cohen’s effect size for the largest and
smallest means, under the equally spaced mean

configurations, these population f " values

approximately correspond to & of 0, .2, .5, .8,

1.10, and 1.40, respectively. Under the one
extreme mean configuration, these

population /= values roughly correspond to
o of 0, .173, 433, .693, .952, and 1.212.

Therefore, a f “of .0 indicates no effect, .1 a

small effect, .25 a medium effect, .40 a large
effect, and .55 and .70 very large effects.

The nominal confidence level for all
intervals investigated was .95 and each condition
was replicated 2500 times, assuring sufficient
precision for an adequate initial investigation
into the sampling behaviors of the Cls. The
number of bootstrap replications in the bootstrap
procedure was 1000.

Analyses Conducted
The study was designed to investigate
the robustness of the noncentral F distribution-
based Cls and the percentile bootstrap Cls
for f “to sampling from nonnormal distributions.
Variables conforming to a g and #
distributions are transformations of a standard

normal distribution. When g and /4 are both
nonzero,

y o exp(gZ)—leXp(hZ J 15)
g 2

where Z is a standard normal variable, and Y is
the g and h distributed variable. When g is zero,

hZ?
Y=27
exp[ 2 j

(16)
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Standard normal variables (Z;) were
generated by using RANNOR function in SAS
(SAS, 1999). Then the Z; were converted to the
desired g and /4 distributed random variable by
using Equation 15 and 16. To create scores
corresponding to the selected values of f "Lt s

necessary to linearly transform the g and #
distributed variables. Data were generated for
three samples and six samples in each
replication of each condition by the following

steps: First, for the first sample 7, scores were
generated from the appropriate distribution.
Then n, scores from the same distribution were
generated and a constant was added to each
Thirdly, n,
distribution were generated and a constant was
added to each score and so forth untilz, scores

score. scores from the same

from the same distribution were generated and a
constant was added to each score. The constants
were chosen such that the population RMSSE,
f "would equal to the following values: 0, .1,
.25, .40, .55, and .70.

For the equally spaced mean
configuration, the addition of the constant was
accomplished by using

12 .
Y. =X, +(j-1) |——fc,

j=1,...,J. (17)

For the configuration with one extreme mean,

Y, =X, forgroups j=1,..., J —1. For group
J the transformation was

Y, =X, +JJfo. (18)

To obtain a (1-a)% (95% in the

current study) CI for f, the noncentral F

distribution is first used to obtain a 95% CI on

A, the noncentrality parameter of the F

distribution. Given an observed F statistic with a

value F and known degrees of freedoms, a

(1-a)% CI on A can be obtained with the
following steps (Steiger, 2004):
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1. Calculate the cumulative probability of
the value F in the central F distribution.
This is 1 - p, where p is the probability
level printed by most analysis of
variance procedures. If 1 - p is
below ¢/ 2, then both limits of the CI
are zero. If 1 - p is belowl—a/2, the
lower limit of the CI is zero, and the
upper limit must be calculated (go to
step 3). Otherwise, calculate both limits
of the CI for A by using steps 2 and 3.

2. To calculate the lower limit of A, find
the unique value of A that places the F
statistic at the 1 - &/ 2 probability point
of a noncentral F distribution with the
known degrees of freedom.

3. To calculate the upper limit of A, find
the unique value of A that places the F/
statistic at the «@/2 cumulative
probability point percentile of a
noncentral F distribution.

In summary, calculating a CI for A
requires iterative calculation of the unique value
of A that places an observed value of F at a
particular percentile of the noncentral F
distribution. These procedures were
implemented by using the “FNONCT” function
in SAS. Notice the CI for f " constructed by the
noncentral F distribution-based method will
result in coverage probability of .975 when
f =0 because the probability noncoverage
from the lower side of the distribution will be 0
instead of .025.

Once the CI on A is found, the
endpoints of the CI for A are transformed to
endpoints for f by dividing by (J—1)n and
then taking the square root. The result is an
exact CI for f~

when the ANOVA assumptions are met.

To apply the percentile bootstrap
method, the following steps are completed 1000
times within each replication of a condition.

1. A sample of size n; is randomly

in the analysis of variance,

selected with replacement from the
scores for the group j, j=1,...,J
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These J samples are combined to form a
bootstrap sample.

2. The parameter f " is estimated by using

A~ *D 1
f =—(F-1) (19)
n
A KD
1. The 1000 f estimates are then ranked
from low to high. The lower limit of the
CI for f™ is determined by finding the

26" estimate in the rank order [i.e., the
(.025x1000+1)™ estimate]; and the 975™
estimate is the upper limit of the CI for

" [i.e., the (.975x1000)™ estimate].

2. The lower limit of the CI for f "is equal
to the square root of the lower limit of
the CI for f " if the latter lower limit is
larger than zero and is zero otherwise.
The upper limit of the CI for f~ is equal
to the square root of the upper limit of
the CI for f~.

Results
The estimated coverage probabilities for and the
average widths of the noncentral F' distribution-

based and bootstrap CIs for f~ are reported and

compared for all conditions. The estimated
coverage probabilities of the noncentral F

distribution-based and bootstrap Cls for f~ are

reported in Table 1 through Table 4. The
average widths of the noncentral F' distribution-

based and bootstrap Cls for f “are shown in
Table 5 through Table 8.

Estimated Coverage Probabilities of Confidence
Intervals for f~

The interval [.925, .975] used by Algina
et al. (2006) was used as a criterion for adequate
coverage probability when the nominal
confidence coefficient is .95. This interval
corresponds to Bradley’s (1978) liberal criterion
for a nominal .05 Type I error rate. In addition,
because this interval may be considered as too
lenient, a more stringent interval, [.94, .96], was
also used to judge the adequacy of the coverage
probabilities. In Tables 1 through 4, estimates
that are outside the [.94, .96] interval are bolded,
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while estimates that are outside of the interval
[.925, .975] are bolded and underlined.

The patterns of results across Tables 1 to
4 for the noncentral F distribution-based CI

for f “are fairly similar. First, when sampling

from a normal distribution, as stated earlier, the
coverage probability of the noncentral F

distribution-based CI should be .975 when f =
0, and the results in Tables 1 to 4 are consistent
with the theory. When f > 0, the coverage

probability of the noncentral F distribution-
based CI is expected to be .95 under normality
and the results in Tables 1 to 4 are consistent
with this expectation.

Second, coverage probability for the
noncentral F distribution-based CI tends to be
better than for the bootstrap CI both when
sampling from normal and mnonnormal
distributions. When J = 3 and samples are drawn
from a normal distribution, coverage probability
for the noncentral F distribution-based CI is
outside [.925, .975] in 2 out of 36 total cases,
while the bootstrap CI coverage probability is
outside [.925, .975] in 13 cases. Under
normality, when J = 6, although both CIs have 2
coverage probabilities that are outside [.925,
.975], the noncentral F distribution-based CI has
6 coverage probabilities that are outside [.94,
.96] while the bootstrap CI has 18 coverage
probabilities that are outside this interval. When
sampling from the nonnormal distributions, the
noncentral F distribution-based CI has fewer
coverage probabilities that are outside the
criterion intervals than does the bootstrap CI
under each of the four distribution conditions.

Third, the performances of the

noncentral F distribution-based CIs for f "under

the four nonnormal distributions reveal some
common characteristics across levels of J and

types of mean configuration. When f =0,
coverage probability tends to be outside [.925,
.975]. When f "= .10, coverage probabilities of

the noncentral F distribution-based CI for f “are

all inside the [.94, .96] interval. Coverage
probability tends to be inside either the [.925,
.975] interval or both intervals in most

conditions when f "= 25 with exceptions
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occurring principally when data are sampled
from the g = .225 and A = .225 distribution.
Coverage probability of the noncentral

distribution-based CI for f~ tends to be inside
either the [.925, .975] interval or both intervals
in most conditions when f~ >.40 and g = .000,

and 2 = .109. Coverage probability is outside
[.925, .975] for only a few cases, all with J = 6.
Coverage probabilities are mostly outside the

[.925, .975] interval when f~ >.40 for the

nonnormal distributions other than the g = .000,
and 4 = .109 distribution.

Excluding f~ =0, the

probability performance of the noncentral F
distribution-based CI  tends to decline

* . . .
as f increases, as the distributions become more

coverage

long-tailed, and appears to be worse for skewed
distributions. Overall, when data are sampled
from the ¢ = 0 and ~ = .109 distribution more
estimates are within the [.925, .975] interval
than when data are sampled from the three other
nonnormal distributions.

The results of the bootstrap Cls for f~ in

Tables 1 to 4 are also fairly similar across levels
of J and mean configurations. First, when
sampling from the normal distribution, when

f "= 0 and J = 3, the coverage probabilities of
the bootstrap CI for f are all above .975.
When /"= 0 and J = 6, however, they are all
inside [.94, .96]. When f*= .10, the coverage
probabilities of the bootstrap CI for f are all
outside [.925, .975] when J = 3 and inside [.94,

.96] when J = 6. When f*Z .25, coverage

probability tends to be inside either [.925, .975]
or both intervals.

The coverage probabilities the

bootstrap CI for f under non-normality also

for

have some common features across the mean
configurations. When f "= 0, the coverage
probabilities of the bootstrap Cls for f “tend to
be outside [.925, .975] when J = 3 and inside
[.94, 96] when J = 6. When f = .10, the

coverage probability of the bootstrap CI for f )
tends to be inside [.925, .975] when J = 6 except
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when n = 20 and the mean configuration is
equally spaced. Moreover, when f "= .10, the

coverage probabilities are mostly inside the
[.925, .975] when J = 3 with exceptions
occurring primarily, but not exclusively, when g
=0and A = .109.

Coverage probability tends to be inside
either the [.925, .975] interval or both intervals

in most conditions when f = .25 and J = 3.

When f = .25 and J = 6, more than half of the

coverage probabilities are within the [.925, .975]
interval. However, under the g = 0 and 4 = .225
and g = .225 and 4 = .225 data distributions,
they are all outside this interval.

Coverage probability of the bootstrap CI

for f " tends to be inside either the [.925, .975]
or both intervals in most conditions when
£ >.40 for the g =0 and » = .109 distribution

when J = 3. However, they have a tendency to
be outside the [.925, .975] interval when J = 6,
especially for the one extreme mean
configuration. Coverage probabilities of the

bootstrap CI for f " are mostly outside the [.925,

.975] interval when f~ >.40 for the nonnormal
distributions other than g = .760 and & = —.098.
Exceptions occur principally when f~ = .40, J =
3, and g = .760, A = —.098 under larger sample
sizes (n = 35 or 50).

Excluding 1~ =0, the
probability performance of the bootstrap CI

coverage

. *
tends to decline as f increases, and as the

distributions become more long-tailed. As

f “increases, the coverage probability of the

bootstrap CI for [ " appears to be worse when J =
6 than when J = 3. The coverage probability for
the bootstrap CI for f “tends to be poorer than

for the noncentral F distribution-based CI both
when sampling from normal and nonnormal
distributions.

Average Widths of Confidence Intervals for f~
The average widths of the noncentral F

distribution-based and bootstrap CIs for f~

under J = 3 and the equally spaced mean
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configuration are presented in Table 5. It is
observed that generally the average widths of the
noncentral F distribution-based Cls are shorter
than those of the bootstrap Cls. The difference
between the widths of the two Cls becomes
smaller as sample size increases. Furthermore,
the average width of both type of Cls gets
narrower as the sample size increases and the

population effect size f “decreases. Holding

* .
f and sample size constant, across data

distributions, there is very little difference in the
width of the noncentral F distribution-based Cls,
and there is also very little difference in that of
the bootstrap Cls. Presented in Table 6, the

average widths of the CIs for f " under J =3

and the one extreme mean configuration shows
little difference from those for the equally
spaced mean configuration. This suggests that
the type of mean configuration does not
substantially affect the width of the Cls and

therefore to the precision with which f~ is

estimated.
Table 7 shows the average widths of the

CIs for f " under J = 6 and the equally spaced

mean configuration. It is quite obvious that,
when J increases from 3 to 6, the intervals
become narrower for all of the combinations of
conditions. It is also observed that generally the
average widths of the noncentral F distribution-
based Cls are shorter than those of the bootstrap
CIs. The difference between the widths of the

two CIs gets smaller as the sample size
increases. In addition, the average widths of both
Cls get narrower as the sample size increases

and the population ES f "decreases. Across

distributions, there is very little difference in the
width of the noncentral F distribution-based Cls
and there is also very little difference in that of
the bootstrap Cls. The average widths of the Cls

for f " under J = 6 and the one extreme mean

configuration are presented in Table 8. Again
there is little difference between these widths
and the widths from those occur for the equally
spaced mean configuration, in terms of values as
well as patterns observed. This again suggests
that the type of mean configuration does not

affect the accuracy with which f "is estimated.
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Conclusion

Confidence intervals for the ES have been
strongly advocated by statistical methodologists
to be used as a useful supplement to and maybe
even a superior replacement for the traditional
hypothesis testing. However, much investigation
is needed to evaluate the robustness of the Cls in
order to ensure their proper usage.

In the two group case, it has been
reported that in both the independent samples
and dependent samples case Cls for Cohen’s &
may be misleading because of poor coverage
probability when data are nonnormal (Algina &
Keselman, 2003b; Algina et al., 2005a, 2006;
Kelly, 2005). It has been further reported that

the ClIs f0r§R, a robust version of O, have

better coverage probability than do Cls for
Cohen’s O and that the coverage probability is
closer to the nominal level for the percentile
bootstrap CIs than for the noncentral ¢
distribution-based CIs (Algina & Keselman,
2003Db).

Our study investigated the robustness of
the Cls for RMSSE (f7), in a one-way,
fixed-effects, between-subjects ANOVA. The
results indicated that the coverage probabilities

of the CIs for f~ were not adequate. Under J = 3,

the probability coverage of the CIs for f~ was

acceptable only for (a) Cls constructed by using
the noncentral F distribution-based method
when data were sampled from the normal
distribution and from the g = .000 and & = .109
distribution, and (b) Cls constructed by using the
percentile bootstrap under normality when the
population f~ was small (< .25). When J = 6,

the probability coverage of the noncentral F
distribution-based Cls was adequate only when
the data were normally distributed. The

bootstrap CI for f “provided good probability
coverage under normality for almost all values
of f investigated.
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Table 1.
Estimated coverage probabilities for nominal 95% noncentral F distribution-based (NCF) and

percentile bootstrap (boot) Cls for /™ : J = 3, equally spaced mean configuration

g =.000 g =.000 g=.760 g=.225
f* n Normal h=.109 h=.225 h=-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

00 20 976 .984 974 981 .978 984 974 977 978 .980
35 965 984 973 .987 .972 984 976 .985 .978 .985
50 976 .990 978 .990 979 985 975 985 .971 .983
10 20 949 982 952 974 953 969 950 .970 951 .968
35 951 ,982 953 .984 948 973 951 978 956 .975
50 951 984 951 984 955 975 950 .974 951 977
25 20 948 965 947 964 953 .938 949 947 .938 924
35 950 .974 947 965 .935 952 950 .946 .932 .937
50 950 .968 .938 956 .936 .943 946 958 923 .93l

40 20 942 948 941 946 925 917 933 918 913 .876
35 959 956 932 938 926 923 935 925 912 .894
50 951 950 932 935 .908 912 934 926 900 .891

.55 20 946 932 935 923 900 865 914 886 .875 .830
35 950 943 928 926 901 895 915 .897 .859 .860
50 951 944 934 934 886 902 926 919 .844 .856
.70 20 952 934 928 913 880 866 .909 .875 .848 .812
35 938 922 936 925 860 .865 904 903 .808 .812
50 949 941 938 936 846 .866 .899 911 .786 .827

Note. Bold values are estimates outside the interval [.94, .96] and bold underlined values are outside

the interval [.925,.975] )
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Table 2.
Estimated coverage probabilities for nominal 95% noncentral F distribution-based (NCF) and

percentile bootstrap (boot) CIs for f° " J =3, one extreme mean configuration

g =.000 g =.000 g =.760 g=.225
f* n Normal h=.109 h=.225 h=-—.098 h=.225

NCF boot NCF boot NCF boot NCF Dboot NCF boot

.00 20 973 984 970 978 980 982 986 983 974 .980
35 975 991 977 989 978 986 977 986 974 982
50 972 98 972 983 976 986 976 986 977 .986

.10 20 956 978 950 976 958 978 956 971 954 970

35 947 981 942 976 942 970 942 970 952 .972
50 945 981 946 976 954 .980 953 .979 952 .975
25 20 949 964 949 960 951 .942 954 953 940 .934
35 948 968 943 959 944 953 942 956 940 .930
50 945 961 950 .962 .936 940 951 .964 .938 .935
40 20 948 954 938 .936 .920 .8 933 922 911 .886
35 950 .950 942 939 922 933 929 912 .899
50 950 .950 942 944 916 934 933 896 .894
55 20 945 936 .933 .927 .908 .8 931 907 .881 .850
35 944 938 928 922 .892 .880 916 912 .867 .864
50 949 945 935 930 .885 .889 .923 .928 .836 .862
70 20 949 932 940 921 .871 .845 910 .888 .843 811
35 945 935 934 937 .850 .851 .896 .894 .807 .822

50 950 941 936 936 856 .867 .905 922 .791 .828

=
=]

)
[y
=]

o
[y
=]

|
(=)

Note. Bold values are estimates outside the interval [.94, .96] and bold underlined values are outside

the interval [.925,.975] .
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Table 3.
Estimated coverage probabilities for nominal 95% noncentral F distribution-based (NCF) and

percentile bootstrap (boot) Cls for f* : J=6, equally spaced mean configuration

g =.000 g =.000 g=.760 g=.225
f* n Normal h=.109 h=.225 h=-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

00 20 977 950 975 944 980 949 976 946 980 .948
35 974 955 976 950 .976 953 975 949 980 .954
50 972 956 972 954 985 966 977 952 978  .956
10 20 953 951 952 927 954 935 959 932 952 ,924
35 951 943 942 944 953 938 950 .943 944 928
50 944 945 950 945 958 946 940 942 954 .928
25 20 948 927 948 921 .938 .892 950 .905 .928 .871
35 952 944 944 933 937 905 .938 910 919 .889
50 954 954 943 933 932 910 .944 926 910 .880
40 20 950 933 945 ,920 917 .858 .922 .901 .880 .819
35 953 937 940 .927 .900 .877 .928 906 .860 .837
50 955 947 943 935 904 .890 .932 924 .860 .859
55 20 949 923 934 904 876 .825 914 .874 .856 .800
35 958 940 .931 921 .872 .860 902 .889 .818 .807
50 954 939 930 .928 .869 .884 914 910 .808 .840
70 20 955 930 932 .893 849 816 .893 .876 .790 .752
35 942 930 923 914 .826 .837 .892 .893 .766 .784
50 943 932 918 .927 .820 .857 .895 918 .752 .823

Note. Bold values are estimates outside the interval [.94, .96] and bold underlined values are outside

the interval [.925,.975] )
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Table 4.
Estimated coverage probabilities for nominal 95% noncentral F distribution-based and percentile

bootstrap (boot) CIs for f ": ] =6, one extreme mean configuration

g =.000 g =.000 g=.760 g=.225
oo Normal h=.109 h=.0225 h=—-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

00 20 975 949 976 946 974 942 972 936 .982 .948
35 976 956 968 947 978 951 978 952 976 .954
50 975 958 976 959 982 958 980 .956 .970 .944
10 20 949 944 948 927 959 .938 954 926 .949 .926
35 954 950 954 943 948 932 947 930 .955 .935
50 952 948 946 950 950 .936 .957 .945 953  .933
25 20 954 934 947 920 935 .894 941 911 942 .884
35 953 940 948 946 939 910 .947 .933 .927 .888
50 953 947 945 929 932 ,909 948 .939 917 .898
40 20 952 930 951 .924 918 .860 .947 .898 .890 .827
35 946 932 937 924 911 .892 .934 917 .883 .862
50 950 .936 .938 .931 .900 .894 .932 .932 .856 .860
55 20 955 931 .938 .902 .877 .838 .923 .886 .844 .793
35 951 .930 .929 919 .863 .862 916 .909 .821 .824
50 949 936 .922 925 .858 .879 .909 .908 .783  .820
70 20 945 915 929 .893 .848 .826 914 .885 .794 .754
35 947 935 920 911 .828 .834 .896 .908 .752 .790
50 942 930 .926 .918 .817 .849 902 .920 .740 .815

Note. Bold values are estimates outside the interval [.94,.96] and bold underlined values are outside

the interval [.925,.975] .
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Table 5.
Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) Cls for f "
J=3, equally spaced mean configuration

g =.000 g=.000 g=.760 g=.225
f* n Normal h=.109 h=.225 h=-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

.00 20 446 534 449 529 442 515 451 520 448 513
35 338 393 334 388 339 383 335 381 340 381
50 281 323 278 321 283 318 284 320 285 316
.10 20 467 551 470 545 479 542 476 541 479 542
35 367 416 361 409 367 408 369 409 370  .407
50 309 346 313 348 314 345 314 345 317 346
25 20 560 .628 561 627 568 627 568  .629 577  .640
35 453 495 452 490 457 493 456 492 457 497
50 395 425 393 424 396 427 396 426 394 429
40 20 641 701 641 702 642 710 .638 .707  .648 724
35 497 533 495 533 495 547 497 543 496 555
50 413 437 413 442 413 454 414 449 413 465
.55 20 .676 726 .676 739 678 764 676 754 677 781
35 504 526 504 538 0 506 569 505 559 507 593
50 A17 429 418 444 419 477 418 461 420 498
.70 20 693 732 692 753 696 813 696 800 .702  .842
35 S14 0 527 515 550 517 612 516 590 521 .640
50 428 433 428 457 430 512 428 493 433 547
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Table 6.
Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) Cls for f "
J=3, one extreme mean configuration

2 =.000 g =.000 g=.760 g=.225
oo Normal h=.109 h=.0225 h=—-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

.00 20 448 535 452 531 453 519 442 514 452 518
35 335 392 336 387 338 383 334 381 341 380
50 280 324 287 325 283 316 280 317 284 316
10 20 472 552 473 549 482 546 473 539 476 540
35 361 413 365 410 369 410 367 408 371 410
50 312 349 312 346 315 346 315 345 319 348
25 20 562 629 566 629 573 634 564 622 578  .637
35 452 493 456 493 457 498 455 489 464 503
50 394 423 394 423 395 426 395 422 400 432
40 20 641 703 .638  .698  .643 713 643 701  .645 716
35 496 534 496 533 496 541 496 532 496 549
50 414 437 414 440 414 456 414 442 413 459
.55 20 .676 726 675 737 678 763 679 744 679 777
35 504 527 504 542 506 568 505 551 507 586
50 A17 428 418 443 420 477 418 453 420 493
70 20 692 729 693 756 698 805 695 782 701  .840
35 S14 0 530 514 553 518 612 516 581 521 634
50 427 433 427 457 430 515 428 484 432 544
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Table 7.
Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) Cls for f "
J=6, equally spaced mean configuration

g =.000 g =.000 g=.760 g=.225
f* n Normal h=.109 h=.225 h=-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

.00 20 321 434 325 433 319 427 318 428 324 428
35 239 320 242 319 241 317 241 317 241 315
50 202 266 201 265 202 263 200 263 201 263
.10 20 344 446 350 446 348 443 350 443 351 443
35 274 337 271 335 277 336 272 334 276 333
50 238 284 237 283 239 283 238 282 238  .280
25 20 426 479 424 475 428 473 429 474 429 474
35 332 353 332 351 331 349 332 350 331  .350
50 275 285 275 286 273 285 275 286 273 287
40 20 450 469 448 468 446 475 447 473 444 48]
35 323 330 324 334 324 347 324 341 324 357
50 265 268 265 274 265 290 265 281 266  .301
.55 20 442 452 442 463 444 492 443 480 444 510
35 324 328 324 339 325 374 325 356 326 393
50 268 270 268 282 269 317 269 298 270  .340
.70 20 448 457 449 478 453 529 449 513 455 565
35 332 336 332 357 334 412 333 386 336 438
50 276 277 276 299 277 352 276 323 278 .38l
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Table 8.
Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) CIs for f "
J=6, one extreme mean configuration

g =.000 g=.000 g=.760 g=.225
Ia n Normal h=.109 h=.225 h=-.098 h=.225

NCF boot NCF boot NCF boot NCF boot NCF boot

.00 20 322 434 319 431 322 429 323 432 321 427
35 239 319 239 318 243 317 242 318 241 315
50 202 266 199 263 202 264 199 263 203  .263
.10 20 350 449 347 444 349 442 352 444 355 445
35 274 338 274 337 275 333 274 334 278 335
50 236 284 237 283 236 281 237 282 240 282
25 20 425 480 425 477 427 474 429 469 432 473
35 333 354 331 351 332 351 333 344 331 345
50 276 285 275 286 274 286 276 278 274 284
40 20 449 469 449 468 447 475 449 453 446 475
35 324 329 324 335 324 350 323 330 324 352
50 265 268 265 274 265 290 265 273 266  .296
.55 20 442 452 442 463 444 496 443 468 445 508
35 324 327 324 340 325 375 324 349 326 391
50 268 270 268 283 269 318 269 294 270 334
.70 20 448 458 449 481 452 534 449 502 455 557
35 332 334 332 357 335 412 333 380 336 438
50 276 277 276 0 297 278 350 276 320 278 .38l
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However, for all other combinations of
conditions, the bootstrap CI did not provide
accurate probability coverage. Furthermore,

excluding /~ =0, the coverage performance of
the noncentral F distribution-based Cls tended to
decline as f i increased, as the distributions

became more long-tailed, and appeared to be
worse for skewed distributions. Overall, the
noncentral F distribution-based Cls

for 1" yielded probability
coverage than that of the bootstrap Cls for f .

relatively  better

The type of mean configurations and the number
of treatment groups did not appear to affect the
coverage probability of the Cls

for f” considerably. Therefore, the coverage

performance of the CIs for [ "might be

generalizable over types of mean configuration
and various numbers of treatment groups.
The widths of the noncentral F

distribution-based CIs for f were all narrower

than those of the bootstrap Cls under the same
condition. The interval widths of the CIs

for f "were relatively unchanged across data

distributions. The width of both estimated Cls
became narrower as the number of levels for J
increased, the sample size increased, and the

population effect size f "decreased.
In summary, both the noncentral F
distribution-based and the bootstrap CIs for f~,

which are based on the least-square estimators,
yielded inadequate coverage probabilities. Thus
an important task to help researchers who want

to set a CI around f " s developing a better

interval than the noncentral F' distribution-based
or percentile bootstrap CI. An improved measure
of effect size might be attained by substituting
robust estimators, e.g., trimmed means and
Winsorized variances, for the least-square
values. Thus, one of our future studies has set

out to propose a robust version of f ". A robust
measure of effect size may yield better coverage
probabilities and provide a measure that is not
likely to be strongly affected by outlying data
points.
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