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Probability of Coverage and Interval Length for Two-Group Techniques 
Assessing the Median and Trimmed Mean  

 
S. Jonathan Mends-Cole 

Walden University 
 

 
The purpose of the present study was to assess the probability of coverage and interval length of selected 
statistical techniques that have a higher finite sample breakdown point than the mean and appropriate 
levels of probability of coverage when using Bradley’s (1978) criterion. The techniques were examined 
using real education and psychology datasets (Sawilowsky & Fahoome, 2003, Sawilowsky & Blair, 
1992). Welch’s test exhibited appropriate coverage for the smooth symmetric, mass at zero, digit 
preference, and extreme bimodal distributions. Yuen’s technique performed well under an extreme 
bimodal distribution. Results concerning the Maritz-Jarrett and the McKean-Schrader techniques are also 
presented. 
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Introduction 
 
A researcher may want to know a range of 
values that may enclose the population 
parameter with a given level of confidence. A 
confidence interval provides a range of values 
that one can be )1( α− 100% confident the 
population parameter is enclosed (Sawilowsky 
& Fahoome, 2003, p. 200-201). The adequacy of 
a confidence interval is assessed through 
probability of coverage, α̂1− . Within education 
and psychology, statistical techniques have been 

assessed through Type I (α̂ ) and Type II ( β̂ ) 
error rates (e.g., Wilcox & Charlin, 1986, 
Wilcox, 1994, Luh & Guo, 2000, Wilcox, 
Kowalchuk, & Olejnik, 2002). Although many 
studies have examined techniques using error 
rates, some studies have examined the 
techniques using probability of coverage and 
interval length. Examples would include the 
studies done by Bonett and Price (2002) and 
Price and Bonett (2002). 
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Box 07285, Detroit, MI 48207. 
 

 
Many situations motivate the use of 

confidence intervals. First, if no hypothesis is to 
be tested and one wants to know the range of 
plausible values for the population parameter, 
Knapp (1999) recommended using a confidence 
interval. Second, retrospective power analysis 
employs statistical power (a) following the 
statistical analysis, and (b) with a sample 
estimate of effect size. Statistical power is the a 
priori probability of detecting an effect if it 
exists, that is 021 ≠− μμ  (Wilcox, 1996; 
Zumbo & Hubley, 1998). The use of statistical 
power in retrospective power analysis is 
untenable (Zumbo & Hubley, 1998; Knapp, 
1999, Hoenig & Heisey, 2001). Hoenig and 
Heisey (2001), and Wilkinson and Taskforce on 
Statistical Inference (1999) recommended using 
confidence intervals instead of retrospective 
power analysis. Confidence intervals provide an 
indication of statistical precision. The interval is 
more precise if the length is narrower (Hinkle, 
Wiersma, & Jurs, 1998, p. 225). 
 Confidence intervals also provide a test 
of the null hypothesis. Values outside the 
interval limits provide evidence for rejecting a 
range of null hypotheses (Hinkle, Wiersma, & 
Jurs, 1998, p. 224, Bonett & Price, 2002, p. 
372). When comparing different statistical 
techniques or when applied at different alpha 
levels, narrower interval lengths imply greater 
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statistical power. Narrower interval lengths 
imply a smaller standard error. A smaller 
standard error implies that it will be more likely 
that the test statistic will be rejected. 
 Here, a study was done on the 
probabilities of coverage and interval length of 
techniques selected on the minimum number of 
sample values that can be altered, thus making 
the measure of central tendency arbitrarily large 
or small – the finite sample breakdown point 
(FSBP) (Wilcox, 2001, p. 149). An FSBP of 1/n 
is given for the mean. One outlier can make the 
mean arbitrarily large or small and the outlier 
can increase the variance. The outlier effect on 
the mean and variance affects the Type I and 
Type II error rates of statistical techniques that 
depend on the mean. 
 Consider the 0.05 alpha level. When 
sampling from skewed distributions where 
outliers occur frequently, the Type I error rate 
exceeds the nominal level (α ) and the 
probability of coverage is below the nominal 
level ( α−1 ) (Wilcox, 2003). For example, 
Mends-cole (2006) found that probability of 
coverage for Students’ t was less than 0.925 
under inverse heteroscedasticity. The standard of 
0.925 was adopted from Bradley’s (1978) 
criterion and recommended by Bunner (2003): 

ααα 5.11ˆ15.01 −≤−≤− . At the extremes of 
skewness ( 25.13 >γ ), probabilities of coverage 

for Welch’s t were below 0.925. The results 
were similar to Algina, Oshima, and Lin (1994) 
and Luh and Guo (2000). Under similar 
conditions, the probability of coverage for 
Welch’s technique was less than 0.925. 
 Preference was given to measures of 
central tendency with an FSBP that was higher 
than the mean. An FSBP of 0.20 is given for the 
20% trimmed mean; the median has an FSBP of 
0.50 (Wilcox, 2001, p. 149). Selected procedures 
for evaluating the trimmed mean and median 
included the confidence interval obtained by 
inverting Yuen’s trimmed t-statistic, the Maritz-
Jarrett median z-statistic (M-J), and the 
McKean-Schrader median z-statistic (M-S). 
Beyond testing a measure of central tendency 
with a high FSBP, the techniques have 
acceptable levels of Type I error rates, 

075.0ˆ025.0 ≤≤ α . In Table 1, 3γ  denotes 

skewness, 4γ  denotes kurtosis ( 4γ =0 for a 
normal distribution), skewness and kurtosis 
specifications for Wilcox (1994) represent the 
second group data.  The first group is sampled 
from a standard normal distribution. Skewness 
and kurtosis specifications for Bonett and Price 
(2002) represent the second group data.  The 
first group is sampled from an exponential 
distribution for the first two rows and from a 
standard normal distribution from the third row. 
Under conditions of skewness, each technique 
exhibited minor bias in terms of Type I error rate 
and probability of coverage, 

975.0ˆ1925.0 ≤−≤ α . 
 Some questions arise when considering 
the studies presented in Table 1. (a) The 
techniques were recommended based on random 
numbers generated using mathematical 
functions. Results from the mathematical 
functions may not represent the samples 
observed in applied situations in education and 
psychology. To the extent that Monte Carlo 
samples represent applied situations, the results 
generalize to like situations (Sawilowsky & 
Fahoome, 2003, p. 443). (b) The techniques 
were recommended based on Type I and Type II 
error rates. The probability-coverage and 
interval-length are specifications of the 
confidence interval. 
 

Method 
Yuen’s technique 

Yuen’s technique involves trimming and 
Winsorization to account for skewness. 
Trimming a group sample involves omitting a 
proportion of the largest scores and the same 
proportion of the smallest scores from the 
sample. Winsorization involves replacing a fixed 
proportion of the largest scores with the 
maximum score for the trimmed version of the 
same sample, and replacing an equivalent 
number of the smallest scores with the minimum 
score for the trimmed version of the same 
sample where [x] is the greatest integer ≤ x, 0 ≤ 
τ < 0.5, and g=[τn], the Winsorized values (Zi) 
for the scores (Xi) are given as follows: Z = 
X(g+1), if Xi ≤ X(g+1); Z = Xi if X(g+1) < Xi < X(n-g); 
Z = X(n-g) if Xi ≥ X(n-g). Wilcox (2003) suggested 
that 20% trimming is “a good choice for general 
use” (p. 251) and 20% trimming is applied here.  
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Table 1. Probability of Coverage, 05.0=α , of Yuen’s  & Welch’s Techniques Reported in the 
Literature 

 
Technique Author(s) (Date) 

1n  2n  12/σσ  
3γ  4γ  α̂1−  

Yuen's Wilcox (1994) 12 12 1 2.0 6.0 0.95 

    1 3.9 42.2 0.95 

 Luh &  12 24 4 6.2 111.0 0.95 

 Guo (2000)   1/4 6.2 111.0 0.92 

 Wilcox (1994) 40 12 1 2.0 6.0 0.95 

    1 3.9 42.2 0.95 

  80 20 1 2.0 6.0 0.94 

    1 3.9 42.2 0.95 

Maritz- Wilcox &  11 11 1 0.0 6.0 0.97 

Jarrett Charlin (1986)   1 0.9 1.2 0.96 

    1 2.0 6.0 0.96 

  25 11 1 0.0 6.0 0.96 

    1 0.9 1.2 0.95 

    1 2.0 6.0 0.96 

  25 19 1 0.0 6.0 0.96 

    1 0.9 1.2 0.95 

    1 2.0 6.0 0.96 

  25 25 1 0.0 6.0 0.96 

    1 0.9 1.2 0.95 

    1 2.0 6.0 0.96 

Maritz- Bonett & Price  15 15 9 2 6 .95 

Jarrett (2002)   4.7 6 110 .97 

    8 1.4 3 .94 

McKean- Bonett & Price  15 15 9 2 6 .96 

Schrader (2002)   4.7 6 110 .97 

    8 1.4 3 .96 
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The technique is outlined as follows. (a) 
Where tau the sum of squared deviations from 
the Winsorized mean is given as wiSSD , the 

Winsorized variance is estimated as 
)1(2 −= iwiwi hSSDS . The standard error of the 

trimmed mean is iwitix
hSS 22 = . The trimmed 

sample size is )(2 iii nh τ−= . The degrees of 

freedom are calculated as follows. 
 

1 2xt xt
df

−
=  

 2 2 2 2 2
1 21 2 1 2

[ ] [ ( 1) ( 1)]
xt xt xt xt

S S S h S h+ − + −   (1) 

 
The 2/1 α−  percentile of Student’s t-
distribution provides the critical value. 
 
Maritz-Jarrett Technique 
 The equations for the M-J technique 
were provided in Wilcox (1996). Where pbi is 
the probability that the value of a beta random 
variable is between ni /)1( −  and ni / , 

ni ,...,1= . The beta probability function 
depends on parameter values a and b; the 
parameter values for pbi are given as 

2/)1( += na , b = a. The probability is 
obtained using the International Mathematical 
and Statistical Libraries (1998) function 
BETDF. The Harrell-Davis estimate of the 
population median is calculated as follows. 
 

                   =
= n

i ibi Xp
1 )(θ̂          (2) 

 
The variable X(i) is the ith ordered value of Xi. 
The Harrell-Davis estimate of the population 
median is a less biased estimate of the 
population median than the sample median 
(Wilcox, 1996, p. 73). The estimate of the 
variance of the median is given as follows. 
 

          =
−= n

i biMJ i
XpS

1

222 ˆ
)(

θ        (3) 

 
That is the variance of the median is difference 
between the probability of a beta random 
variable and the ordered value of Xi, less the 
square of the Harrell-Davis estimate of the 
population median. 

McKean-Schrader Technique 
The equations for the M-S technique 

were provided in Wilcox (2003, p. 134). The 
computations are given as follows as follows. 

 
            42)1( 995. nznm ++=      (4) 

 
The estimate m is rounded to the nearest 
nonzero integer and z.995 is the 99.5 percentile of 
the standard normal distribution. The estimate of 
the variance of the median is given as follows 
 

        
2

995.)()1(
2 ]2)([ zXXS mmnMS −= +−  (5) 

 
The critical value for the M-J and M-S 
techniques is the 2/1 α−  percentile of the 
standard normal distribution. Both techniques 
provide confidence intervals using an estimate 
of the standard error of the median. Other 
methods of obtaining the confidence interval 
require the use of the bootstrap procedure 
(Wilcox, 1996, 2003). Modifications of the M-S 
variance have been recommended in Bonett and 
Price (2002) and Price and Bonett (2002). Yet, 
such modifications are not studied here. 
 The general form of the equation for the 
confidence interval for each statistic is given as 
follows. 
 
                      DSED 2/112 αϕ −          (6) 

 
Where D12 represents the difference between the 
trimmed means or between the medians; 
 2/1 αϕ −  represents either the two-tailed critical z 

or t value of a test statistic and significance level 
(α/2), DSE  is the standard error for D12. 
The specifications for the equation for the 
confidence interval were outlined in the table 
below. In summary, the respective measures of 
central tendency have a higher FSBP than the 
mean. Yuen’s method adjusts for skewness by 
trimming extreme scores. The method adjusts 
for heteroscedasticity by the manner in which 
the degrees of freedom are calculated. The 
Maritz-Jarret technique is based on an estimate 
of the median that is less biased than the sample 
median. Further, results by Bonett and Price 
(2002) show that the M-S technique maintained  
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good levels of probability of coverage under 
heteroscedasticity. As such, the methods were 
selected for consideration in the present study. 

Random samples were obtained 
independently and with replacement using the 
IMSL routines: RNUND and RNSET 
subroutines. Each sample was obtained using the 
real world sampling distributions provided in 
Sawilowsky and Fahoome (2003). The 
probabilities of coverage for each interval were  
evaluated using samples from seven non-normal 
distributions that are prevalent in educational 
and psychological research (Micceri, 1986). The 
table below provides the means ( μ ), standard 

deviations (σ ) and third and fourth moment 
estimates of skewness and kurtoses of the seven  

 

of the eight distributions. For the purpose of 
study, the distribution serves as a proxy for the 
population. Estimates of interval-length and 
probability-coverage were obtained by sampling 
from the seven distributions. The kurtosis was 
adjusted so that the value for a normal 
distribution would be 0.00. 

Sample size and standard deviation 
ratios of 1:1, 1:3, and 1:9 were specified. The 
group sizes were =in 5, 15, and 45. Sample size 

pairs included the following: (5,5), (5,15), 
(5,45), (15,15), (15,45), and (45,45). Sample 
size pairs were crossed with each level of 
heterogeneity - proportionately and 
disproportionately. Coverage-probabilities and 
interval-length were examined at the 0.05 alpha 

Table 2.  Equations for the Difference Estimate, Critical Value and Hypothesis for the Selected 
Techniques 

 
Technique Hypothesis 

12D  2/1 αϕ −  DSE  

Yuen’s  
21: ttH μμο =  21 tt XX −  2/1 α−t  2

2

2

121 txtxtxxt
SSSE +=

−
 

Maritz-Jarrett 
21: θθο =H  21 MM XX −  2/1 α−z  2

2
2

121 MJMJXX SSSEMJ
MM

+=−  

McKean-
Schrader 

21: θθο =H  21 MM XX −  2/1 α−z  2
2

2
121 MSMSXX SSSEMS

MM
+=−  

     
 

Table 3. Descriptive Information Pertaining to Eight Real World Distributions 
 

Distribution μ  σ  
3γ  4γ  

Mass at Zero (MZ) 12.92 4.42 -0.03 0.31 

Extreme Asymmetry-Psychometric (EAP) 13.67 5.75 1.64 1.52 

Extreme Asymmetry-Achievement (EAA) 24.5 5.79 -1.33 1.11 

Extreme Bimodality (EB) 2.97 1.69 -0.08 -1.70 

Multimodal & Lumpy (ML) 21.15 11.9 0.19 -1.20 

Digit Preference (DP) 536.95 37.64 -0.07 -0.24 

Smooth Symmetric (SS) 13.19 4.91 0.01 -0.34 

Note. Adapted from "A More Realistic Look at the Robustness and Type II Error Properties of the 
t Test to Departures From Population Normality”, by S. S. Sawilowsky and R. C. Blair, 1992, 
Psychological Bulletin, 2, p. 353. Copyright 1992 by the American Psychological Association 
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level. As in other Monte Carlo studies, results at 
the 0.01 alpha level will require a larger sample 
size to achieve appropriate levels of Type I 
error. 
 Let k be the ratio of the standard 
deviation for the second group compared with 
the first; and X is the untransformed score; the 
variance for the second group was modified as 
follows. 
 
                           kXX ='            (7) 
Multiplying a variable by k resulted in 
multiplying the measure of central tendency by a 
factor of k. However, the Monte Carlo study 
requires that the variance of the second group 
increase while the measures of central tendency 
remain equal. For k greater than one, the 
measure of central tendency was readjusted by 
subtracting out the population value of central 
tendency (η ) as follows. 
 
                  η)1( −−′=′′ kXX         (8) 
 
That is, multiplying the scores in one group by a 
factor increased the measure of central tendency 
by the same factor. Further, the measures of 
central tendency were adjusted to their original 
value. One million repetitions were done. Note 
that the levels of skewness, size, variance, and 
effect under study represent a subset of 
conditions that may occur in an applied 
situation. 
 The method involved (1) generating in  

random samples per group, (2) modeling 
heterogeneity. (3) For Yuen’s technique, one 
had to trim and Winsorize the sample values. (4) 
Evaluating Equation 6 to obtain the limits of the 
two-sided confidence interval. (5) The location 
relative efficiency (LRE) for the interval width 
(Sawilowsky, 2002) was obtained. Welch’s 
technique was used to calculate the LRE. The 
confidence interval for Welch’s technique uses a 
separate variance estimate of the standard error. 

Where 2
is  is the variance for group i; and 

iiix
nss 22 = , the standard error is estimated as 

follows. 
 

              2
2

2
121 xxxx

ssSE +=−        (9) 

 
The degrees of freedom are calculated as 
follows. 

 
                 wlchdf =           (10) 

22 2 2 2 2 2
1 21 2 1 2

( ) ( 1) ( ) ( 1)
x x x x

s s s n s n   + − + −      
 
The interval length for Welch’s technique was 
used to make comparisons with that of other 
intervals. The equation for the LRE is obtained 
as follows. 
 
    )()( }{}{ ΤΤ −−= LLULLLULLRE WW (11) 

 
The subscript W denotes Welch’s technique and 
{I} denotes either the use of Yuen’s, M-J’s, or 
M-S’s technique. An LRE above one shows that 
the interval for the selected technique is 
narrower than the interval for Welch’s 
technique; an LRE below one shows the reverse 
is true. Here, the standard that the comparison 
interval was 50% wider (narrower) than Welch’s 
interval was adopted. (6) Estimates of 
probability of coverage and interval length were 
obtained over the number of repetitions. The 
average LRE served as the outcome measure for 
interval length comparisons. In summary, a 
random sample was obtained and the confidence 
interval was computed. The location relative 
efficiency was obtained and the coverage was 
totaled. After 1,000,000 repetitions, the average 
LRE and probability of coverage were obtained. 
 

Results 
 
Probability of Coverage 
  Probabilities of coverage for the M-S 
technique were less than 0.925 under more of 
the conditions than for the other techniques 
examined. This finding was observed for each 
distribution studied. Low probability of 
coverage occurred consistently for the inverse 
pairing of size and variance and for total 
samples sizes less than sixty, 60<N . 
However, low probability of coverage did not 
occur if the ratio of variances ( 12 /σσ ) equal to  
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Table 4. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from a Smooth 

Symmetric Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.956 0.961 0.955 0.885b 

1 3 20 0.945 0.934 0.950 0.919b 

1 9 50 0.943 0.919b 0.940 0.882b 

1 1 30 0.950 0.950 0.956 0.970 

1 3 60 0.949 0.946 0.951 0.963 

1 1 90 0.950 0.950 0.954 0.953 

3 1 10 0.948 0.945 0.941 0.867b 

3 3 20 0.951 0.951 0.953 0.954 

3 1/3 20 0.946 0.928 0.934 0.869b 

3 9 50 0.948 0.941 0.953 0.932 

3 1/9 50 0.949 0.935 0.930 0.859b 

3 1 30 0.949 0.945 0.946 0.963 

3 3 60 0.951 0.950 0.951 0.959 

3 1/3 60 0.949 0.944 0.942 0.962 

3 1 90 0.950 0.949 0.945 0.950 

9 1 10 0.949 0.941 0.930 0.854b 

9 3 20 0.949 0.945 0.941 0.957 

9 1/3 20 0.950 0.945 0.929 0.853b 

9 9 50 0.950 0.950 0.945 0.942 

9 1/9 50 0.951 0.949 0.929 0.854b 

9 1 30 0.950 0.945 0.939 0.958 

9 3 60 0.950 0.948 0.942 0.944 

9 1/3 60 0.949 0.945 0.938 0.959 

9 1 90 0.950 0.948 0.941 0.945 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table 5. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from an Extreme 

Asymmetry-Achievement Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.975 0.968 0.960 0.885b 

1 3 20 0.927 0.943 0.957 0.921b 

1 9 50 0.886b 0.897b 0.944 0.883b 

1 1 30 0.954 0.963 0.965 0.973 

1 3 60 0.939 0.945 0.959 0.966 

1 1 90 0.951 0.955 0.960 0.962 

3 1 10 0.899b 0.938 0.947 0.865b 

3 3 20 0.951 0.956 0.961 0.954 

3 1/3 20 0.881b 0.897b 0.936 0.865b 

3 9 50 0.952 0.955 0.960 0.936 

3 1/9 50 0.882b 0.904b 0.929 0.849b 

3 1 30 0.928 0.930 0.954 0.964 

3 3 60 0.949 0.952 0.958 0.964 

3 1/3 60 0.923b 0.922b 0.948 0.959 

3 1 90 0.944 0.942 0.952 0.954 

9 1 10 0.882b 0.913b 0.930 0.842b 

9 3 20 0.923b 0.925 0.949 0.955 

9 1/3 20 0.883b 0.918b 0.927 0.841b 

9 9 50 0.945 0.946 0.954 0.947 

9 1/9 50 0.884b 0.927 0.927 0.839b 

9 1 30 0.922b 0.920b 0.946 0.956 

9 3 60 0.941 0.938 0.949 0.950 

9 1/3 60 0.921b 0.921b 0.945 0.955 

9 1 90 0.941 0.938 0.946 0.950 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table 6. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from a Extreme 

Bimodality Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.980a 0.971 0.917b 0.648b 

1 3 20 0.955 0.931 0.912b 0.698b 

1 9 50 0.952 0.879b 0.913b 0.636b 

1 1 30 0.950 0.946 0.901b 0.757b 

1 3 60 0.948 0.933 0.905b 0.709b 

1 1 90 0.949 0.948 0.916b 0.768b 

3 1 10 0.954 0.942 0.868b 0.604b 

3 3 20 0.958 0.952 0.866b 0.723b 

3 1/3 20 0.952 0.903b 0.858b 0.602b 

3 9 50 0.961 0.951 0.902b 0.770b 

3 1/9 50 0.952 0.958 0.840b 0.598b 

3 1 30 0.948 0.928 0.859b 0.714b 

3 3 60 0.950 0.947 0.894b 0.781b 

3 1/3 60 0.948 0.927 0.850b 0.698b 

3 1 90 0.949 0.945 0.886b 0.778b 

9 1 10 0.952 0.969 0.817b 0.595b 

9 3 20 0.949 0.929 0.825b 0.671b 

9 1/3 20 0.952 1.000a 0.813b 0.596b 

9 9 50 0.953 0.948 0.856b 0.771b 

9 1/9 50 0.952 1.000a 0.808b 0.597b 

9 1 30 0.948 0.928 0.823b 0.671b 

9 3 60 0.949 0.944 0.852b 0.770b 

9 1/3 60 0.948 0.928 0.819b 0.672b 

9 1 90 0.949 0.943 0.846b 0.766b 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table 7. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from a Multimodal & 

Lumpy Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.955 0.947 0.919b 0.779b 

1 3 20 0.931 0.903b 0.919b 0.833b 

1 9 50 0.921b 0.846b 0.910b 0.815b 

1 1 30 0.949 0.948 0.929 0.905b 

1 3 60 0.948 0.933 0.930 0.912b 

1 1 90 0.950 0.949 0.946 0.934 

3 1 10 0.925 0.897b 0.898b 0.769b 

3 3 20 0.950 0.945 0.918b 0.888b 

3 1/3 20 0.922b 0.846b 0.890b 0.770b 

3 9 50 0.943 0.932 0.933 0.898b 

3 1/9 50 0.923b 0.856b 0.883b 0.758b 

3 1 30 0.947 0.923b 0.914b 0.896b 

3 3 60 0.950 0.948 0.935 0.924b 

3 1/3 60 0.946 0.918b 0.907b 0.890b 

3 1 90 0.949 0.945 0.933 0.925 

9 1 10 0.923b 0.865b 0.879b 0.749b 

9 3 20 0.947 0.920b 0.903b 0.885b 

9 1/3 20 0.924b 0.869b 0.878b 0.749b 

9 9 50 0.950 0.946 0.927 0.917b 

9 1/9 50 0.924b 0.875b 0.877b 0.748b 

9 1 30 0.947 0.918b 0.902b 0.884b 

9 3 60 0.949 0.945 0.926 0.918b 

9 1/3 60 0.947 0.918b 0.900b 0.882b 

9 1 90 0.949 0.944 0.925 0.917b 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table 8. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from a Mass at Zero 

Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.958 0.962 0.958 0.893b 

1 3 20 0.948 0.936 0.953 0.923b 

1 9 50 0.946 0.923b 0.944 0.888b 

1 1 30 0.951 0.950 0.957 0.970 

1 3 60 0.950 0.946 0.953 0.963 

1 1 90 0.950 0.950 0.956 0.955 

3 1 10 0.951 0.948 0.946 0.875b 

3 3 20 0.953 0.952 0.953 0.954 

3 1/3 20 0.949 0.932 0.937 0.874b 

3 9 50 0.949 0.943 0.954 0.929 

3 1/9 50 0.951 0.941 0.934 0.864b 

3 1 30 0.950 0.945 0.945 0.962 

3 3 60 0.950 0.949 0.951 0.955 

3 1/3 60 0.950 0.943 0.940 0.959 

3 1 90 0.950 0.947 0.947 0.939 

9 1 10 0.952 0.945 0.934 0.859b 

9 3 20 0.951 0.945 0.939 0.954 

9 1/3 20 0.953 0.950 0.932 0.859b 

9 9 50 0.951 0.949 0.945 0.937 

9 1/9 50 0.954 0.953 0.932 0.860b 

9 1 30 0.950 0.943 0.937 0.955 

9 3 60 0.950 0.947 0.944 0.942 

9 1/3 60 0.951 0.943 0.936 0.956 

9 1 90 0.950 0.947 0.945 0.945 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table 9. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from an Extreme 

Asymmetry-Psychometric Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.990a 0.985a 0.974 0.894b 

1 3 20 0.955 0.984a 0.969 0.920b 

1 9 50 0.893b 0.971 0.960 0.888b 

1 1 30 0.962 0.988a 0.987a 0.983a 

1 3 60 0.937 0.964 0.985a 0.980a 

1 1 90 0.951 0.968 0.980a 0.973 

3 1 10 0.907b 0.984a 0.969 0.888b 

3 3 20 0.952 0.962 0.963 0.941 

3 1/3 20 0.878b 0.973 0.967 0.896b 

3 9 50 0.968 0.972 0.932 0.864b 

3 1/9 50 0.878b 0.972 0.964 0.872b 

3 1 30 0.920b 0.913b 0.972 0.974 

3 3 60 0.949 0.952 0.937 0.935 

3 1/3 60 0.913b 0.877b 0.953 0.953 

3 1 90 0.940 0.918b 0.882b 0.845b 

9 1 10 0.876b 0.984a 0.963 0.866b 

9 3 20 0.912b 0.900b 0.937 0.930 

9 1/3 20 0.878b 0.985a 0.962 0.863b 

9 9 50 0.940 0.933 0.848b 0.764b 

9 1/9 50 0.881b 0.990a 0.960 0.858b 

9 1 30 0.911b 0.867b 0.927 0.934 

9 3 60 0.937 0.905b 0.813b 0.762b 

9 1/3 60 0.911b 0.866b 0.921b 0.929 

9 1 90 0.936 0.902b 0.798b 0.739b 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table10. Probabilities of Coverage for the Welch, Yuen, Maritz-Jarrett, & McKean-Schrader 
Techniques for Equal & Unequal Sample Sizes & Variances when Sampling is from a Digit Preference 

Distribution 
 

12 σσ  
12 nn  N Welch Yuen Maritz-Jarrett McKean-

Schrader 
1 1 10 0.955 0.960 0.955 0.888b 

1 3 20 0.945 0.935 0.951 0.922b 

1 9 50 0.943 0.920b 0.941 0.887b 

1 1 30 0.951 0.950 0.958 0.973 

1 3 60 0.949 0.946 0.955 0.967 

1 1 90 0.950 0.949 0.958 0.966 

3 1 10 0.948 0.945 0.941 0.869b 

3 3 20 0.952 0.951 0.954 0.956 

3 1/3 20 0.947 0.928 0.934 0.871b 

3 9 50 0.948 0.941 0.952 0.935 

3 1/9 50 0.949 0.934 0.931 0.859b 

3 1 30 0.949 0.945 0.948 0.965 

3 3 60 0.950 0.949 0.947 0.958 

3 1/3 60 0.949 0.945 0.943 0.962 

3 1 90 0.950 0.948 0.938 0.946 

9 1 10 0.949 0.938 0.930 0.855b 

9 3 20 0.949 0.946 0.942 0.959 

9 1/3 20 0.950 0.941 0.929 0.855b 

9 9 50 0.950 0.949 0.932 0.934 

9 1/9 50 0.951 0.944 0.928 0.853b 

9 1 30 0.950 0.945 0.940 0.961 

9 3 60 0.950 0.948 0.927 0.936 

9 1/3 60 0.950 0.945 0.939 0.960 

9 1 90 0.950 0.947 0.925 0.933 

a. 975.0ˆ1 >−α  
b. 925.0ˆ1 <−α  
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Table 11. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from a Smooth 

Symmetric Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 0.803 0.882 1.140b 

1 3 20 0.904 0.875 1.002b 

1 9 50 0.946b 0.941 1.157b 

1 1 30 0.906 0.782 0.712 

1 3 60 0.916 0.794 0.732 

1 1 90 0.913 0.760 0.743 

3 1 10 0.856 0.955 1.230b 

3 3 20 0.890 0.812 0.794 

3 1/3 20 0.922 0.994 1.245b 

3 9 50 0.902 0.804 0.888 

3 1/9 50 0.894 1.020 1.301b 

3 1 30 0.917 0.823 0.741 

3 3 60 0.912 0.770 0.738 

3 1/3 60 0.919 0.843 0.756 

3 1 90 0.916 0.783 0.763 

9 1 10 0.868 1.021 1.312b 

9 3 20 0.916 0.843 0.763 

9 1/3 20 0.853 1.031 1.320b 

9 9 50 0.910 0.784 0.786 

9 1/9 50 0.834 1.035 1.329b 

9 1 30 0.918 0.851 0.759 

9 3 60 0.916 0.792 0.768 

9 1/3 60 0.918 0.855 0.761 

9 1 90 0.916 0.796 0.774 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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Table 12. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from an 

Extreme Asymmetry-Achievement Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 0.895 0.898 1.207b 

1 3 20 0.999 0.893 1.046b 

1 9 50 1.069b 0.941 1.188b 

1 1 30 0.988 0.854 0.773 

1 3 60 1.008 0.879 0.806 

1 1 90 0.995 0.867 0.839 

3 1 10 0.954 0.948 1.271b 

3 3 20 0.974 0.873 0.870 

3 1/3 20 1.053b 0.979 1.265b 

3 9 50 0.982 0.863 0.972 

3 1/9 50 1.038b 1.007 1.331b 

3 1 30 1.020 0.904 0.810 

3 3 60 0.995 0.869 0.825 

3 1/3 60 1.038b 0.936 0.836 

3 1 90 1.007 0.899 0.869 

9 1 10 0.986b 1.006 1.346b 

9 3 20 1.026 0.929 0.845 

9 1/3 20 0.981b 1.019 1.355b 

9 9 50 0.993 0.888 0.894 

9 1/9 50 0.952 1.025 1.370b 

9 1 30 1.040b 0.946 0.840 

9 3 60 1.011 0.910 0.877 

9 1/3 60 1.041b 0.953 0.845 

9 1 90 1.013 0.920 0.888 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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Table 3. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from a Extreme 

Bimodality Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 0.564 0.746b 1.281b 

1 3 20 0.631 0.673b 1.043b 

1 9 50 0.650b 0.725b 1.124b 

1 1 30 0.623 0.463b 0.626b 

1 3 60 0.622 0.428b 0.563b 

1 1 90 0.608 0.341b 0.430b 

3 1 10 0.594 0.830b 1.408b 

3 3 20 0.617 0.527b 0.717b 

3 1/3 20 0.608b 0.850b 1.405b 

3 9 50 0.623 0.471b 0.626b 

3 1/9 50 0.575 0.872b 1.442b 

3 1 30 0.630 0.495b 0.648b 

3 3 60 0.613 0.377b 0.471b 

3 1/3 60 0.633 0.498b 0.644b 

3 1 90 0.608 0.363b 0.442b 

9 1 10 0.568 0.891b 1.499b 

9 3 20 0.631 0.519b 0.668b 

9 1/3 20 0.554a 0.895b 1.503b 

9 9 50 0.610 0.392b 0.471b 

9 1/9 50 0.547a 0.897b 1.509b 

9 1 30 0.629 0.517b 0.662b 

9 3 60 0.608 0.382b 0.453b 

9 1/3 60 0.629 0.519b 0.662b 

9 1 90 0.607 0.383b 0.450b 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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Table 14. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from a 

Multimodal & Lumpy Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 0.715 0.839b 1.173b 

1 3 20 0.802b 0.790b 0.995b 

1 9 50 0.884b 0.862b 1.115b 

1 1 30 0.753 0.617 0.658b 

1 3 60 0.758 0.607 0.634b 

1 1 90 0.747 0.538 0.550 

3 1 10 0.800b 0.920b 1.273b 

3 3 20 0.750 0.676b 0.740b 

3 1/3 20 0.911b 0.949b 1.278b 

3 9 50 0.768 0.651 0.734b 

3 1/9 50 0.938b 0.978b 1.324b 

3 1 30 0.763b 0.658b 0.682b 

3 3 60 0.748 0.566 0.579b 

3 1/3 60 0.767b 0.674b 0.686b 

3 1 90 0.746 0.564 0.565 

9 1 10 0.880b 0.988b 1.352b 

9 3 20 0.765b 0.686b 0.701b 

9 1/3 20 0.913b 0.996b 1.358b 

9 9 50 0.748 0.586 0.593b 

9 1/9 50 0.893b 1.001b 1.365b 

9 1 30 0.767b 0.688b 0.696b 

9 3 60 0.746 0.580 0.574b 

9 1/3 60 0.767b 0.691b 0.697b 

9 1 90 0.745 0.582 0.573b 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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Table 15. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from a Mass at 

Zero Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 0.834 0.892 1.143b 

1 3 20 0.937 0.889 1.015b 

1 9 50 0.974b 0.949 1.162b 

1 1 30 0.948 0.818 0.743 

1 3 60 0.958 0.829 0.765 

1 1 90 0.956 0.797 0.781 

3 1 10 0.882 0.960 1.228b 

3 3 20 0.929 0.840 0.822 

3 1/3 20 0.939 0.998 1.246b 

3 9 50 0.940 0.828 0.914 

3 1/9 50 0.904 1.024 1.301b 

3 1 30 0.959 0.859 0.772 

3 3 60 0.955 0.807 0.775 

3 1/3 60 0.962 0.878 0.788 

3 1 90 0.958 0.821 0.803 

9 1 10 0.882 1.024 1.311b 

9 3 20 0.957 0.878 0.795 

9 1/3 20 0.864 1.035 1.320b 

9 9 50 0.952 0.819 0.825 

9 1/9 50 0.847 1.038 1.329b 

9 1 30 0.961 0.887 0.791 

9 3 60 0.959 0.830 0.809 

9 1/3 60 0.960 0.891 0.793 

9 1 90 0.959 0.835 0.817 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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Table 16. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from an 

Extreme Asymmetry-Psychometric Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 1.008a 0.894 1.277b 

1 3 20 1.156a 0.935 1.150b 

1 9 50 1.265 0.977 1.328b 

1 1 30 1.225a 1.047a 0.898a 

1 3 60 1.253 1.151a 1.026a 

1 1 90 1.175 1.255a 1.283 

3 1 10 1.080a 0.938 1.336b 

3 3 20 1.171 0.997 1.027 

3 1/3 20 1.238 0.975 1.329b 

3 9 50 1.117 1.008 1.256b 

3 1/9 50 1.243 0.997 1.405b 

3 1 30 1.350b 1.147 0.979 

3 3 60 1.191 1.197 1.148 

3 1/3 60 1.456b 1.254 1.079 

3 1 90 1.239b 1.360b 1.404b 

9 1 10 1.164a 0.987 1.406b 

9 3 20 1.377b 1.178 1.073 

9 1/3 20 1.171a 1.001 1.415b 

9 9 50 1.177 1.216b 1.378b 

9 1/9 50 1.131a 1.008 1.439b 

9 1 30 1.508b 1.270 1.083 

9 3 60 1.268b 1.391b 1.412b 

9 1/3 60 1.544b 1.307b 1.120 

9 1 90 1.293b 1.488b 1.548b 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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Table 17. Length Ratios for the Yuen, Maritz-Jarrett, & McKean-Schrader Techniques Compared with 
Welch’s Technique for Equal & Unequal Sample Sizes & Variances when Sampling is from a Digit 

Preference Distribution 
 

12 σσ  12 nn  N Yuen Maritz-Jarrett McKean-
Schrader 

1 1 10 0.812 0.886 1.139b 

1 3 20 0.915 0.882 1.002b 

1 9 50 0.964b 0.950 1.157b 

1 1 30 0.915 0.797 0.716 

1 3 60 0.925 0.815 0.739 

1 1 90 0.919 0.798 0.756 

3 1 10 0.872 0.958 1.227b 

3 3 20 0.900 0.824 0.797 

3 1/3 20 0.953 0.998 1.243b 

3 9 50 0.912 0.827 0.896 

3 1/9 50 0.945 1.025 1.298b 

3 1 30 0.927 0.839 0.745 

3 3 60 0.919 0.803 0.749 

3 1/3 60 0.930 0.861 0.760 

3 1 90 0.922 0.825 0.776 

9 1 10 0.905 1.024 1.309b 

9 3 20 0.926 0.859 0.767 

9 1/3 20 0.905 1.035 1.317b 

9 9 50 0.917 0.822 0.798 

9 1/9 50 0.881 1.039 1.326b 

9 1 30 0.929 0.869 0.763 

9 3 60 0.923 0.834 0.781 

9 1/3 60 0.929 0.873 0.766 

9 1 90 0.923 0.841 0.788 

a. 975.0ˆ1 >− α  
b. 925.0ˆ1 <− α  
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nine with the ratio of sample sizes ( 12 / nn ) 
equal to three or one, or for total sample sizes 
greater than sixty ( 60≥N ). Results were 
presented in the tables. Where absolute kurtosis 
was above 1.15, the probability of coverage for 
each technique was less than 0.925. Low 
probability of coverage occurred consistently for 
the inverse pairing of size and variance and for 
total sample sizes less than sixty ( 60<N ). 
 
Location Relative Efficiency 
 The conditions of the inverse pairing of 
size and variance and total sample sizes less than 
60 that resulted in probability of coverage less 
than 0.925 also results in LREs at or above 1.25 
using the M-S technique. That is, the interval 
length for the M-S technique was 80% of the 
length for Welch’s technique. The results were 
presented in the tables below. If absolute 
kurtosis was less than 1.15, the interval length 
for Yuen’s technique and the interval length for 
the M-J technique approximated the length for 
Welch’s technique. The length ratios were 
within the following range: 0.75-1.10. Further, 
the M-J technique displayed appropriate levels 
of coverage for each size and variance pairing.  
  If absolute kurtosis exceeded 1.15, 
specified results were observed for the EB 
distribution and for the multimodal lumpy 
distribution. (a) Under an EB distribution, the 
following was observed. The length for Yuen’s 
technique exceeded that for Welch’s technique 
by 50% or more. Length ratios for Yuen’s 
technique were below 0.66. Yuen’s technique 
also displayed appropriate levels of coverage for 
more of the size and variance conditions than 
either the Maritz-Jarrett or McKean-Schrader 
techniques. (b) Under a multimodal lumpy 
distribution, the following was observed. If total 
sample sizes exceeded 50, were equal or were 
proportional to variances, the width for the M-J 
technique was 50% wider than for Welch’s 
technique. LREs for the M-J technique were less 
than 0.66. On the other hand, the interval lengths 
for Yuen’s technique approximated that for 
Welch’s technique.  LREs were within the range 
0.715-0.940. For both Yuen’s and the M-J 
techniques, the probability of coverage was still 
less than 0.925 under several size and variance 
conditions. Low probability of coverage 

occurred consistently with the inverse pairing of 
size and variance and for total sample sizes less 
than 60. 
 

Conclusion 
 

The purpose of the present study was to assess 
the probability of coverage and interval length of 
selected statistical techniques that have a higher 
FSBP than the mean and appropriate levels of 
probability of coverage when using Bradley’s 
(1978) criterion. The techniques were examined 
using real education and psychology datasets 
(Sawilowsky & Fahoome, 2003, Sawilowsky & 
Blair, 1992). Welch’s test appears to be robust to 
minor violations involving heteroscedasticity. 
Welch’s test exhibited appropriate coverage for 
the smooth symmetric, mass at zero, digit 
preference, and extreme bimodal distributions. 
In general, the M-S technique exhibits narrow 
interval lengths that do not provide accurate 
coverage. The M-J technique does not perform 
well when kurtosis is at or below –1.25.  
However, it does perform well otherwise. 
Yuen’s technique does perform well when 
kurtosis is below –1.25. However, its 
performance approximated that of the M-J 
technique under an ML distribution. A tradeoff 
was observed between coverage and length for 
Yuen’s technique. Adequate coverage is often 
observed with wider interval lengths and vice 
versa. 
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