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Tests for Independence in Two-Way Contingency Tables with Small Samples 
 

       Stephen Sharp 
University of Edinburgh 

 
 
When testing the null hypothesis of independence in a two-way contingency table, the likelihood ratio 
test statistic is approximately distributed as Chi-squared d for large sample sizes (N) but may not be for 
small samples. This paper presents expressions which match the mean of the statistic to Chi-squared d 

as far as N−1 and N −2 , derives a method of estimating the expressions from observed data and 
evaluates them using Monte Carlo simulations. It is concluded that using appropriate dividing factors, 
rejection rates after matching are more accurate than for either the unadjusted likelihood ratio statistic 
or the Pearson approximation which is the main alternative statistic. Minimum cell frequencies 
necessary for high test accuracy are smaller than those commonly given in textbooks. 
 
Key words: Contingency tables, likelihood ratios, small samples, dividing factors. 
 
 

Introduction 
 
A common requirement in social science 
research is to test the null hypothesis of 
independence between the two axes of a 
contingency table. It is well known that this can 
be tested either by using Pearson’s Chi-squared  
approximation based on squares of differences 
between observed and expected values, or by the 
likelihood ratio test statistic (LR) originally 
proposed by Neyman and Pearson (1928). Many 
widely used statistical packages like SPSS give 
both statistics. Both tend asymptotically to a 
Chi-squared d distribution as sample size 
increases. Tabachnick and Fidell (2004, p. 251) 
pointed out that from a theoretical point of view, 
LR is preferable because it is available for 
testing overall fit, screening, and testing for 
differences among hierarchical models. 
However LR has the relative disadvantage that it 
converges  to  Chi-squared d  more  slowly than  
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the Pearson test and that for small samples it has 
values which are stochastically larger than its 
asymptote (i.e. it errs in the ‘wrong’ direction). 
This is because LR is based on the function 

p log p  where the summation goes over a 
complete set of probabilities, and as this is a 
downward concave function, replacing 
probabilities by their estimates leads to bias in 
estimating the sum. A similar effect has been 
noted where the same function is used to 
estimate entropy in physical systems (Victor 
2000). 
  Starting in the 1950s, statisticians have 
tried to find ways of adjusting the LR test to 
speed up its rate of convergence to Chi-squared 
and hence overcome its main limitation. The 
classic papers of Bartlett (1954) and Lawley 
(1957) developed a general method which 
applies to all continuous likelihood functions. 
The Bartlett-Lawley adjustment takes the form 
of a number, which, if used as a divisor for the 
LR statistic, matches all its moments to those of 
Chi-squared  as far as terms in N −1 , where N is 
the sample size, thus accelerating the 
convergence. However Frydenberg and Jensen 
(1989) cast doubt on whether Lawley’s method 
is effective at all when applied to discrete data 
(of which contingency tables are an example). 
They point out that the Lawley method assumes 
that the LR statistic can be written as a function 
of a continuous random variable, which is not 
the case with contingency tables with discrete 
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cell frequencies. The method however may still 
be valid to the extent that discrete data 
approximates continuous data, which will 
increasingly be the case as the number of cells in 
the table increases. Frydenberg and Jensen 
presented evidence that the method is seriously 
in error for one-dimensional frequency tables 
with three and four categories, where the data is 
at its most discrete, as it were. But other writers 
have argued that this view is overly pessimistic. 
Pierce and Peters (1992) explored one-parameter 
functions of exponential families, finding that 
excellent approximations can be obtained from 
simple adjustments to the signed square root of 
the likelihood ratio statistic with one degree of 
freedom. They did not however consider 
alternative hypotheses of a more generalized 
nature, as the present paper does. 
  Williams (1976, 1978) derived first-
order adjustments for the LR statistic for one-
way, two-way and five-way contingency tables, 
though he did this not by using the Bartlett-
Lawley method directly but by expanding 

logn n  (where N is an observed cell frequency) 
as a Taylor series around its mean. Also, he did 
not offer any empirical evaluation of the 
expressions he derived. Subsequently Smith et al 
(1981) also used a Taylor expansion around the 
mean and, by taking more terms in the series, 
derived a second-order expression which 
matches the first moment of LR to its asymptotic 
value as far as terms in N −2  and all others as far 

as terms in N−1. Smith et al considered only 
one-way tables with the null hypothesis of equal 
probabilities but produced evidence that their 
more accurate adjustment did indeed model 
upper cut-offs more accurately than that of 
Williams. Bayo Lawal (1984) showed that the 
Pearson test performs as well as the Williams-
adjusted LR for one-way tables with 3 and 4 
cells, though he did not consider the adjustment 
of Smith et al. 
  The aim of the present paper is to extend 
Williams’ expression for two-way tables from 

first order (as far as N−1) to second order (as far 
as N −2 ) levels of accuracy for the mean of the 
test statistic. Put another way, it is to extend 
Smith et al’s second-order expression from one-
way to two-way tables. The paper also presents 
Monte Carlo simulations to evaluate various 

adjustments to the LR statistic against each other 
and against the Pearson test and considers 
various practical issues concerning the 
implementation of the adjustments. 
 

Methodology 
 
First-order adjustments for two-way tables 
  To evaluate the Taylor series which 
results from expanding logn n , it is necessary to 
assume how N is distributed. Williams took the 
Poisson distribution while Smith et al used the 
multinomial. The latter is used throughout this 
paper for consistency. The distributions are 
closely linked and lead to the same answer for 
the first-order divisor, which Williams showed 
to be given by the expression 
 

                 1+
ri

−1 −1
i

 
 
 

 
 
 cj

−1 −1
j

 
 
 

 
 
 

6N r −1( ) c −1( )
             (1) 

 
where the table has r rows and c columns with 
marginal probabilities ri  (i = 1, 2, ....r) and c j  (j 

= 1, 2, ....c). Williams pointed out that the effect 
of the adjustment will be minimized where all 
the ri  equal 1/r and all the c j  equal 1/c. In this 

case, ri
−1 = r2  and cj

−1 = c2  so the above 

expression can be written simply as 
 

                      1+
r +1( ) c +1( )

6N
                 (2) 

 
This is undoubtedly safe but perhaps the 
adjustment may be made more accurate by 
estimating the sums of the reciprocals of the 
probabilities from the data. Neither Williams nor 
Smith et al considered the practicalities of doing 
this, the former because he attempted no 
empirical validation of the expression and the 
latter because they considered only the null 
hypothesis of uniformity where the parameters 
are known and do not have to be estimated. 

 The naive estimate of ri
−1

 (an analogous 
argument applies to the column probabilities) is 
simply the reciprocal of its maximum likelihood 
estimate ie Ri / N , where Ri  is the ith row total. 
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However N / Ri  is not an unbiased estimate of 

ri
−1 . In fact the expected value of N / Ri  is 

undefined if Ri  follows a Poisson or 
multinomial distribution as there is a finite 
probability that Ri  equals zero. In practice when 
using contingency tables, rows and columns 
with no observations at all are deleted from the 
analysis, the degrees of freedom being reduced 
accordingly. For present purposes however the 

problem is to estimate ri
−1

 where Ri  might be 
zero. To do this, we consider the expected value 

of Ri +1( )−1
. From the density function of the 

binomial distribution, this is given by 
 

E
1

Ri +1
= N!

Ri +1( )! N − Ri( )!Ri =0

N

 ri
Ri 1− ri( )N −Ri

 
 

  We make the binomial series complete 
again by multiplying by ri N +1( ) and adding in 

a term for Ri = −1. Rearranging yields 
 

               E
N +1

Ri +1

 

 
 

 

 
 =

1

ri

1− 1− ri( )N +1[ ]          

(3) 
 
  The left hand side is an underestimate 

of ri
−1

, the error being 1− ri( )N +1
. However this 

is less than 5% if the expected value of Ri  is 
around three and less than 1% if it is around 
five, values which should be exceeded 
comfortably by sample sizes used in practice in 
research. An analogous argument leads to 

N +1( )/ Cj +1( ) as an estimate of cj
−1

. 

 
Second-order adjustments for two-way tables 
  This is achieved in the same way as the 
first-order adjustments except that more terms 
are taken from the Taylor series. The expression 
derived by Smith et al for the second-order 
divisor for one-way tables was  
 

            1+ pi
−1 −1

6N k −1( )
+ pi

−2 − pi
−1

6N 2 k −1( )
      (4) 

 

where there are k categories with probabilities 
pi . The same method can be applied to the null 

hypothesis of independence in a two-way table 
rather than that of specified p-values in a one-
way table. The resulting algebra is laborious but 
straightforward. It leads to the rather ungainly 
expression 
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which is clearly a combination of (1) and (4). In 
the second-order case, the use of the Poisson or 
multinomial assumption makes a difference. The 
above version is the multinomial one. The term 
1−1/ N  in the numerator of the middle part of 
(5) disappears in the Poisson version, but in 
practice the difference between the two will be 
negligible if N has a value which is reasonable 
for research purposes. 
  Again there is a ‘safe’ version of this 
based on the assumption that all the ri  equal 1/r 
and all the c j  equal 1/c. The result is 

 
( )( )( )1 1/ 1 1

1
6

N r c

N

− + +
+ +  

                        
( )( )2 2

2

1 1

6

r r c c

N

+ + + +
            (6) 

 
  Again, the 1−1/ N  term is absent if the 
Poisson distribution is assumed. Following an 
argument analogous to that used above, we 

estimate ri
−2

 by considering the expected value 
of the reciprocal of Ri +1( ) Ri + 2( ): 

 

E
1

Ri +1( ) Ri + 2( )
= N!

Ri + 2( )! N − Ri( )!Ri =0

N

 ri
Ri 1− ri( )N −Ri  

 
 
  This time we complete the binomial 

series by multiplying by ri
2 N +1( ) N + 2( )  
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and adding in terms for Ri = −1 and Ri = −2. 
Rearranging yields 
 

( )( )
( )( )

1 2

1 2i i

N N
E

R R

+ +
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+ +
 

          ( ) ( ){ }1

2

1
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N

i i
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r r N
r

+− − + +          (7) 

 

  The extent of the underestimation of ri
−2

 

is greater than for ri
−1

 but it is still less than 5% 
if the expected value of Ri  is at least five and 
less than 1% if it is at least seven, and these are 
also values which should be exceeded 
comfortably by sample sizes used in practice in 
research. An analogous argument leads to 

N +1( ) N + 2( )/ C j +1( )Cj + 2( )[ ] as an 

estimate of cj
−2

. However it is not certain that a 

second-order expression based on estimated 
parameters will be successful in improving the 
accuracy of the method. Victor (2000) found 
that this approach did not always lead to greater 
accuracy when trying to derive improved 
estimates for entropy in physical systems. The 
figures reported in the next section throw light 
on the accuracy of the various adjustments. 

 
Results 

 
Monte Carlo methods were used to assess the 
accuracy of six different tests which are 
summarized in Table 1.  The choice of which 
sort of simulated data to use is inevitably to 
some extent arbitrary. The choice used here is 
based on the advice offered by most statistical 
text books (e. g., Tabachnick & Fidell 2004, p. 
223) that the Pearson test should not be used 
unless all expected cell frequencies in the table 
are greater than one and not more than one-fifth 
of them are less than five. Tabachnick and Fidell 
do not give the source of this advice and there 
seems to be no corresponding advice for the LR 
test. 
  All the contingency tables used in the 
simulations had five columns with the number of 
rows being two, three, four and five. In each row 
the expected value of the first cell was one while 
all other cells had the expected value M where M 

had the values two, three, four and five. Thus in 
all cases, one-fifth of cells have an expected 
value of one and all other cells have an expected 
value of M. The case where M equals five is the 
criterion case for the advice given in statistics 
texts. The aim is to investigate whether any of 
the adjusted tests perform well with values of M 
less than five. 
  For each of the 16 (four numbers of 
rows by four values of M) versions of the table, 
10,000 sets of data were simulated where the 
null hypothesis was true. The results are 
contained in table 2. For ease of interpretation, 
some of the entries in this table are in bold face. 
If the actual and nominal rejection rates for a test 
are the same, the percentage of rejections at a 
level of significance p (e. g., 0.05) has an 
expected value of 100p and variance p 1− p( ). 
Entries in the tables where the observed 
percentage is within two standard deviations of 
the nominal percentage are in bold type. This is 
a stringent criterion as the only deviation which 
it allows from the nominal rejection levels is that 
expected on the basis of sampling error. 
  The main comparison is between tests 2 
to 6 (i. e., the various LR tests). Test 1, the 
Pearson approximation, acts as a benchmark. It 
is immediately clear from table 2 that test 2 (the 
unadjusted LR test) is seriously in error, the 
rejection rate being well above the nominal rate 
for all levels of significance, especially the less 
stringent ones. The smallest dividing factor is 
test 3, the LR test with first order adjustment 
based on equal marginal parameters. This is a 
marked improvement on test 2 but still has a 
tendency to over-reject slightly at the 10% and 
5% levels. Larger adjustments are provided by 
tests 4 and 5 and these have higher 
concentrations of accurate rejection rates. There 
is little to choose between them except at the 
very smallest sample size where M=2 and each 
row has an expected frequency of just nine. 
Here, test 4 over rejects slightly at the 10% level 
but is more accurate than test 5 at the 5% and 
1% levels (the levels most often used in social 
science research). Test 6, the second-order 
correction with estimated parameters, has the 
largest adjustment of all but appears to be a step 
too far, as it were. Its performance is similar to 
test 1 (the Pearson approximation), i. e., safe but 
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conservative, especially at the more stringent 
significance levels, but not as accurate as tests 4 
or 5. 
 It might seem counterintuitive that test 6, 
which has the strongest theoretical rationale, 
is not the most accurate but in fact this is not 
so surprising. As Smith et al. (1981) pointed 
out, the use of a scaling factor to match 
moments is by its very nature a fairly crude 
device whose effects at a fine level of detail 
may not always match closely with 
theoretical expectations. Also, the 
adjustments are designed to match the first 
moment of the LR statistic with its asymptotic 
mean, and the mean values (not reported 
here) observed in the simulations do indeed 
show that test 6 usually produces the mean 
closest to the number of degrees of freedom. 
However the criterion used here (and the one 
in which test users are interested) is the 
accuracy with which each test models not the 
mean but the upper cut-off scores and this 
depends on characteristics of the distribution 
other than the mean. 
 

Conclusion 
 
On the basis of the arguments and data reported 
above, these conclusions are offered: 
 
  (i) the unadjusted LR test should not be used 

for small samples; 
 (ii) the Pearson approximation is safe but 

conservative; 
(iii) the view of Frydenberg and Jensen is 

overly pessimistic in the context of two-
way contingency tables where the use of 
rescaling factors can result in improved 
test accuracy; 

(iv) if a second-order adjustment assuming 
equal marginal probabilities is used based 
on (6) above, then at the 10% and 5% 
levels of significance, accurate rejection 
rates are achieved where all expected 
values are at least one and not more than 
one-fifth are less than three; and 

  (v) if a first-order adjustment is used with 
marginal probabilities estimated from the 
data using the method based on (1) and (3) 
above, accurate rejection rates are 
achieved where all expected values are at 

least one and not more than one-fifth are 
less than two (for the 5% level of 
significance) or three (for the 1% level). 
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Table 1: Adjustments to LR tests and their divisors 
___________________________________________________________________________________ 

Test Description Divisor 

___________________________________________________________________________________ 

1 Pearson approximation. - 

2 Unadjusted LR test. - 

3 LR test with first order adjustment and equal marginal parameters. expression (2) 

4 LR test with first order adjustment and estimated marginal parameters. expressions (1) and (3) 

5 LR test with second order adjustment and equal marginal parameters. expression (6) 

6 LR test with second order adjustment and estimated marginal parameters. expressions (5) and (7) 
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Table 2: Rejection rates for six tests and various tables sizes and cell frequencies. Bold entries are within 
sampling variation of the nominal rate. 

 rows M  10%  5% 1%  0.1%  rows M  10% 5% 1%  0.1% 
Test 1 2 2 8.58 3.07 0.12 0.00 Test 2 2 2 18.99 10.42 1.71 0.06 
Test 1 3 2 8.56 3.73 0.52 0.03 Test 2 3 2 19.78 10.51 1.87 0.13 
Test 1 4 2 8.98 4.34 0.67 0.02 Test 2 4 2 20.97 11.65 2.30 0.14 
Test 1 5 2 9.29 4.15 0.59 0.03 Test 2 5 2 22.88 12.57 2.56 0.20 
Test 1 2 3 9.06 3.74 0.43 0.00 Test 2 2 3 16.31 8.99 2.06 0.21 
Test 1 3 3 9.60 4.07 0.55 0.02 Test 2 3 3 17.81 9.93 1.88 0.12 
Test 1 4 3 9.44 4.47 0.85 0.08 Test 2 4 3 19.20 10.58 2.48 0.23 
Test 1 5 3 9.25 4.49 0.80 0.08 Test 2 5 3 19.00 10.27 2.48 0.29 
Test 1 2 4 8.59 3.96 0.52 0.03 Test 2 2 4 14.10 7.52 1.87 0.24 
Test 1 3 4 9.11 4.19 0.76 0.05 Test 2 3 4 15.42 8.05 2.04 0.24 
Test 1 4 4 9.12 4.30 0.80 0.04 Test 2 4 4 15.90 8.69 1.90 0.21 
Test 1 5 4 9.04 4.12 0.83 0.08 Test 2 5 4 16.66 8.73 2.01 0.27 
Test 1 2 5 9.47 4.24 0.74 0.02 Test 2 2 5 13.64 7.50 1.83 0.23 
Test 1 3 5 9.89 4.48 0.61 0.04 Test 2 3 5 14.57 7.76 1.66 0.18 
Test 1 4 5 9.80 4.78 0.95 0.08 Test 2 4 5 14.84 8.36 1.88 0.24 
Test 1 5 5 9.04 4.03 1.00 0.08 Test 2 5 5 14.81 7.70 1.98 0.24 
            rows M  10%  5% 1%  0.1%   rows  M   10%  5%  1%   0.1% 
Test 3 2 2 11.55 5.04 0.49 0.00 Test 4 2 2 11.96 5.23 0.53 0.00 
Test 3 3 2 11.01 4.80 0.60 0.00 Test 4 3 2 10.98 4.78 0.62 0.00 
Test 3 4 2 11.37 5.08 0.61 0.01 Test 4 4 2 11.02 4.84 0.60 0.01 
Test 3 5 2 11.51 5.10 0.54 0.01 Test 4 5 2 11.07 4.97 0.55 0.00 
Test 3 2 3 11.94 5.97 1.05 0.10 Test 4 2 3 11.82 5.81 0.99 0.11 
Test 3 3 3 12.35 6.09 0.86 0.01 Test 4 3 3 11.62 5.68 0.78 0.01 
Test 3 4 3 12.59 6.20 1.03 0.06 Test 4 4 3 11.65 5.72 0.89 0.06 
Test 3 5 3 11.83 5.95 1.24 0.08 Test 4 5 3 10.72 5.44 1.04 0.07 
Test 3 2 4 10.99 5.49 1.11 0.11 Test 4 2 4 10.47 5.30 1.03 0.09 
Test 3 3 4 11.19 5.80 1.11 0.11 Test 4 3 4 10.36 5.23 1.01 0.10 
Test 3 4 4 11.46 5.17 1.12 0.03 Test 4 4 4 10.31 4.69 0.96 0.02 
Test 3 5 4 11.42 5.37 1.06 0.11 Test 4 5 4 10.10 4.81 0.92 0.09 
Test 3 2 5 11.30 5.66 1.25 0.11 Test 4 2 5 10.87 5.39 1.18 0.09 
Test 3 3 5 11.13 5.51 1.01 0.08 Test 4 3 5 10.16 4.82 0.79 0.04 
Test 3 4 5 11.65 5.95 1.23 0.12 Test 4 4 5 10.43 5.30 1.03 0.10 
Test 3 5 5 10.84 5.38 1.26 0.12 Test 4 5 5 9.38 4.54 1.01 0.09 
            rows M    10% 5% 1%   0.1%  rows M  10%  5%  1%  0.1% 
Test 5 2 2 8.46 3.14 0.21 0.00 Test 6 2 2 9.51 3.79 0.32 0.00 
Test 5 3 2 7.44 2.82 0.25 0.00 Test 6 3 2 7.56 2.98 0.28 0.00 
Test 5 4 2 7.48 2.99 0.26 0.01 Test 6 4 2 7.00 2.77 0.26 0.00 
Test 5 5 2 7.32 2.83 0.24 0.00 Test 6 5 2 6.73 2.54 0.21 0.00 
Test 5 2 3 10.27 4.88 0.78 0.05 Test 6 2 3 10.05 4.74 0.70 0.09 
Test 5 3 3 10.55 4.88 0.68 0.01 Test 6 3 3 9.32 4.19 0.53 0.01 
Test 5 4 3 10.52 4.88 0.72 0.05 Test 6 4 3 8.71 4.03 0.58 0.03 
Test 5 5 3 9.70 4.74 0.81 0.06 Test 6 5 3 8.03 3.70 0.63 0.03 
Test 5 2 4 10.01 5.06 0.90 0.08 Test 6 2 4 9.17 4.60 0.76 0.07 
Test 5 3 4 10.16 5.14 0.95 0.10 Test 6 3 4 8.70 4.27 0.79 0.08 
Test 5 4 4 10.30 4.68 0.93 0.01 Test 6 4 4 8.13 3.60 0.60 0.00 
Test 5 5 4 10.11 4.75 0.93 0.09 Test 6 5 4 7.64 3.52 0.66 0.05 
Test 5 2 5 10.89 5.40 1.16 0.09 Test 6 2 5 9.80 4.80 1.00 0.06 
Test 5 3 5 10.50 5.13 0.88 0.05 Test 6 3 5 8.78 3.98 0.55 0.02 
Test 5 4 5 10.90 5.59 1.10 0.11 Test 6 4 5 8.66 4.16 0.77 0.06 
Test 5 5 5 10.02 4.92 1.12 0.10 Test 6 5 5 7.35 3.54 0.74 0.03 
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