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Logit Estimation Using Warner’s Randomized Response Model 
 

Zawar Hussain     Javid Shabbir 
  Quaid-i-Azam University 

 
 
A modified hidden logit estimation procedure is presented based on Warner (1965) randomized response 
model. Monte Carlo simulations explore the behavior of this estimator and compare its performance with 
the ordinary logits estimator. Warner’s model is more protective and less jeopardizing. 
 
Key words: Logit estimation, randomized response, sensitive character. 
 
 

Introduction 
 
Binary data have been used quite frequently in 
econometric modeling. In the early days of 
econometrics these data were on the explanatory 
variables named as dummy variables. The 
development of linear and nonlinear 
econometrics, now, provided the ways to 
analyze the discrete dependent variables in 
regression models. They lead to the probit model 
and logit model. One of the assumptions in these 
procedures is that the empirical observations on 
dichotomous dependent variables are real 
reflections of the true values of the dependent 
variable. This is somewhat unrealistic 
assumption when modeling self-reported data on 
sensitive topics, such as when survey 
respondents are asked about embarrassing 
behavior, or illegal activities. Innocuous   
questions   receive    higher response rates than 
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questions on sensitive items, particularly on 
those involving perceived stigmatizing matters. 

The latter often results in either refusal 
to respond or falsified answers. Due to this, non-
response error is introduced and results in the 
unreliable estimation of population parameters 
of the interest. The reason of falsification of 
answer or refusal to answer might be the 
incentives for the survey respondents in the form 
of not getting embarrassed or not to be 
stigmatized.  Corstange (2004) noted, “If the 
problem is that people have incentives to hide 
their true opinions or behavior from the 
interviewer, then our science suffers unless we 
can develop means to nullify these incentives. 
Survey respondents may not be willing to reveal 
their true answers to sensitive questions without 
foolproof guarantees of anonymity – not only 
from outside observers such as law enforcement 
or friends and family, but even from the 
interviewers themselves” (p. 5). 

To nullify these adverse incentives, 
Corstange (2004) discussed changing the 
wordings of the sensitive question. But changing 
the statement of the question is actually 
changing the question and revised statements 
may not fully deliver the true underlying concept 
we hope to measure. As a means of guaranteeing 
anonymity to the respondent, consider Warner’s 
(1965) randomized response model. 

The randomized response models 
originated with Warner (1965), a statistician by 
discipline, and have since been improved upon 
by various others. Corstange (2004) stated that 
surprisingly enough, the procedure was almost 
entirely unknown among political scientists: 
other than a  few brief  research notes  published 
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in the late 1970s, randomized response remains 
relatively terra incognita to the discipline. The 
reason of this unpopularity of randomized 
response among the psychologists and 
politicians might be that, formerly, at best they 
could estimate population means rather than 
explanatory models. In other words, they were 
only able to estimate the proportion of 
respondents who evaded taxes in the last year 
without being able to estimate the effects of 
other characteristics such as family size, race, 
and number of earning hands, locality, and 
socio-economic status on tax evasion. 
 
Corstange’s (2004) Hidden Logits 
 The randomized response model used by 
Corstange (2004) is as follows:  Consider the 
following procedure to a yes/no question where 
“yes” the sensitive answer is: the respondent 
flips a coin and does not reveal the result to the 
interviewer. If the coin comes up heads, the 
respondent answers “yes” unconditionally, but if 
the coin comes up tails, the respondent answers 
the given yes/no question. Under these 
conditions, the interviewer does not know – and 
will never know – whether a “yes” response 
came as a result of a heads or as an answer to 
the question being asked. Generally, if ϕ  is the 
probability of an unconditional “yes” response 
(in the example, ϕ     =.50, the probability of  
 
 

 

 
 
getting heads) and (1–ϕ ) is the probability of an 
actual answer (either “yes” or “no”), then we  
can represent the extensive form of the possible 
outcomes as in Figure 1. 

From the above displayed data 
generating process  
 
            ˆ( ) (1 ).prob yes π ϕ ϕ π= = + −         (1) 
 
On simplification,  

                            
ˆ

1

π ϕπ
ϕ

−=
−

                       (2) 

 
In ordinary logit models  
 

                         ln
1

i

i

π β
π

 
= − 

ix               (3) 

 
where ix is the row vector of observations on 

explanatory variables and β  is the column 
vector of parameters. From equation (3) we can 
observe that estimation of the 'sβ is not 

possible because there are not any data on iπ . 

The only data available are on the explanatory 
variables and ˆiπ . Therefore, in order to move 

further express the logit model in terms of 
information available (i.e., ˆiπ ).  

 
Figure 1. Graphical representation of Corstange (2004) model. 
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Substituting (2) in (3) and solving for π  

 

                    ˆ
1

i

i

e β ϕπ
ϕ
+=

−

x

                       (4) 

 
Using equation (4) it is possible to 

estimate our parameters of interst, 'sβ , and 
thereafter the logits by maximum likelihood 
method. As shown by Corstange (2004), setting 
the derivatives of the likelihood function equal 
to zero maximizes the likelihood function but 
that equation cannot be solved analytically. 
Therefore, it is solved numerically. 
 
Deviation of Modified Hidden Logit 
 The Warner’s (1965) randomized 
response model provides more privacy and 
anonymity to the respondents than provided by 
the randomized response model used by 
Corstange (shown below). Our Modified hidden 
logits are based on Warner’s (1965) randomized 
response model. Warner’s (1965) randomized 
response device consists of two complimentary 

statements, say, A  and cA .  The statements A   

and cA  are presented with probabilities P  and 
1-  P  respectively. The respondents are 
required to select one of the two statements 
randomly and answer yes or no according to 
their true status. The extensive form of the 
outcomes of Warner’s device is shown in Fig.2. 
 

 

 
 
The probability of a yes answer in Warner’s 
(1965) device is  
 

Prob(yes) =  

               . (1 ).(1 )P Pπ π θ+ − − =  (say).        (5) 
 
Then using the steps of equations (2) and (3)  
                                                    

                  
(1 2 )

(2 1)

P

p

θπ − −=
−

                       (6) 

 

On substituting equation(6) in equation(3)  
 

                 
. (1 )

1

i

i

x

i x

P e P

e

β

βθ + −=
+

                  (7) 

 
For 1.0P =  it becomes the ordinary logits 
derived from direct response. 
 Because of the interest in the estimation 

of ' sβ , and all the information available is the 

observed probability of “yes” response, iθ ,the 

estimation is conducted using iθ .   

 Suppose iy  is a binary random variable 

taking two values,’ 0 ’(no) and ‘1’(yes)  with 

probabilities    1- iθ    and iθ  respectively,  then  

 

 
 

Figure 2 : Graphical representation of Warner’s(1965) RRM. 
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Table 1.(a) 
 

1000N =  iβ  
Ordinary 

Logit 
1.0P =  

Modified 
hidden 

Logit. 0.10P =

Modified 
hidden 

Logit. 0.20P =

Modified 
hidden 

Logit. 0.25P =  

Modified 
hidden 

Logit. 0.40P =

0x  0.0 
0.00046 
(0.1071)* 

-0.004 
(0.138) 

0.006 
(0.193) 

0.0078 
(0.244) 

0.0056 
(0.245) 

1x  1.0 
1.014 

(0.0914) 
1.018 

(0.132) 
1.040 

(0.201) 
1.075 

(0.274) 
1.081 

(0.3001) 

2x  1.0 
1.014 

(0.093) 
1.019 

(0.129) 
1.037 

(0.2009) 
1.0706 
(0.272) 

1.082 
(0.299) 

3x  1.0 
1.012 

(0.093) 
1.018 

(0.1302) 
1.038 

(0.2013) 
1.0182 
(0.279) 

1.034 
(0.2987) 

 
Table 1. (b) 

 

N=2000 iβ  

Ordinary 
Logit 

1.0P =  

Modified 
hidden 

Logit. 0.10P =

Modified 
hidden 

Logit. 0.20P =

Modified 
hidden 

Logit. 0.30P =  

Modified 
hidden 

Logit. 0.40P =

X0 0.00 
-0.0001 
(0.070) 

-0.001 
(0.090) 

0.0003 
(0.125) 

0.0015 
(0.200) 

0.0016 
(0.211) 

X1 1.00 
1.008 

(0.064) 
1.011 

(0.092) 
1.019 

(0.136) 
1.051 

(0.231) 
1.055 

(0.223) 

X2 1.00 
1.006 

(0.064) 
1.010 

(0.092) 
1.018 

(0.135) 
1.051 

(0.228) 
1.054 

(0.311) 

X3 1.00 
1.006 

(0.063) 
1.011 

(0.091) 
1.019 

(0.136) 
1.051 

(0.233) 
1.049 

(0.291) 
 

Table 1. (c) 
 

N=5000 iβ  

Ordinary 
Logit 

1.0P =  

Modified 
hidden 

Logit. 0.10P =

Modified 
hidden 

Logit. 0.20P =

Modified 
hidden 

Logit. 0.30P =  

Modified 
hidden 

Logit. 0.40P =

X0 0.00 
0.0006 
(0.046) 

0.0004 
(0.059) 

0.00004 
(0.081) 

-0.001 
(0.125) 

0.0016 
(0.192) 

X1 1.00 
1.0010 
(0.040) 

1.001 
(0.057) 

1.005 
(0.082) 

1.016 
(0.131) 

1.025 
(0.183) 

X2 1.00 
1.002 

(0.039) 
1.001 

(0.056) 
1.005 

(0.082) 
1.017 

(0.132) 
1.024 

(0.194) 

X3 1.00 
1.002 

(0.040) 
1.002 

(0.056) 
1.007 

(0.080) 
1.019 

(0.132) 
1.029 

(0.165) 
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given iy , the likelihood function of β  is given 

by  
 

               
1

( ) (1 )i i

n
y y

i i i
i

L yβ θ θ
=

= −∏          (8) 

 
and by taking natural logarithm on both sides  
 

ln ( )iL yβ= =  

          
1

{ .ln (1 ).ln(1 )}
n

i i i i
i

y yθ θ
=

+ − −         (9) 

 
The first order derivative of above equation with 
respect to the parameter vector β  is given by 

 

                                  
β

∂ =
∂

                         (10) 

( )

1

(3 2 )
1

1 )(2 (1 ) )(1 )

( 1)

((1 ) 2 )(1 )

i

i i i

i i

x

i x x xn

i
i

x x

P e
y P

P Pe P P e e
x

P

P e P e

β

β β β

β β

−

=

−

  − +−   − + − + − +   
− − − + − + 





  

 

 

 
When this equation is set equal to zero it 

maximizes the log-likelihood function but this 
equation cannot be solved analytically (see 
appendix). Therefore, its numerical solution may 
be obtained. 
 
 
 
 

 
Comparison Of Modified Hidden Logits With 
Ordinary Logits 

For comparison purposes, a small 
sample simulation study was conducted and 
results are given in table 1(a).The reason for 
small sample study is that the properties of 
consistency, normality and efficiency are well 
established for all maximum likelihood 
estimators (Green, 2000, & King, 1998). 
However, to see the pattern in the variances 
of iβ  results for N= 2000, 5000, and 10000 are 

presented in Table 1(b,c,d).The data presented 
here were generated as follows. For each 
P ,1000, 2000, 5000 and 10000 samples were 
generated from a three regressors equation with 
no constant term. For simplicity, each iβ  = 1. 

Also each ( 3,3)ix U − .  

 Given the above experimental 

conditions modified hidden logit return ˆ
ib  that 

quite closely track the true population 
parameters iβ . The Table 1 (a, b, c, d) also 

compare the performance of the modified hidden 
logit estimator with ordinary logit 
(when 1.0P = ) at selected levels of P . From the 
Table 1(a, b, c, d) it is clear that modified hidden 
logit quite closely track the true 'sβ  but at the 
cost of increased variances.   
 
 
 
 

Table 1. (d) 
 

N=10000 iβ  

Ordinary 
Logit 

1.0P =  

Modified 
hidden 

Logit. 0.10P =

Modified 
hidden 

Logit. 0.20P =

Modified 
hidden 

Logit. 0.30P =  

Modified 
hidden 

Logit. 0.40P =

X0 0.00 
0.0001 
(0.031) 

0.0019 
(0.042) 

0.0013 
(0.058) 

0.0015 
(0.089) 

-0.0081 
(0.200) 

X1 1.00 
1.001 

(0.028) 
1.001 

(0.040) 
1.002 

(0.057) 
1.006 

(0.092) 
1.061 

(0.212) 

X2 1.00 
1.001 

(0.028) 
1.002 

(0.038) 
1.004 

(0.056) 
1.008 

(0.091) 
1.060 

(0.199) 

X3 1.00 
1.0004 
(0.028) 

1.0009 
(0.040) 

1.001 
(0.055) 

1.004 
(0.090) 

1.071 
(0.187) 
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Figure 3. Graphs of ˆ 'i sβ  against P for N = 1000, 2000, 5000 and 10000. 
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Behavior of 'sβ with P  
From Figure 3 it is apparent that the 

modified hidden logit estimates of 'i sβ  deviate 

upward from the true 'i sβ  as p moves from 

0.0 to 0.5  and then become close to the true 

parameters 'i sβ  as p increases from 0.5 to 1.0 . 

An important point to remember is that the when 
0.5P =  the estimators of 'i sβ  do not exist (as 

is the case of applying Warner’s model to 
estimateπ , the proportion of population with 
sensitive attribute). It is interesting to note that 
standard errors of the 'i sβ are symmetric 

around 0.5P = . When the values of P moves 

away from 0.5 the standard errors of all the 'i sβ  

decreases.   
 
Respondent’s Protection 
 Three basic concerns in randomized 
response models are jeopardy, suspicion, and 
efficiency. Jeopardy is the extent to which an 
affirmative answer implies the sensitive 
attribute; that is, the likelihood that the person 
has the attribute, given a yes response. In forced 
alternatives (answer either the sensitive or non-
sensitive question), jeopardy increases as the 
probability that sensitive question was asked 
increases and the percentage of the population 
with the sensitive character decreases. 
      Suspicion is the extent to which a 
negative answer implies the sensitive attribute; 
that is, the likelihood that a person has the 
attribute, given a response. In forced alternatives 
(answer either the sensitive or non-sensitive 
question), suspicion increases as the probability 
that the sensitive question was asked decreases 
and the percentage of population with the non-
sensitive character also decreases. 
      Efficiency is the loss in precision as a 
result of randomized response technique. It 
increases as the probability that the sensitive 
question was asked decreases. 
      In comparing the randomized response 
models emphasis has been on the variances. 
Greenberg, Abul-Ela, Simmons, and 
Horvitz(1969), Moors(1971), and Dowling and 
Shachtman(1975) are some of many to be 
referred. The emphasis on variances amounts to 

considering the matters from statistician’s point 
of view only. Whereas the  respondent’s interest  
would be in the  extent to which  the different 
methods provide protection against their 
privacy. Leysieffer and Warner (1976), and 
Lanke (1975,76) provided the measures of 
protection provided by the different methods. 
Leysieffer and Warner (1976) proposed the 
natural measure of Jeopardy carried by a 
response R (either yes =Y  or no = N ) , about 

A  and cA  respectively, which are as  

( ) ( ) ( ) and ( )c cg R A P R A P R A g R A= =

1 ( )g R A , where and cA A  are defined as 
above. These functions are called jeopardy 
functions. And the particular response R  is 
jeopardizing if ( ) 1g R A = . 

Lanke(1976) proposed a measure of 
suspicion defined as 

( ) ( )( )max ,P A Y P A Nψ = , where 

( ) ( )and P A Y P A N
 

are conditional probabilities of belonging to a 
sensitive group A  given a particular response 

or Y N , and proposed that a method is more 
protective for which 

( ) ( )( )max ,P A Y P A Nψ =
 

 is smaller. 
These two measures are calculated for 

both of the randomized response models used by 
Corstange(2004), and Warner(1965) which are 
as follows: 
(i) For Warner,s model  

( )
1w

P
g Y A

P
=

−
 

and  

( ) ( )( )max ,w P A Y P A Nψ =  

(ii) For Corstange model 

( )dg Y A = ∞  

and  

( ) ( )( )max , 1d P A Y P A Nψ = = . 

 

It can be seen that ( ) ( )w dg Y A g Y A≤  and 

w dψ ψ≤ . It suggests that Warner’s model is 

less jeopardizing and more protective. 
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Choice of p 
 Setting a desirable value of P depends 
upon the nature of population. As we have just 
discussed above that that there are three major 
concerns of using randomized response 
techniques: jeopardy, suspicion and efficiency. 
Jeopardy increases with the increase in P and 
decrease in the proportion of population 
possessing sensitive character whereas suspicion 
increases with the decrease in P and the 
increase in the proportion of population 
possessing sensitive character. It has been 

showed that ( ) ( )w dg Y A g Y A≤  and 

w dψ ψ≤ ,so Warner’s randomizing device is  

superior to that of Corstange’s. Form table 2 it is 
apparent that the larger standard errors of each 

iβ  when P is closer to 0.5 . Thus a value farther 

from 0.5  should be set which seems desirable 
(e, g.0.3, 0.4, 0.6 or 0.7) and creates a balance 
between jeopardy and suspicion. In connection 
with isolated study of comparing the hidden 
logits based on Corstange (2004)’s model and  

 
Warner’s(1965) model we suggest to set P at 
smaller level as it would provide more 
anonymity and would be less jeopardizing. As 
far as suspicion is concerned, Warner’s (1965) 
model induces less suspicion for every P . So 
Warner’s model would be a better choice as 
compared to Corstange (2004) model. 

Fig. 4 presents the behavior of standard 

errors of the estimators ˆ , 1,2,3.ib i =  for 

different values of P. It can be easily seen that 
when P is closer to 0.5 the standard errors of the 
estimates are larger and setting P closer to 0.5 
would induce unreliability in the estimates. 
Therefore, we suggest setting P away from 0.5. 
The same behavior of standard errors with 
respect to changes in P is observed for other 
values of N. 

 
Discussion 

As survey statisticians, our interest in sensitive 
topics inevitably leads us to ask sensitive 
questions. As this article shows, however, we 
must take care when we study such topics, 

B3
LL
UL

1.00.90.80.70.60.50.40.30.20.10.0

1.3

1.2

1.1

1.0

0.9

0.8

0.7

P

B3

 
Figure 4. The behavior of standard errors of the ˆ 'ib s  with increasing values of P for 1000N = . 
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especially when drawing inferences from self-
reported, falsifiable answers to questions. By 
falsifying the true responses respondents get 
incentives by misrepresenting them. 
Randomized response as a questioning technique 
allows us, at least in principle, to nullify these 
incentives. The estimator developed here allows 
us to model questions of this nature, and 
simulations suggest that proceeding in this 
fashion allows us to draw more valid and more 
useful inferences about sensitive social issues. 
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Appendix. 
Derivation of equation (4). 

 
For                 

ln
1

i
i

i

x
π β

π
 

= − 
 

put the value of iπ  from Warner’s model and 

get:    

(1 )

(2 1)

(2 1)

i

i

x

i

P

P
e

P

P

β

θ

θ

 − −
 −  =
 −
 − 

 

( )
( )

(1 )
ixi

i

P
e

P
βθ
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