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Selection of Non-Regular Fractional Factorial Designs When  
Some Two-Factor Interactions are Important 

 
               Weiming Ke                                      Rui Yao  
South Dakota State University                   University of Missouri-Columbia 
 

A new method is proposed for selecting the optimal non-regular fractional factorial designs in the 
situation when some two-factor interactions are potentially important. Searching for the best designs 
according to this method is discussed and some results for the Plackett-Burman design of 12 runs are 
presented. 
 
Key words: Alias matrix, fractional factorial design, non-regular design, partial confounding, Plackett-
Burman design. 
 
 

Introduction 
 
Non-regular two-level fractional factorial 
designs, such as Plackett–Burman designs, are 
becoming popular choices in many areas of 
scientific investigation due to their run size 
economy and flexibility. The run size of non-
regular two-level factorial designs is a multiple 
of 4. They fill the gaps left by the regular two-
level fractional factorial designs whose run size 
is always a power of 2 (4, 8, 16, 32, …). In non-
regular factorial designs each main effect is 
partially confounded with all the two-factor 
interactions not involving itself. Because of this 
complex aliasing structure, non-regular factorial 
designs  had   not  received  sufficient  attention 
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until recently. A number of authors studied the 
projection properties of two-level non-regular 
factorial designs. This includes Box and 
Bisgaard (1993), Lin and Draper (1993, 1995), 
Cheng (1995, 1998), Box and Tyssedal (1996), 
and Dean and Draper (1999). More recently, 
Deng and Tang (1999) proposed generalized 
resolution and minimum aberration criteria for 
ranking non-regular two-level factorial designs 
in a systematic way. Their criteria were further 
studied by Tang and Deng (1999), Tang (2001), 
Xu and Wu (2001), Ma and Fang (2001), and 
Butler (2003). Based on the generalized 
minimum aberration criteria, Deng, Li, and Tang 
(2000) and Deng and Tang (2002) provided 
tables of non-regular designs with favorable 
aberration properties for n ≤ 24 runs, Cheng, Li 
and Ye (2004) studied optimal blocking schemes 
for non-regular designs. Despite the above 
important contributions, a basic problem in this 
area still remains unsolved. The problem is how 
to assess, compare, and rank non-regular 
factorial designs when some two-factor 
interactions are potentially important.   

In practical applications of non-regular 
designs, it is often in the case that some of the 
two-factor interactions are important and need to 
be estimated in addition to the main effects. In 
this article, we consider how to select non-
regular two-level fractional factorial designs 
when some of the two-factor interactions are 
presumably important. We propose and study a 
method to select the optimal non-regular two-
level fractional factorial designs in the situation 
that some of the two-factor interactions are 
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potentially important. We then discuss how to 
search for the best designs according to this 
method and present some results for the 
Plackett-Burman design of 12 runs. 

 
Non-regular fractional factorial designs 
 Non-regular fractional factorial designs 
are commonly obtained from Plackett-Burman 
designs or Hadamard matrices in general by 
selecting a subset of the columns. Plackett and 
Burman (1946) provided a series of two-level 
fractional factorial designs for examining (n − 1) 
factors in n run, where n is a multiple of 4. For 
example, a 12-run Plackett-Burman design can 
be constructed by shifting the row (+ + − + + + 
− − − + −) one place to the right 10 times and 
then adding a vector of − as the last row. See 
Table 1 for the 12-run Plackett-Burman design. 

It is well known that if a Hadamard 
matrix exists, then its order n has to be a 
multiple of 4. A Hadamard matrix H of order n 
is an n × n orthogonal matrix with the elements 
±1 whose columns (and rows) are orthogonal to 
each other. That means HTH = nE where E is the 
identity matrix. One can always normalize a 
Hadamard matrix by sign changes within 
complete rows so that its first column consists of 
all 1’s. Removing the first column, one obtains a 
saturated two-level deaign with n runs and (n − 
1) columns, which is a non-regular design and 
called a Hadamard design. Plackett-Burman 
designs are special cases of Hadamard designs. 
Non-regular designs are useful for factor 
screening and they fill the gaps between regular 
designs in terms of various run sizes. Unlike 
regular two-level fractional factorial designs in 
which any two effects are either orthogonal or 
fully aliased, non-regular designs exhibit some 
complex aliasing structure. In a non-regular 
design, there exist two effects that are partially 
aliased, meaning that they are neither orthogonal 
nor fully aliased. 

For example, in a non-regular two-level 
factorial design, a main effect is partially 
confounded with all the two-factor interactions 
not involving itself. Because of this complex 
aliasing structure, non-regular factorial designs 
were traditionally not advocated when some 
interactions are potentially important. However 
Hamada and Wu (1992) showed that some 
interactions could be detected using non-regular 

factorial designs. Hence the arising question is 
how to select non-regular fractional factorial 
designs when some interactions are potentially 
important and need to be estimated. In this 
article, a new method was proposed and studied 
to solve this problem. 

 
Method for selecting optimal non-regular 
factorial designs 

Suppose the interest is in estimating all 
the m main effects and some important two-
factor interactions by using a non-regular two-
level fractional factorial design. Then the fitted 
model should include all the m main effects and 
important two-factor interactions. The fitted 
model is given by 
 
                     Y = β0I + X1β1 + ε                    (1)    
 
where Y denotes the vector of n observations, β0 
is the grand mean and I the all +1 column, β1 is 
the vector of parameters containing all the main 
effects and important two-factor interactions, X1 
is the corresponding design matrix, and ε is the 
vector of uncorrelated random errors, assumed 
to have mean 0 and a constant variance. Because 
other interactions may not be negligible, the true 
model can be written as 
                             

Y = β0I + X1β1 + X2β2 + X3β3 

                         + · · · + Xmβm+ ε                 
        (2)      

 
where β2 is the vector of parameters containing 
the remaining two-factor interactions and X2 is 
the corresponding design  matrix, βk is the vector 
of parameters containing k-factors interactions 
and Xk is the corresponding design matrix. The 

least square estimator 1β̂  = (X1
TX1)

 -1X1
TY from 

the fitted model in (1) has expectation (under the 
true model in (2)), 
 

E( 1β̂ ) = β1 + (X1
TX1)

-1X1
TX2β2 + (X1

TX1)
- 

                1X1
TX3β3 + … +(X1

TX1)
-1X1

TXm βm           (3) 
          

So the bias of 1β̂  for estimating β1 is given by  
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Bias( 11 ,ˆ ββ ) = (X1
TX1)

-1X1
TX2β2 + (X1

TX1)
- 

                1X1
TX3 β3 + … +(X1

TX1)
-1X1

TXm βm          (4) 
 

The matrix A2 = (X1
TX1)

-1X1
TX2 is called 

the second alias matrix, Ak = (X1
TX1)

-1X1
TXk the 

kth alias matrix. The idea of alias matrix was  
 
originally introduced by Box and Wilson (1951).  
In other words, A2 shows to which extent the 
estimates of the main effects and the important 
two-factor interactions in the model will be 
biased by the remaining two-factor interactions, 
Ak shows to which extent the estimates of the 
effects in the model will be biased by the k-
factor interactions. 

Note that A2β2 is the contribution of β2 
to the bias and Akβk is the contribution of βk to 
the bias. Because βk is unknown, we have to 
work with Ak and minimize Akβk through 
minimizing Ak. One size measure for a matrix A 

= (aij) is given by ||A||2
def

= trace(ATA) = ji ija
,

2 . 

Under the hierarchical assumption that lower 
order effects are more important than higher 

order effects, to minimize the bias of 1β̂  we 
should sequentially minimize ||A2||

2,…, ||Am||2. 
Here ||Ak||

2 can be viewed as a confounding 
index which is a measure of the partial 
confounding between j-factor interactions not in  

 

 
 

the model and the effects in the model. For 
regular two-level fractional factorial designs, the 
entries of Ak are 0 or 1, and thus ||Ak||

2 is simply 
the number of k-factor interactions not in the 
model confounded with the effects in the 
postulated model (Ke & Tang, 2003). For non-
regular two-level fractional factorial designs, the 
entries of Ak are usually not integers because of 
the partial confounding structure. Now let Nk = 
||Ak||

2. Based on the above results, we can select 
optimal non-regular two-level fractional 
factorial designs by sequentially minimizing 
N2,…, Nm where Nk is a measure of the bias 
contributed by the k-factor interactions. The 
design selection criterion is given below. 
 Optimal design selection criterion: 
Suppose the interest is in estimating all the m 
main effects and some important two-factor 
interactions by using a non-regular two-level 
fractional factorial design. Let Ak, k = 2, 3, …, m 
be the kth alias matrix of the model and let Nk = 
trace(Ak

TAk) which is a measure of Ak. The 
optimal design is selected by sequentially 
minimizing N2,…, Nm.   

To gain further insight into the criterion, 
examine the criterion in detail. The postulated 
model consists of all the main effects and 
important two-factor interactions. If the effects 
not in the postulated model cannot be  
 

Table 1. The 12-run Plackett-Burman design 
 

Run 1 2 3 4 5 6 7 8 9 10 11 Response 

1 +1 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1 y1 

2 −1 +1 +1 −1 +1 +1 +1 −1 −1 −1 +1 y2 

3 +1 −1 +1 +1 −1 +1 +1 +1 −1 −1 −1 y3 

4 −1 +1 −1 +1 +1 −1 +1 +1 +1 −1 −1 y4 

5 −1 −1 +1 −1 +1 +1 −1 +1 +1 +1 −1 y5 

6 −1 −1 −1 +1 −1 +1 +1 −1 +1 +1 +1 y6 

7 +1 −1 −1 −1 +1 −1 +1 +1 −1 +1 +1 y7 

8 +1 +1 −1 −1 −1 +1 −1 +1 +1 −1 +1 y8 

9 +1 +1 +1 −1 −1 −1 +1 −1 +1 +1 −1 y9 

10 −1 +1 +1 +1 −1 −1 −1 +1 −1 +1 +1 y10 

11 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1 +1 y11 

12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 y12 
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completely ignored, they will bias the estimates 
of the effects in the model. To solve this 
problem, the key issues are to permit estimation 
of the main effects and important two-factor 
interactions in the postulated model and to 
minimize the bias caused by the effects not in 
the model. Those two-factor interactions not in 
the model and higher-order interactions 
generally cause a bias on the estimation of the 
effects in the model. The measure of this bias, as 
given by Nk, is a measure of the bias caused by 
the k-factor interactions. Under the hierarchical 
principle that lower-order effects are more 
important than higher-order effects (Wu & 
Hamada, 2000), to minimize the bias, we should 
sequentially minimizing N2, N3, …, Nm. The 
vector (N2, N3, …, Nm) is called the confounding 
index pattern of a design. The optimal design 
should be selected such that to sequentially 
minimize the bias caused by those non-
negligible interactions. Therefore this criterion 
selects the optimal non-regular design that has 
minimum N2. If several designs have the same 
number of N2, it selects optimal design that has 
minimum N3 among the designs that have 
minimum N2, and so on.  
 

 

 
Results 

Searching method 
Consider 12-run Plackett-Burman design as an 
example. Let k be the number of important two-
factor interactions. For k = 1, there is only one 
non-isomorphic model, as represented by Figure 
1. For k = 2 and 3, the number of non-
isomorphic models is 2 and 5 and the graphs for 
these non-isomorphic models are given in Figure 
2 and 3 respectively.  

Because there are many choices for the 
assignment of the important two-factor 
interactions, the optimal Plackett-Burman design 
of 12 runs is not easy to select according to this 
criterion. A computer program is used to 
calculate the confounding index pattern for each 
choice of the designs for each model for the 
given number of main effects and important 
two-factor interactions. Then select the best one 
that has minimum N2. If several designs have 
same N2, we select the best one that has the 
minimum N3, and so on. 

For 12-run Plackett-Burman designs, 
Draper (1985) and Wang (1989) showed that 
except for m = 5 and 6, any 12 × m designs are 
equivalent. Lin and Draper (1992) and Wang 
and Wu (1995) showed that the two non-  
 

 
Figure 1. Graph for model with one 2-factor interaction. 

 
 

 
Figure 2. Graphs for models with two 2-factor interactions. 

 
 

 
                                 (a)                     (b)                   (c)                   (d)                   (e) 
 

Figure 3. Graphs for models with three 2-factor interactions. 
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Table 2. Optimal 12-run Plackett-Burman designs for the model 
containing one two-factor interaction 

_________________________________________________________________________________     

                       m       design columns               2-f interaction                (N2, N3, N4) 
_________________________________________________________________________________ 

                         4          1 2 3 4                                    (1, 2)                 (1.56, 1.01, 0.67) 
                         5          1 2 3 4 5                                 (1, 2)                 (4.48, 4.30, 3.26) 
                         6          1 2 3 4 5 6                              (1, 2)             (9.06, 13.16, 11.91) 
                         7          1 2 3 4 5 6 7                           (1, 6)           (18.22, 29.56, 30.44) 
                         8          1 2 3 4 5 6 7 8                        (1, 7)                (32.78, 62.67, 72) 
                         9          1 2 3 4 5 6 7 8 9                     (1, 2)                 (59, 130.67, 160) 
                        10         1 2 3 4 5 6 7 8 9 10                (1, 2)                    (124, 320, 400) 

_________________________________________________________________________________ 
 

Table 3. Optimal 12-run Plackett-Burman designs for the models 
containing two two-factor interactions 

____________________________________________________________________________________________     

              m        model      design columns           2-f interactions                (N2, N3, N4) 
____________________________________________________________________________________________  

              4          2(a)           1 2 3 4                           (1, 2)(3, 4)               (1.16, 3.34, 0.72) 
                          2(b)           1 2 3 4                           (1, 2)(1, 3)               (1.65, 1.72, 1.04) 

              5          2(a)           1 2 3 4 5                        (1, 3)(2, 4)               (5.46, 7.38, 4.54) 
                          2(b)           1 2 3 4 5                        (1, 2)(2, 3)               (5.25, 8.08, 5.08) 

              6          2(a)           1 2 3 4 5 6                     (1, 4)(2, 3)          (12.56, 18.78, 14.44) 
                          2(b)           1 2 3 4 5 6                     (1, 2)(2, 4)          (12.22, 20.44, 15.33) 

____________________________________________________________________________________________ 
 

Table 4. Optimal 12-run Plackett-Burman designs for the models 
containing three two-factor interactions 

_______________________________________________________________________________________________     

             m        model      design columns           2-f interactions                   (N2, N3, N4) 
_______________________________________________________________________________________________  

             4          3(c)           1 2 3 4                     (1, 2)(1, 3)(1, 4)              (1.41, 2.75, 1.67) 
                         3(d)           1 2 3 4                     (1, 4)(4, 3)(3, 2)              (1.24, 4.05, 1.13) 
                         3(e)           1 2 3 4                     (1, 2)(1, 3)(2, 3)              (1.41, 2.75, 1.67) 

             5          3(b)           1 2 3 4 5                  (1, 2)(3, 5)(4, 5)             (6.33, 11.29, 6.33) 
                         3(c)           1 2 3 4 5                  (2, 3)(2, 4)(2, 5)             (6.40, 10.16, 6.12) 
                         3(d)           1 2 3 4 5                  (3, 2)(2, 1)(1, 4)             (6.20, 11.82, 6.76) 
                         3(e)           1 2 3 4 5                  (1, 2)(1, 3)(2, 3)             (6.40, 10.16, 6.12) 

             6          3(a)           1 2 3 4 5 6               (1, 2)(3, 5)(4, 6)           (19.78, 33.33, 22.22) 
                         3(b)           1 2 3 4 5 6               (3, 6)(1, 4)(2, 4)           (16.39, 25.05, 17.17) 
                         3(c)           1 2 3 4 5 6               (1, 2)(2, 3)(2, 4)           (15.76, 28.19, 18.98) 
                         3(d)           1 2 3 4 5 6               (1, 4)(4, 2)(2, 3)           (15.82, 26.48, 18.13) 
                         3(e)           1 2 3 4 5 6               (1, 2)(1, 3)(2, 3)           (15.95, 27.05, 18.41) 
_______________________________________________________________________________________________ 
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isomorphic 12 × 5 designs are the sub-matrix of 
the saturated design in Table 1 consisting of 
columns 1, 2, 3, 4, and 5 and the one consisting 
of columns 1, 2, 3, 4, and 10, the two non-
isomorphic 12 × 6 designs are the sub-matrix 
consisting of columns 1, 2, 3, 4, 5 and 6 and the 
one consisting of columns 1, 2, 3, 4, 5 and 7.  
The estimation capacity of the 12-run Plackett- 
Burman designs were studied by Li and Wang 
(2004). They proved that the design with m = 4 
can estimate all two-factor interactions, the 
designs with 7 ≤ m ≤ 10 can only estimate any 
one two-factor interactions, and the two designs 
of 12 × 5 and one design of 12 × 6 (with 
columns 1, 2, 3, 4, 5 and 6) can estimate any 
models with up to three two-factor interactions. 
The above information can help us to save time 
and effort for searching the optimal 12-run 
Plackett-Burman designs. We have found the 
optimal 12-run Plackett-Burman designs for the 
models containing up to three two-factor 
interactions using (N2, N3, N4) instead of the 
entire vector (N2, …, Nm) to further reduce the 
computing burden. Actually five-factor and 
higher order interactions are very small and 
usually negligible in practice. 
 
Optimal 12-run Plackett-Burman designs 

Tables 2, 3, and 4 present optimal 12-
run Plackett-Burman designs for the models 
with one, two, and three important two-factor 
interactions respectively. In these tables, the 
entries under “m” give the number of factors, the 
entries under “model” indicate which model is 
under consideration, and for example, an entry 
of 2(a) denotes the model represented by Figure 
2(a). The entries under “design columns” give 
the design columns of for the factors in the fitted 
model. Column j in these tables denotes the j-th 
column in the saturated 12-run Plackett-Burman 
design in Table 1. The entries under “2-f 
interaction” show how to assign the factors 
involved in the important two-factor 
interactions. The last column in these tables 
gives (N2, N3, N4). 

The optimal 12-run Plackett-Burman 
designs are listed in Tables 2−4. When planning 
to study several factors and some important two-
factor interactions by using a 12-run Plackett-
Burman design, choose an optimal design 
directly from these tables to satisfy the current 

needs. Now an example is employed to illustrate 
how to use these optimal design tables. 

Suppose that in an experiment, the 
experimenter want to study six factors, 
temperature, moisture, light, nitrogen, 
phosphorus, and potassium. Supose a 12-run 
Plackett-Burman design is being considered. In 
addition to the main effects of these factors, 
suppose further there is the need to estimate the 
three two-factor interactions that are between 
temperature and nitrogen, between temperature 
and phosphorus, and between temperature and 
potassium. The graph for this model is 3(c) as in 
Figure 3. The optimal 12-run Plackett-Burman 
design for this model can be found at the row for 
m = 6 and model 3(c) in Table 4. From this row 
in Table 4, we see that the design columns are 1, 
2, 3, 4, 5, and 6 in Table 1. To complete the 
specification of the optimal design, the six 
factors need to be appropriately assigned to the 
six columns. The 2-f interaction column in Table 
4 says that we should assign temperature to 
column 2, and assign nitrogen, phosphorus, and 
potassium to column 1, 3, and 4 arbitrarily. 
Other two factors can be arbitrarily assigned to 
the remaining columns 5 and 6. This design has 
N2 = 15.76 which is a measure of the bias caused 
by the two-factor interactions, meaning that this 
design is the best in the sense that no other 
designs have smaller N2 than this one for the 
given model. 
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