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Coverage Performance of the Non-Central F-based and Percentile Bootstrap 
Confidence Intervals for Root Mean Square Standardized Effect Size in One-Way 

Fixed-Effects ANOVA 
 

Guili Zhang   James Algina 
                    East Carolina University   University of Florida 
 

 
The coverage performance of the confidence intervals (CIs) for the Root Mean Square Standardized 
Effect Size (RMSSE) was investigated in a balanced, one-way, fixed-effects, between-subjects ANOVA 
design. The noncentral F distribution-based and the percentile bootstrap CI construction methods were 
compared. The results indicated that the coverage probabilities of the CIs for RMSSE were not adequate. 
 
Key words: confidence interval, effect size, ANOVA, root mean square standardized effect size, non-
central F-distribution, percentile bootstrap, coverage probability, robustness. 
 
 

Introduction 
 
Reporting an effect size (ES) in addition to or in 
place of a hypothesis test has been 
recommended by some statistical 
methodologists since as early as the 1960s 
because ESs are recognized as being more 
appropriate and more informative (Cohen, 1965, 
1994; Cumming & Finch, 2005; Finch et al., 
2002; Hays, 1963; Meehl, 1967; Nickerson, 
2000; Steiger, 2004; Steiger & Fouladi, 1997). 
In the last two decades, reporting an ES has 
become mandatory in some editorial policies 
(Murphy, 1997; Thompson, 1994) and is 
strongly recommended for American 
Psychological Association journals. The 
Publication Manual of the American 
Psychological Association (2001) states that it is 
almost always necessary to include some index  
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of ES or strength of relationship in the results 
section of a research paper. The APA Task 
Force on Statistical Inference (Wilkinson and 
the Task Force on Statistical Inference, 1999) 
also supports the report of ESs as well as the 
obligation of researchers to provide confidence 
intervals (CI) for all principal outcomes. A CI 
for an ES is recommended as a superior 
replacement for significance testing because this 
CI contains all the information found in the 
significance tests and vital information not 
provided by the significance tests about the 
magnitude of effects and precision of estimates 
(Cohen, 1994; Cumming & Finch, 2001, 2005). 
A CI indicates the range of population ESs with 
which the data are consistent. By contrast, a 
hypothesis test merely indicates whether the data 
are consistent with a population ES of zero. 
Because of the obvious advantages of CIs, 
advocate on the use of ESs and CIs for ESs is “a 
rapidly rising tide” (Grissom & Kim, 2005). 
 
Effect Size Indices and Confidence Intervals in 
the Two-Group Case 

A large number of ES indices have been 
developed and proposed (Algina et al., 2005a). 
For example, the number of commonly used ESs 
measuring separation of two independent 
samples alone has almost reached a dozen: 
Cohen’s d (Cohen, 1965), Glass’s d, Hedges’ g 
(Hedges & Olkin, 1985), two versions of 
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Cohens d based on trimmed means and 

Winsorized variances ( †
Rd  suggested by Hogarty 

& Kromrey, 2001 and Rd suggested by Algina 

and Keselman 2003b; Algina et al., 2005a), eta 
squared, omega squared, McGraw and Wong’s 
(1992) common language ES (CL), Cliff’s 
dominance statistic (1993, 1996), Kraemer and 

Andrews *
1γ  (1982), Wilcox and Muska’s W 

(1999), and Vargha and Delaney’s A (2000).   
 Research investigating the performance 
of the various ES measures is fairly limited. 
Hedges and Olkin (1985) suggested that 
Cohen’s d evidenced a small sample bias. 
Hogarty and Kromrey (2001) compared the 
performance of nine ES indices when they were 
used in the context of populations with various 
levels of nonnormality and variance 
heterogeneity. The nine indices included 

Cohen’s d, Cliff’s dominance statistic, g, *
1γ , 

CL, A, †
Rd , a naïve estimator of W and a .632 

bootstrap estimator of W. The results indicated 
that Cohen’s d and Hedges’ g showed nontrivial 
sensitivity to violations of normality and 
homogeneity of variance, which confirmed the 
concerns raised about the appropriateness of 
using these indices as indicators of effects in 
such populations (Kraemer & Andrews, 1982; 

Wilcox & Muska, 1999). In addition, †
Rd  

evidenced severe bias under small sample 

conditions. Indices CL, *
1γ and the naïve 

estimator of W only appeared to be slightly less 
sensitive than Cohen’s d and Hedges’ g, but 
showed pronounced bias under small sample 
size condition or nontrivial sensitivity to 
violations of normality and homogeneity of 
variance. Cliff’s dominance statistic and Vargha 
and Delaney’s A showed better performances in 
producing relatively unbiased estimates and 
consistent standard errors. 

Hess and Kromrey (2004) investigated 
the performance of the CIs for Cohen’s d and 
Cliff’s dominance statistic constructed by using 
seven CI construction methods: the normal 
theory Z band, the percentile bootstrap, the bias 
corrected bootstrap, the bias corrected and 
accelerated bootstrap (BCa), pivotal, 
Studentized pivotal, and the Steiger and Fouladi 

interval inversion band. Monte Carlo methods 
were used to compare CI estimates using 
random samples generated from populations 
under known and controlled conditions. Across 
all of the conditions, all of the CI construction 
methods provided better coverage probabilities 
for Cliff’s dominance statistic than for Cohen’s 
d, with the exception of the Pivotal Bootstrap 
method. 
 
Cohen’s d and Its Confidence Intervals 

In the two-group independent samples 
case, Cohen’s d is probably the most widely 
accepted ES index for a pairwise contrast on 
means and it is defined as follows: 
 

                             2 1Y Y
d

S

−=                     (1) 

 

where jY  is the mean for the jth level (j = 1, 2), 

and S is the square root of the pooled variance. 
The number of observations in a level is denoted 
by jn . Cohen’s d estimates: 

 

                            2 1μ μδ
σ
−=                     (2) 

 
where jμ

 
is the population mean for the jth 

(j=1,2) level, and σ  is the population standard 
deviation, assumed to be equal for both levels. 

Reporting a CI for the ES is important 
as was well put by Wilkinson et al. (1999), “it is 
hard to imagine a situation in which reporting a 
dichotomous reject-accept decision is better than 
reporting an actual p value or, better still, a 
confidence interval” (p. 599). Steiger and 
Fouladi (1997) asserted that “a confidence 
interval conveys more information, in a more 
naturally usable form, than a significance test.” 
Interests in the accuracy and usefulness of the 
ESs have motivated explorations of the 
usefulness and effectiveness of CIs for ESs 
(Algina & Keselman, 2003a, 2003b; Bird, 2002; 
Cumming & Fitch, 2001).   

An exact CI forδ  can be obtained by 
using the noncentral t distribution when the 
sample data are normally distributed, the two 
population have equal variances, and the scores 



STANDARDIZED EFFECT SIZE IN ONE-WAY FIXED-EFFECTS ANOVA 

58 
 

are independently distributed (Algina et al., 
2005a; Cumming & Fitch, 2001; Johnson & 
Welch, 1940; Serlin & Lapsley, 1985; Steiger & 
Fouladi, 1997). This CI is the same CI that Hess 
& Kromrey (2004) referred to as the Steiger and 
Fouladi inversion method. In this situation, the 
noncentral t distribution has two parameters: the 
degrees of freedom, and the noncentrality 
parameter λ , which is given by 
 

      1 2 2 1 1 2

1 2 1 2

.
n n n n

n n n n

μ μλ δ
σ
− = = + + 

   (3) 

 
To find a 95% CI forδ , we first use the 

noncentral t distribution to find a 95% CI for λ , 
then multiply the two end points of the interval 

for λ by 1 2 1 2( ) /n n n n+  to obtain the two end 

points of a 95% CI forδ . The lower limit of the 
95% CI for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic 
 

                     1 2 2 1

1 2

n n Y Y
t

n n S

 −=  +  
            (4) 

 
is the .975 quantile, and the upper limit of the 
95% CI for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic is the .025 quantile of the 
distribution (Algina et. al., 2005a, 2006; Steiger 
& Fouladi, 1997). Algina and Kesleman (2003a) 
adapted this procedure for the dependent 
samples case.   

As noted previously when the 
population data are normally distributed, the two 
population have equal variances, and the scores 
are independently distributed, the noncentral t 
distribution-based CI is exact. However, when 
sampling from nonnormal data, the noncentral t 
distribution-based CI may not have adequate 
coverage probability in both the independent 
samples case (Algina & Keselman, 2003a; 
Kelley, 2005) and dependent samples case 
(Algina et al., 2005a). Failure to have adequate 
coverage probability means, for example, that if 
a nominal 95% CI for δ  is computed, the actual 

probability that the CI contains the parameter 
will be different than .95. 

Kelley (2005) compared three methods 
for constructing a CI around Cohen’s ES. 
Specifically, he evaluated noncentral t 
distribution-based, the percentile bootstrap, and 
the BCa CIs through a set of simulation studies 
that involves three conditions of nonnormality, 
three cases of sample size, and six cases of 
population ES. Kelley’s study indicated that the 
noncentral t distribution-based CI has inaccurate 
coverage probability when data are nonnormal. 
He concluded that when the assumptions of 
parametric tests are violated, the integrity of the 
results based on parametric statistical techniques 
is suspect. The study by Algina et al. (2006) 
detected the same problem with the noncentral t 
distribution-based CI in the dependent samples 
case. In addition, the results from the Hess and 
Kromrey (2003, 2004) studies also pointed to 
the inadequate coverage probability issue with 
the CIs for Cohen’s d. 

Results from recent studies indicated 
that in the two-group case, the bootstrap CI is 
preferable and should be used instead of the 
noncentral t distribution-based CI. Kelley (2005) 
asserted that when the normality assumption is 
false, a CI constructed with the BCa method is 
more valid than the noncentral t distribution-
based CI. When the normality assumption holds, 
the BCa method will yield results consistent 
with the parametric results. Therefore, he 
recommends the use of the BCa method. Like 
Kelley, Algina et al. (2006) also found that 
under many conditions the BCa method worked 
best, although in some cases of data 
nonnormality, the BCa method did not control 
probability coverage. By including a wider range 
of nonnormality than was investigated by Kelly, 
they found that the BCa method for setting a CI 
around the population ES is indeed negatively 
affected by nonnormality. Additionally, they 
found that the coverage probability declines as 
sample size decreases and the population ES 
increases. It is apparent that even with the 
nonparametric bootstrap construction methods, 
problem still persists with CIs for Cohen’sδ .   

The work reported by Algina and 
Keselman (2003b), Algina et al. (in press, 
2005a), and Kelly (2005) indicated that in both 
the independent samples and dependent samples 
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cases, CIs for Cohen’s δ  may be misleading 
because of poor coverage probability when data 
are nonnormal. There is a second problem with 
using Cohen’s δ : although it is intended as a 
measure of group separation, it is not always an 
adequate measure of group separation. This 
shortcoming was pointed out by Wilcox and 
Keselman (2003), and is due to the fact that 
δ can be dramatically affected by outliers and 
long-tailed distributions. Cohen’s δ  is defined 
by using the usual population means and 
variances, both of which are least-square 
parameters. Least-square parameters are not 
robust, meaning that a small change in the 
population distribution can strongly affect the 
parameters. In particular, the usual population 
mean and variance can be greatly influenced by 
the existence of extreme observations (outliers) 
in a distribution. Slight changes in the 
population distributions, changes that do not 
have much effect on the separation of the 
distributions, can substantially alter the value 
ofδ . Therefore, δ can be a very poor measure 
of group separation, and can grossly 
misrepresent the degree to which two 
distributions differ (Algina et al., 2005b; Wilcox 
& Keselman, 2003).  
 
Root Mean Square Standardized Effect Size and 
Its Confidence Intervals 

Measures of ES in analysis of variance 
(ANOVA) are measures of the degree of 
association between a factor and the dependent 
variable. When it comes to the one-way, fixed-
effects, between-subjects ANOVA case, the 
available generalized ES measures are, but not 
limited to, eta squared, omega squared, maxd , 

Cohen’s f, and the Mean Square Standardized 
Effect Size (RMSSE) (Olejnik & Algina, 2003; 
Steiger & Fouladi, 1997). Eta squared and 
omega squared are estimates of the degree of 
association. Eta squared is the proportion of the 
total sum of squares that is attributed to an 
effect. It is calculated as the ratio of the effect 
variance to the total variance. Omega squared is 
an estimate of the dependent variable variance 
accounted for by the independent variable in the 
population for a fixed-effects model. The effect 
size maxd  is an overall ES that is calculated by 

utilizing the smallest and the largest means 

where max min
max

Y Y
d

S

−=  (Cohen, 1988), while 

Cohen’s f and RMSSE are overall ESs that use 
all of the means and are measures of the 
standardized average effect in the population 
across all of the levels of the independent 
variable. Among these ES measures, the 
RMSSE, proposed by Steiger and Fouladi 

(1997), denoted by *f in our study, was part of 
the focus of our investigation. RMSSE is a 
standardized mean difference measure, a 
generalization of Cohen’s δ , and a variant of 
Cohen’s  f. 

In a balanced, one-way, between-subjects, 

fixed-effects design, *f is defined by Steiger & 
Fouladi (1997) as follows: 
 

                    

2

1*
2

( )

( 1)

J

j
jf

J

μ μ

σ
=

−
=

−


               (5) 

 
where jμ

 
is the mean for the j th level, μ  is the 

grand mean, and 2σ  is the within-level 
variance, which is assumed to be constant across 
levels. Recall that Cohen (1969) 

defined ( ) ( )2 2

1

1
J

j
j

f J nμ μ σ
=

= − −  , 

so *f is a variation of Cohen’s f .   
Consider a one-way, fixed-effects 

ANOVA with jn  observations in the jth group, 

and J groups. The F statistic is calculated by 
using 

                                   B

W

MS
F

MS
=                  (6) 

where 

                      

2

1

( )

1

J

j j
j

B

n Y Y

MS
J

=

−
=

−


          (7) 

and 

                      

2

1 1

( )
inJ

ij j
j i

W

Y Y

MS
N J

= =

−
=

−


        (8) 
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In Equation 7 and 8, ijY

 
is the ith score in group 

j, jY  is the sample mean for the group j, and 

Y is the grand mean and is calculated by using 
 

                         1 1

in J

ij
i j

Y

Y
N

= ==


                     (9) 

 
Based on expected mean squares in a 

balanced design, *f can be estimated by using 
 

          ( )* 1ˆ 1B W

W

MS MS
f F

nMS n

−= = −    (10) 

 

if 1F ≥ and by using *ˆ 0f = , otherwise. 
Alternatively, based on the expected value of F 

under normality *f can be estimated by using 
 

                  
( )

( ) ( )* 2ˆ 1
N J

f F
n N J

− −
= −

−
       (11) 

 

if 1F ≥ and *ˆ 0f = otherwise. Both estimates 
are very similar but the estimate in Equation 10 
was used in our study because it does not require 
the normality assumption in its derivation. 

The CIs for Steiger and Fouladi’s *f can 
be constructed based on the noncentral F 
distribution (Steiger and Fouladi, 1997; Steiger, 
2004). In a one-way, between-subjects, fixed-
effects ANOVA, the F statistic with J –1 and 
N J−  degrees of freedom has noncentrality 
parameter 
 

                        

2

1

2

( )
J

j j
j

n μ μ
λ

σ
=

−
=


           (12) 

 
Clearly in a balanced design 

                           
( )

*

1
f

n J

λ=
−

             (13) 

 

To find a 100(1 - α )% (95% in our 

study) CI for *f , we first use the noncentral F 

distribution to find a 95% CI for λ . Once the CI 
on λ  is found, we transform the endpoints of 
the CI for λ  by dividing λ  by ( 1)J n−  and 
then take the square root. The result is an exact  

CI for *f  in the analysis of variance, when its 
assumptions are met. The lower limit of the 95% 
CI for λ  is the noncentrality parameter for the 
noncentral F distribution in which the calculated 
F statistic is the .975 quantile. The upper limit of 
the 95% CI for λ  is the noncentrality parameter 
for the noncentral F distribution in which the 
calculated F statistic is the .025 quantile of the 
distribution. 
 
Purposes of the Study 

 Constructing a CI for RMSSE by using 
the noncentral F distribution is based on the 
assumption that the data are drawn from normal 
distributions. If data are not normally 
distributed, the actual coverage probability of 
the CI may or may not match the nominal level. 
A method that may be useful for constructing CI 

for *f is the percentile bootstrap (Efron and 
Tibshirani, 1993). Therefore, the performance of 
the percentile bootstrap on the construction of 

CIs for *f was examined in our current study. 
The purpose of the study is to investigate the 
coverage performance of the noncental F 
distribution-based and the percentile bootstrap 

CI for *f .  
 

Methodology 
 
The noncentral F distribution-based and the 
percentile bootstrap CIs were implemented for 
all combinations of the following five factors: 
(a) five population distributions including the 
normal distribution and four additional cases 
from the family of the g and h distributions that 
are nonnormal (Hoaglin, 1983, Martinez & 
Iglewicz, 1984); (b) two numbers of levels for 
treatment groups: J = 3 and J = 6; (c) three cell 
sample sizes in each treatment; (d) six values of 
population RMSSEs; (e) two mean 
configurations: the equally spaced mean 
configuration and the one extreme mean 
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configuration. The nominal confidence level for 
all intervals investigated was .95 and each 
condition was replicated 2500 times. The 
number of bootstrap replications in the bootstrap 
procedure was 1000. 
 
Conditions 

Data for all five distributions were 
generated from the g and h distributions: (a) 

0g h= = , the standard normal distribution 

( 1 2 0γ γ= = ), where 1 1γ β=  and is the 

skewness, and 2 2γ β=  and is the kurtosis, (b) 

.76g =  and .098h = − , a distribution with the 
skewness and kurtosis of an exponential 
distribution ( 1 2γ = , 2 3γ = ), (c) 0g = and 

.225h = ( 1 0γ =  and 2 154.84γ = ), (d) 

.225g h= =  ( 1 4.90γ =  and 2 4673.80γ = ), 

and (e) 0g = and .109h =  ( 1 0γ =  and 

2 6γ = ), a distribution with the skewness and 

kurtosis of a double exponential distribution. 
The four nonnormal distributions cover a wide 
range of nonnormality including distributions 
that are quite strongly nonnormal. Such a 
selection of distributions allows the researcher to 
investigate the performances of the CIs under a 
wide range of data conditions. The goal is to 
find which procedure or procedures are likely to 
work well over a wide range of distributions 
because it is impossible for any one simulation 
to include every possible distribution that might 
be encountered in real data or to anticipate what 
types of distributions are realistic in all of social 
and behavioral science fields.  

The numbers of treatment groups 
investigated were 3 and 6, which cover the likely 
range encountered in most research in the social 
and behavioral sciences. The sample sizes in 
each treatment included were 20, 35, and 50. 
Such a range seems fairly typical of sample sizes 
used in social science research, although clearly 
does not cover sample sizes found in very small 
or very large studies. 

The treatment group means followed 
two mean configurations: the equally spaced 
mean configuration and the one extreme mean 
configuration, which will allow determination of 

whether results tend to generalize over 
configurations. 

Six values of *f  were investigated: 0, 
.1, .25, .40, .55, and .70. Defining 
 

                      max min
max

μ μδ
σ
−=               (14) 

 
as Cohen’s effect size for the largest and 
smallest means, under the equally spaced mean 

configurations, these population *f  values 

approximately correspond to maxδ of 0, .2, .5, .8, 

1.10, and 1.40, respectively. Under the one 
extreme mean configuration, these 

population *f  values roughly correspond to 

maxδ  of 0, .173, .433, .693, .952, and 1.212. 

Therefore, a *f of .0 indicates no effect, .1 a 
small effect, .25 a medium effect, .40 a large 
effect, and .55 and .70 very large effects. 

The nominal confidence level for all 
intervals investigated was .95 and each condition 
was replicated 2500 times, assuring sufficient 
precision for an adequate initial investigation 
into the sampling behaviors of the CIs. The 
number of bootstrap replications in the bootstrap 
procedure was 1000.   
 
Analyses Conducted 

The study was designed to investigate 
the robustness of the noncentral F distribution-
based CIs and the percentile bootstrap CIs 

for *f to sampling from nonnormal distributions. 
Variables conforming to a g and h 

distributions are transformations of a standard 
normal distribution. When g and h are both 
nonzero, 
 

                
( ) 2exp 1

exp
2

gZ hZ
Y

g

−  
=  

 
     (15) 

 
where Z is a standard normal variable, and Y is 
the g and h distributed variable. When g is zero, 
 

                          
2

exp
2

hZ
Y Z

 
=  

 
            (16) 



STANDARDIZED EFFECT SIZE IN ONE-WAY FIXED-EFFECTS ANOVA 

62 
 

Standard normal variables (Zij) were 
generated by using RANNOR function in SAS 
(SAS, 1999). Then the Zij were converted to the 
desired g and h distributed random variable by 
using Equation 15 and 16. To create scores 

corresponding to the selected values of *f , it is 
necessary to linearly transform the g and h 
distributed variables. Data were generated for 
three samples and six samples in each 
replication of each condition by the following 
steps: First, for the first sample 1n  scores were 

generated from the appropriate distribution. 
Then 2n  scores from the same distribution were 

generated and a constant was added to each 
score. Thirdly, 3n  scores from the same 

distribution were generated and a constant was 
added to each score and so forth until Jn  scores 

from the same distribution were generated and a 
constant was added to each score. The constants 
were chosen such that the population RMSSE, 

*f would equal to the following values: 0, .1, 
.25, .40, .55, and .70. 

For the equally spaced mean 
configuration, the addition of the constant was 
accomplished by using  
 

( ) ( )
*12

1
1ij ijY X j f

J J
σ= + −

+
, 

                           j = 1, . . . , J.                   (17) 
 
For the configuration with one extreme mean, 

ij ijY X=  for groups 1j = , . . . , 1J − . For group 

J the transformation was 
 

                       * .ij ijY X J f σ= +             (18) 

 
To obtain a (1 α− )% (95% in the 

current study) CI for *f , the noncentral F 
distribution is first used to obtain a 95% CI on 
λ , the noncentrality parameter of the F 
distribution. Given an observed F statistic with a 
value F and known degrees of freedoms, a 
(1 α− )% CI on λ  can be obtained with the 
following steps (Steiger, 2004): 

1. Calculate the cumulative probability of 
the value F in the central F distribution. 
This is 1 - p, where p is the probability 
level printed by most analysis of 
variance procedures. If 1 - p is 
below / 2α , then both limits of the CI 
are zero. If 1 - p is below1 / 2α− , the 
lower limit of the CI is zero, and the 
upper limit must be calculated (go to 
step 3). Otherwise, calculate both limits 
of the CI for λ  by using steps 2 and 3. 

2. To calculate the lower limit of λ , find 
the unique value of λ  that places the F 
statistic at the 1 - / 2α  probability point 
of a noncentral F distribution with the 
known degrees of freedom.   

3. To calculate the upper limit of λ , find 
the unique value of λ  that places the F 
statistic at the / 2α  cumulative 
probability point percentile of a 
noncentral F distribution. 
 
In summary, calculating a CI for λ  

requires iterative calculation of the unique value 
of λ  that places an observed value of F at a 
particular percentile of the noncentral F 
distribution. These procedures were 
implemented by using the “FNONCT” function 

in SAS. Notice the CI for *f constructed by the 
noncentral F distribution-based method will 
result in coverage probability of .975 when 

* 0f =  because the probability noncoverage 
from the lower side of the distribution will be 0 
instead of .025.   

Once the CI on λ  is found, the 
endpoints of the CI for λ  are transformed to 

endpoints for *f by dividing by ( 1)J n−  and 
then taking the square root. The result is an 

exact CI for *f  in the analysis of variance, 
when the ANOVA assumptions are met.   

To apply the percentile bootstrap 
method, the following steps are completed 1000 
times within each replication of a condition.   

1. A sample of size jn  is randomly 

selected with replacement from the 
scores for the group j, 1j = , . . . , J. 
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These J samples are combined to form a 
bootstrap sample. 

2. The parameter *2f  is estimated by using 

                                ( )*2 1
1f F

n
= −             (19) 

1. The 1000 
*2

f estimates are then ranked 
from low to high. The lower limit of the 

CI for *2f  is determined by finding the 
26th estimate in the rank order [i.e., the 
(.025x1000+1)th estimate]; and the 975th 
estimate is the upper limit of the CI for 

*f  [i.e., the (.975x1000)th estimate].   

2. The lower limit of the CI for *f is equal 
to the square root of the lower limit of 

the CI for *2f  if the latter lower limit is 
larger than zero and is zero otherwise. 

The upper limit of the CI for *f is equal 
to the square root of the upper limit of 

the CI for *2f . 
 

Results 
The estimated coverage probabilities for and the 
average widths of the noncentral F distribution-

based and bootstrap CIs for *f are reported and 
compared for all conditions. The estimated 
coverage probabilities of the noncentral F 

distribution-based and bootstrap CIs for *f are 
reported in Table 1 through Table 4. The 
average widths of the noncentral F distribution-

based and bootstrap CIs for *f are shown in 
Table 5 through Table 8. 
 
Estimated Coverage Probabilities of Confidence 

Intervals for *f   
 The interval [.925, .975] used by Algina 
et al. (2006) was used as a criterion for adequate 
coverage probability when the nominal 
confidence coefficient is .95. This interval 
corresponds to Bradley’s (1978) liberal criterion 
for a nominal .05 Type I error rate. In addition, 
because this interval may be considered as too 
lenient, a more stringent interval, [.94, .96], was 
also used to judge the adequacy of the coverage 
probabilities. In Tables 1 through 4, estimates 
that are outside the [.94, .96] interval are bolded, 

while estimates that are outside of the interval 
[.925, .975] are bolded and underlined. 

The patterns of results across Tables 1 to 
4 for the noncentral F distribution-based CI 

for *f are fairly similar. First, when sampling 
from a normal distribution, as stated earlier, the 
coverage probability of the noncentral F 

distribution-based CI should be .975 when *f = 
0, and the results in Tables 1 to 4 are consistent 

with the theory. When *f > 0, the coverage 
probability of the noncentral F distribution-
based CI is expected to be .95 under normality 
and the results in Tables 1 to 4 are consistent 
with this expectation.   

Second, coverage probability for the 
noncentral F distribution-based CI tends to be 
better than for the bootstrap CI both when 
sampling from normal and nonnormal 
distributions. When J = 3 and samples are drawn 
from a normal distribution, coverage probability 
for the noncentral F distribution-based CI is 
outside [.925, .975] in 2 out of 36 total cases, 
while the bootstrap CI coverage probability is 
outside [.925, .975] in 13 cases. Under 
normality, when J = 6, although both CIs have 2 
coverage probabilities that are outside [.925, 
.975], the noncentral F distribution-based CI has 
6 coverage probabilities that are outside [.94, 
.96] while the bootstrap CI has 18 coverage 
probabilities that are outside this interval. When 
sampling from the nonnormal distributions, the 
noncentral F distribution-based CI has fewer 
coverage probabilities that are outside the 
criterion intervals than does the bootstrap CI 
under each of the four distribution conditions.   

Third, the performances of the 

noncentral F distribution-based CIs for *f under 
the four nonnormal distributions reveal some 
common characteristics across levels of J and 

types of mean configuration. When *f = 0, 
coverage probability tends to be outside [.925, 

.975]. When *f = .10, coverage probabilities of 

the noncentral F distribution-based CI for *f are 
all inside the [.94, .96] interval. Coverage 
probability tends to be inside either the [.925, 
.975] interval or both intervals in most 

conditions when *f = .25 with exceptions 
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occurring principally when data are sampled 
from the g = .225 and h = .225 distribution.  

Coverage probability of the noncentral F 

distribution-based CI for *f  tends to be inside 
either the [.925, .975] interval or both intervals 

in most conditions when * .40f ≥ and g = .000, 
and h = .109. Coverage probability is outside 
[.925, .975] for only a few cases, all with J = 6. 
Coverage probabilities are mostly outside the 

[.925, .975] interval when * .40f ≥  for the 
nonnormal distributions other than the g = .000, 
and h = .109 distribution.  

Excluding * 0f = , the coverage 
probability performance of the noncentral F 
distribution-based CI tends to decline 

as *f increases, as the distributions become more 
long-tailed, and appears to be worse for skewed 
distributions. Overall, when data are sampled 
from the g = 0 and h = .109 distribution more 
estimates are within the [.925, .975] interval 
than when data are sampled from the three other 
nonnormal distributions. 

The results of the bootstrap CIs for *f in 
Tables 1 to 4 are also fairly similar across levels 
of J and mean configurations. First, when 
sampling from the normal distribution, when 

*f = 0 and J = 3, the coverage probabilities of 

the bootstrap CI for *f are all above .975. 

When *f = 0 and J = 6, however, they are all 

inside [.94, .96]. When *f = .10, the coverage 

probabilities of the bootstrap CI for *f are all 
outside [.925, .975] when J = 3 and inside [.94, 

.96] when J = 6. When *f ≥  .25, coverage 
probability tends to be inside either [.925, .975] 
or both intervals.  

The coverage probabilities for the 

bootstrap CI for *f under non-normality also 
have some common features across the mean 

configurations. When *f = 0, the coverage 

probabilities of the bootstrap CIs for *f tend to 
be outside [.925, .975] when J = 3 and inside 

[.94, .96] when J = 6. When *f = .10, the 

coverage probability of the bootstrap CI for *f  
tends to be inside [.925, .975] when J = 6 except 

when n = 20 and the mean configuration is 

equally spaced. Moreover, when *f = .10, the 
coverage probabilities are mostly inside the 
[.925, .975] when J = 3 with exceptions 
occurring primarily, but not exclusively, when g 
= 0 and h = .109.      

Coverage probability tends to be inside 
either the [.925, .975] interval or both intervals 

in most conditions when *f = .25 and J = 3. 

When *f = .25 and J = 6, more than half of the 
coverage probabilities are within the [.925, .975] 
interval. However, under the g = 0 and h = .225 
and g = .225 and h = .225 data distributions, 
they are all outside this interval.   

Coverage probability of the bootstrap CI 

for *f  tends to be inside either the [.925, .975] 
or both intervals in most conditions when 

* .40f ≥  for the g = 0 and h = .109 distribution 
when J = 3. However, they have a tendency to 
be outside the [.925, .975] interval when J = 6, 
especially for the one extreme mean 
configuration. Coverage probabilities of the 

bootstrap CI for *f  are mostly outside the [.925, 

.975] interval when * .40f ≥ for the nonnormal 
distributions other than g = .760 and h = −.098. 

Exceptions occur principally when * .40f = , J = 
3, and g = .760, h = −.098 under larger sample 
sizes (n = 35 or 50).  

Excluding * 0f = , the coverage 
probability performance of the bootstrap CI 

tends to decline as *f increases, and as the 
distributions become more long-tailed. As 

*f increases, the coverage probability of the 

bootstrap CI for *f appears to be worse when J = 
6 than when J = 3. The coverage probability for 

the bootstrap CI for *f tends to be poorer than 
for the noncentral F distribution-based CI both 
when sampling from normal and nonnormal 
distributions.  

  

Average Widths of Confidence Intervals for *f  
 The average widths of the noncentral F 

distribution-based and bootstrap CIs for *f  
under J = 3 and the equally spaced mean 
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configuration are presented in Table 5. It is 
observed that generally the average widths of the 
noncentral F distribution-based CIs are shorter 
than those of the bootstrap CIs. The difference 
between the widths of the two CIs becomes 
smaller as sample size increases. Furthermore, 
the average width of both type of CIs gets 
narrower as the sample size increases and the 

population effect size *f decreases. Holding 
*f and sample size constant, across data 

distributions, there is very little difference in the 
width of the noncentral F distribution-based CIs, 
and there is also very little difference in that of 
the bootstrap CIs. Presented in Table 6, the 

average widths of the CIs for *f  under J = 3 
and the one extreme mean configuration shows 
little difference from those for the equally 
spaced mean configuration. This suggests that 
the type of mean configuration does not 
substantially affect the width of the CIs and 

therefore to the precision with which *f  is 
estimated.  

Table 7 shows the average widths of the 

CIs for *f  under J = 6 and the equally spaced 
mean configuration. It is quite obvious that, 
when J increases from 3 to 6, the intervals 
become narrower for all of the combinations of 
conditions. It is also observed that generally the 
average widths of the noncentral F distribution-
based CIs are shorter than those of the bootstrap 
CIs. The difference between the widths of the 
two CIs gets smaller as the sample size 
increases. In addition, the average widths of both 
CIs get narrower as the sample size increases 

and the population ES *f decreases. Across 
distributions, there is very little difference in the 
width of the noncentral F distribution-based CIs 
and there is also very little difference in that of 
the bootstrap CIs. The average widths of the CIs 

for *f  under J = 6 and the one extreme mean 
configuration are presented in Table 8. Again 
there is little difference between these widths 
and the widths from those occur for the equally 
spaced mean configuration, in terms of values as 
well as patterns observed. This again suggests 
that the type of mean configuration does not 

affect the accuracy with which *f is estimated. 

 
Conclusion 

 
Confidence intervals for the ES have been 
strongly advocated by statistical methodologists 
to be used as a useful supplement to and maybe 
even a superior replacement for the traditional 
hypothesis testing. However, much investigation 
is needed to evaluate the robustness of the CIs in 
order to ensure their proper usage. 

In the two group case, it has been 
reported that in both the independent samples 
and dependent samples case CIs for Cohen’s δ  
may be misleading because of poor coverage 
probability when data are nonnormal (Algina & 
Keselman, 2003b; Algina et al., 2005a, 2006; 
Kelly, 2005). It has been further reported that 
the CIs for Rδ , a robust version of δ , have 

better coverage probability than do CIs for 
Cohen’s δ  and that the coverage probability is 
closer to the nominal level for the percentile 
bootstrap CIs than for the noncentral t 
distribution-based CIs (Algina & Keselman, 
2003b). 

Our study investigated the robustness of 

the CIs for RMSSE ( *f ), in a one-way, 
fixed-effects, between-subjects ANOVA. The 
results indicated that the coverage probabilities 

of the CIs for *f were not adequate. Under J = 3, 

the probability coverage of the CIs for *f was 

acceptable only for (a) CIs constructed by using 
the noncentral F distribution-based method 
when data were sampled from the normal 
distribution and from the g = .000 and h = .109 
distribution, and (b) CIs constructed by using the 
percentile bootstrap under normality when the 

population *f was small (< .25). When J = 6, 

the probability coverage of the noncentral F 
distribution-based CIs was adequate only when 
the data were normally distributed. The 

bootstrap CI for *f provided good probability 

coverage under normality for almost all values 

of *f investigated. 
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Table 1. 
Estimated coverage probabilities for nominal 95% noncentral F distribution-based (NCF) and 

percentile bootstrap (boot) CIs for *f : J = 3, equally spaced mean configuration 
 

 

*f  

 

n  

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .976 .984 .974 .981 .978 .984 .974 .977 .978 .980 

 35 .965 .984 .973 .987 .972 .984 .976 .985 .978 .985 

 50 .976 .990 .978 .990 .979 .985 .975 .985 .971 .983 

.10 20 .949 .982 .952 .974 .953 .969 .950 .970 .951 .968 

 35 .951 .982 .953 .984 .948 .973 .951 .978 .956 .975 

 50 .951 .984 .951 .984 .955 .975 .950 .974 .951 .977 

.25 20 .948 .965 .947 .964 .953 .938 .949 .947 .938 .924 

 35 .950 .974 .947 .965 .935 .952 .950 .946 .932 .937 

 50 .950 .968 .938 .956 .936 .943 .946 .958 .923 .931 

.40 20 .942 .948 .941 .946 .925 .917 .933 .918 .913 .876 

 35 .959 .956 .932 .938 .926 .923 .935 .925 .912 .894 

 50 .951 .950 .932 .935 .908 .912 .934 .926 .900 .891 

.55 20 .946 .932 .935 .923 .900 .865 .914 .886 .875 .830 

 35 .950 .943 .928 .926 .901 .895 .915 .897 .859 .860 

 50 .951 .944 .934 .934 .886 .902 .926 .919 .844 .856 

.70 20 .952 .934 .928 .913 .880 .866 .909 .875 .848 .812 

 35 .938 .922 .936 .925 .860 .865 .904 .903 .808 .812 

 50 .949 .941 .938 .936 .846 .866 .899 .911 .786 .827 

Note. Bold values are estimates outside the interval[ ].94,.96  and bold underlined values are outside 

the interval [ ].925,.975 . 
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Table 2. 
Estimated coverage probabilities for nominal 95% noncentral F distribution-based (NCF) and 

percentile bootstrap (boot) CIs for *f : J = 3, one extreme mean configuration 
 

 

*f  

 

n  

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .973 .984 .970 .978 .980 .982 .986 .983 .974 .980 

 35 .975 .991 .977 .989 .978 .986 .977 .986 .974 .982 

 50 .972 .986 .972 .983 .976 .986 .976 .986 .977 .986 

.10 20 .956 .978 .950 .976 .958 .978 .956 .971 .954 .970 

 35 .947 .981 .942 .976 .942 .970 .942 .970 .952 .972 

 50 .945 .981 .946 .976 .954 .980 .953 .979 .952 .975 

.25 20 .949 .964 .949 .960 .951 .942 .954 .953 .940 .934 

 35 .948 .968 .943 .959 .944 .953 .942 .956 .940 .930 

 50 .945 .961 .950 .962 .936 .940 .951 .964 .938 .935 

.40 20 .948 .954 .938 .936 .920 .899 .933 .922 .911 .886 

 35 .950 .950 .942 .939 .922 .919 .933 .929 .912 .899 

 50 .950 .950 .942 .944 .916 .918 .934 .933 .896 .894 

.55 20 .945 .936 .933 .927 .908 .876 .931 .907 .881 .850 

 35 .944 .938 .928 .922 .892 .880 .916 .912 .867 .864 

 50 .949 .945 .935 .930 .885 .889 .923 .928 .836 .862 

.70 20 .949 .932 .940 .921 .871 .845 .910 .888 .843 .811 

 35 .945 .935 .934 .937 .850 .851 .896 .894 .807 .822 

 50 .950 .941 .936 .936 .856 .867 .905 .922 .791 .828 

Note. Bold values are estimates outside the interval[ ].94,.96  and bold underlined values are outside 

the interval [ ].925,.975 . 
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Table 3. 
Estimated coverage probabilities for nominal 95% noncentral F distribution-based (NCF) and 

percentile bootstrap (boot) CIs for *f : J = 6, equally spaced mean configuration 
 

 

*f  

 

n  

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .977 .950 .975 .944 .980 .949 .976 .946 .980 .948 

 35 .974 .955 .976 .950 .976 .953 .975 .949 .980 .954 

 50 .972 .956 .972 .954 .985 .966 .977 .952 .978 .956 

.10 20 .953 .951 .952 .927 .954 .935 .959 .932 .952 .924 

 35 .951 .943 .942 .944 .953 .938 .950 .943 .944 .928 

 50 .944 .945 .950 .945 .958 .946 .940 .942 .954 .928 

.25 20 .948 .927 .948 .921 .938 .892 .950 .905 .928 .871 

 35 .952 .944 .944 .933 .937 .905 .938 .910 .919 .889 

 50 .954 .954 .943 .933 .932 .910 .944 .926 .910 .880 

.40 20 .950 .933 .945 .920 .917 .858 .922 .901 .880 .819 

 35 .953 .937 .940 .927 .900 .877 .928 .906 .860 .837 

 50 .955 .947 .943 .935 .904 .890 .932 .924 .860 .859 

.55 20 .949 .923 .934 .904 .876 .825 .914 .874 .856 .800 

 35 .958 .940 .931 .921 .872 .860 .902 .889 .818 .807 

 50 .954 .939 .930 .928 .869 .884 .914 .910 .808 .840 

.70 20 .955 .930 .932 .893 .849 .816 .893 .876 .790 .752 

 35 .942 .930 .923 .914 .826 .837 .892 .893 .766 .784 

 50 .943 .932 .918 .927 .820 .857 .895 .918 .752 .823 

Note. Bold values are estimates outside the interval[ ].94,.96  and bold underlined values are outside 

the interval [ ].925,.975 . 
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Table 4. 
Estimated coverage probabilities for nominal 95% noncentral F distribution-based and percentile 

bootstrap (boot) CIs for *f : J = 6, one extreme mean configuration 
 

 

*f  

 

n 

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .975 .949 .976 .946 .974 .942 .972 .936 .982 .948 

 35 .976 .956 .968 .947 .978 .951 .978 .952 .976 .954 

 50 .975 .958 .976 .959 .982 .958 .980 .956 .970 .944 

.10 20 .949 .944 .948 .927 .959 .938 .954 .926 .949 .926 

 35 .954 .950 .954 .943 .948 .932 .947 .930 .955 .935 

 50 .952 .948 .946 .950 .950 .936 .957 .945 .953 .933 

.25 20 .954 .934 .947 .920 .935 .894 .941 .911 .942 .884 

 35 .953 .940 .948 .946 .939 .910 .947 .933 .927 .888 

 50 .953 .947 .945 .929 .932 .909 .948 .939 .917 .898 

.40 20 .952 .930 .951 .924 .918 .860 .947 .898 .890 .827 

 35 .946 .932 .937 .924 .911 .892 .934 .917 .883 .862 

 50 .950 .936 .938 .931 .900 .894 .932 .932 .856 .860 

.55 20 .955 .931 .938 .902 .877 .838 .923 .886 .844 .793 

 35 .951 .930 .929 .919 .863 .862 .916 .909 .821 .824 

 50 .949 .936 .922 .925 .858 .879 .909 .908 .783 .820 

.70 20 .945 .915 .929 .893 .848 .826 .914 .885 .794 .754 

 35 .947 .935 .920 .911 .828 .834 .896 .908 .752 .790 

 50 .942 .930  .926 .918 .817 .849 .902 .920 .740 .815 

Note. Bold values are estimates outside the interval[ ].94,.96  and bold underlined values are outside 

the interval [ ].925,.975 . 
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Table 5. 

Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) CIs for *f : 

J=3, equally spaced mean configuration 
 

 

*f  

 

n 

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .446 .534 .449 .529 .442 .515 .451 .520 .448 .513 

 35 .338 .393 .334 .388 .339 .383 .335 .381 .340 .381 

 50 .281 .323 .278 .321 .283 .318 .284 .320 .285 .316 

.10 20 .467 .551 .470 .545 .479 .542 .476 .541 .479 .542 

 35 .367 .416 .361 .409 .367 .408 .369 .409 .370 .407 

 50 .309 .346 .313 .348 .314 .345 .314 .345 .317 .346 

.25 20 .560 .628 .561 .627 .568 .627 .568 .629 .577 .640 

 35 .453 .495 .452 .490 .457 .493 .456 .492 .457 .497 

 50 .395 .425 .393 .424 .396 .427 .396 .426 .394 .429 

.40 20 .641 .701 .641 .702 .642 .710 .638 .707 .648 .724 

 35 .497 .533 .495 .533 .495 .547 .497 .543 .496 .555 

 50 .413 .437 .413 .442 .413 .454 .414 .449 .413 .465 

.55 20 .676 .726 .676 .739 .678 .764 .676 .754 .677 .781 

 35 .504 .526 .504 .538 .506 .569 .505 .559 .507 .593 

 50 .417 .429 .418  .444 .419 .477 .418 .461 .420 .498 

.70 20 .693 .732 .692 .753 .696 .813 .696 .800 .702 .842 

 35 .514 .527 .515 .550 .517 .612 .516 .590 .521 .640 

 50 .428 .433 .428 .457 .430 .512 .428 .493 .433 .547 
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Table 6. 

Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) CIs for *f : 

J=3, one extreme mean configuration 
 

 

*f  

 

n 

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .448 .535 .452 .531 .453 .519 .442 .514 .452 .518 

 35 .335 .392 .336 .387 .338 .383 .334 .381 .341 .380 

 50 .280 .324 .287 .325 .283 .316 .280 .317 .284 .316 

.10 20 .472 .552 .473 .549 .482 .546 .473 .539 .476 .540 

 35 .361 .413 .365 .410 .369 .410 .367 .408 .371 .410 

 50 .312 .349 .312 .346 .315 .346 .315 .345 .319 .348 

.25 20 .562 .629 .566 .629 .573 .634 .564 .622 .578 .637 

 35 .452 .493 .456 .493 .457 .498 .455 .489 .464 .503 

 50 .394 .423 .394 .423 .395 .426 .395 .422 .400 .432 

.40 20 .641 .703 .638 .698 .643 .713 .643 .701 .645 .716 

 35 .496 .534 .496 .533 .496 .541 .496 .532 .496 .549 

 50 .414 .437 .414 .440 .414 .456 .414 .442 .413 .459 

.55 20 .676 .726 .675 .737 .678 .763 .679 .744 .679 .777 

 35 .504 .527 .504 .542 .506 .568 .505 .551 .507 .586 

 50 .417 .428 .418 .443 .420 .477 .418 .453 .420 .493 

.70 20 .692 .729 .693 .756 .698 .805 .695 .782 .701 .840 

 35 .514 .530 .514 .553 .518 .612 .516 .581 .521 .634 

 50 .427 .433 .427 .457 .430 .515 .428 .484 .432 .544 
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Table 7. 

Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) CIs for *f : 

J=6, equally spaced mean configuration 
 

 

*f  

 

n 

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .321 .434 .325 .433 .319 .427 .318 .428 .324 .428 

 35 .239 .320 .242 .319 .241 .317 .241 .317 .241 .315 

 50 .202 .266 .201 .265 .202 .263 .200 .263 .201 .263 

.10 20 .344 .446 .350 .446 .348 .443 .350 .443 .351 .443 

 35 .274 .337 .271 .335 .277 .336 .272 .334 .276 .333 

 50 .238 .284 .237 .283 .239 .283 .238 .282 .238 .280 

.25 20 .426 .479 .424 .475 .428 .473 .429 .474 .429 .474 

 35 .332 .353 .332 .351 .331 .349 .332 .350 .331 .350 

 50 .275 .285 .275 .286 .273 .285 .275 .286 .273 .287 

.40 20 .450 .469 .448 .468 .446 .475 .447 .473 .444 .481 

 35 .323 .330 .324 .334 .324 .347 .324 .341 .324 .357 

 50 .265 .268 .265 .274 .265 .290 .265 .281 .266 .301 

.55 20 .442 .452 .442 .463 .444 .492 .443 .480 .444 .510 

 35 .324 .328 .324 .339 .325 .374 .325 .356 .326 .393 

 50 .268 .270 .268 .282 .269 .317 .269 .298 .270 .340 

.70 20 .448 .457 .449 .478 .453 .529 .449 .513 .455 .565 

 35 .332 .336 .332 .357 .334 .412 .333 .386 .336 .438 

 50 .276 .277 .276 .299 .277 .352 .276 .323 .278 .381 
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Table 8. 

Average widths of noncentral F distribution-based (NCF) and percentile bootstrap (boot) CIs for *f : 

J=6, one extreme mean configuration 
 

 

*f  

 

n 

 

Normal 

.000

.109

g

h

=
=

 
.000

.225

g

h

=
=

 
.760

.098

g

h

=
= −

 
.225

.225

g

h

=
=

 

NCF boot NCF boot NCF boot NCF boot NCF boot 

.00 20 .322 .434 .319 .431 .322 .429 .323 .432 .321 .427 

 35 .239 .319 .239 .318 .243 .317 .242 .318 .241 .315 

 50 .202 .266 .199 .263 .202 .264 .199 .263 .203 .263 

.10 20 .350 .449 .347 .444 .349 .442 .352 .444 .355 .445 

 35 .274 .338 .274 .337 .275 .333 .274 .334 .278 .335 

 50 .236 .284 .237 .283 .236 .281 .237 .282 .240 .282 

.25 20 .425 .480 .425 .477 .427 .474 .429 .469 .432 .473 

 35 .333 .354 .331 .351 .332 .351 .333 .344 .331 .345 

 50 .276 .285 .275 .286 .274 .286 .276 .278 .274 .284 

.40 20 .449 .469 .449 .468 .447 .475 .449 .453 .446 .475 

 35 .324 .329 .324 .335 .324 .350 .323 .330 .324 .352 

 50 .265 .268 .265 .274 .265 .290 .265 .273 .266 .296 

.55 20 .442 .452 .442 .463 .444 .496 .443 .468 .445 .508 

 35 .324 .327 .324 .340 .325 .375 .324 .349 .326 .391 

 50 .268 .270 .268 .283 .269 .318 .269 .294 .270 .334 

.70 20 .448 .458 .449 .481 .452 .534 .449 .502 .455 .557 

 35 .332 .334 .332 .357 .335 .412 .333 .380 .336 .438 

 50 .276 .277 .276 .297 .278 .350 .276 .320 .278 .381 
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However, for all other combinations of 
conditions, the bootstrap CI did not provide 
accurate probability coverage. Furthermore, 

excluding * 0f = , the coverage performance of 
the noncentral F distribution-based CIs tended to 

decline as *f increased, as the distributions 
became more long-tailed, and appeared to be 
worse for skewed distributions. Overall, the 
noncentral F distribution-based CIs 

for *f yielded relatively better probability 

coverage than that of the bootstrap CIs for *f . 

The type of mean configurations and the number 
of treatment groups did not appear to affect the 
coverage probability of the CIs 

for *f considerably. Therefore, the coverage 

performance of the CIs for *f might be 

generalizable over types of mean configuration 
and various numbers of treatment groups.  

The widths of the noncentral F 

distribution-based CIs for *f were all narrower 

than those of the bootstrap CIs under the same 
condition. The interval widths of the CIs 

for *f were relatively unchanged across data 

distributions. The width of both estimated CIs 
became narrower as the number of levels for J 
increased, the sample size increased, and the 

population effect size *f decreased. 
In summary, both the noncentral F 

distribution-based and the bootstrap CIs for *f , 

which are based on the least-square estimators, 
yielded inadequate coverage probabilities. Thus 
an important task to help researchers who want 

to set a CI around *f  is developing a better 
interval than the noncentral F distribution-based 
or percentile bootstrap CI. An improved measure 
of effect size might be attained by substituting 
robust estimators, e.g., trimmed means and 
Winsorized variances, for the least-square 
values. Thus, one of our future studies has set 

out to propose a robust version of *f . A robust 
measure of effect size may yield better coverage 
probabilities and provide a measure that is not 
likely to be strongly affected by outlying data 
points. 
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