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Estimation of Covariance Matrix in Signal Processing 
When the Noise Covariance Matrix is Arbitrary 

 
Madhusudan Bhandary 

Columbus State University 
 

 
An estimator of the covariance matrix in signal processing is derived when the noise covariance matrix is 
arbitrary based on the method of maximum likelihood estimation. The estimator is a continuous function 

of the eigenvalues and eigenvectors of the matrix 2

1

1
*

2

1

1
ˆˆ −− ΣΣ S , where *S  is the sample covariance 

matrix of observations consisting of both noise and signals and 1Σ̂  is the estimator of covariance matrix  
based on observations consisting of noise only. Strong consistency and asymptotic normality of the 
estimator are briefly discussed. 
 
Key words: Maximum likelihood estimator, signal processing, white noise, colored noise. 
 
 

Introduction 
 

The covariance and correlation matrices are used 
for a variety of purposes. They give a simple 
description of the overall shape of a point-cloud 
in p-space. They are used in principal 
component analysis, factor analysis, 
discriminant analysis, canonical correlation 
analysis, tests of independence etc. In signal 
processing, estimation of covariance matrix is 
important because it helps to discriminate 
between signals and noise (filtering). 

The problem of estimation of the 

dispersion matrix of the form 1
2Σ+Γ σ  is 

considered, where the unknown matrix Γ  is 

n.n.d. of rank q(< p), 2σ (> 0) is unknown and  

1Σ  is some arbitrary positive matrix. In general, 
the model is signal processing is 

 
      X(t) = AS(t) + n(t)      (1.1) 
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where, X(t) = (X1(t), X2(t), …, Xp(t))′ is the px1 
observation vector at time t, S(t) = (S1(t), S2(t), 
…, Sq(t))′ is the qx1 vector of unknown random 
signals at time t, n(t) = (n1(t), n2(t), …, np(t))′ is 
the px1 random noise vector at time t, and A = 
(A(Φ1), A(Φ2), …, A(Φq)) is the pxq matrix of 
unknown coefficients, A(Φr) is the px1 vector of 
functions of the elements of unknown vector Φr 
associated with the rth signal and q < p.  
 In model (1.1), X(t) is assumed to be 
distributed as p-variate normal distribution with 
mean vector zero and dispersion matrix 

1
2

1
2 Σ+Γ=Σ+′Ψ σσAA , where AA ′Ψ=Γ  

is unknown n.n.d. matrix of rank q(<p) and Ψ  

= covariance matrix of S(t), 2σ (>0) is 

unknown, 1
2Σσ  is the covariance matrix of the 

noise vector n(t) and 1Σ  is some arbitrary 
positive definite matrix. In the above situation, 
when the covariance matrix of the noise vector 

n(t) is pI2σ , where Ip denotes identity matrix of 

order pxp, the model is called white noise 

model. If the covariance matrix of n(t) is 1
2Σσ , 

where 1Σ  is some arbitrary positive definite 
matrix, the model is colored noise model. 
          One of the important problems that arise 
in the area of signal processing is to estimate q, 
the number of signals transmitted. The problem 
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is equivalent to estimate the multiplicity of the 
smallest eigen value of the covariance matrix of 
the observation vector. Anderson (1963), 
Krishnaiah (1976), Rao (1983), Wax and Kailath 
(1984), Zhao et.al (1986a,b) considered the 
above problem. Chen (2001), Chen (2002) and 
Kundu (2000) developed procedures for 
estimating the number of  signals.   
         Another important problem in this area 
is to have some idea about covariance and 
correlation matrix. The estimation of the 

dispersion matrix of the form 1
2Σ+Γ σ  is of 

interest, and then, the derivation of the estimator 
is discussed. Strong consistency and asymptotic 
normality of the estimator are then discussed. 

 
Derivation of the Estimator 
 Let the observations x(t1), x(t2), …, x(tn) 
be n observed p-component signals at n different 
time points which are independently and 
identically distributed as p-variate normal 
distribution with mean vector zero and 

dispersion matrix 1
2Σ+Γ σ , where AA ′Ψ=Γ  

and is n.n.d. of rank q(<p) and 1Σ  is some 
arbitrary positive definite matrix. 

Because Γ is n.n.d. of rank q(<p), it can 
be assumed that BB ′=Γ , where B  is a pxq 
matrix of rank q and  

 
),,...,,.( 21 qDiagBB θθθ=′           (2.1) 

 
where qθθθ ≥≥≥ ...21  are the non-zero eigen 

values of Γ.  
The log-likelihood of the observations 

based on xi ‘s, apart from a constant term, can be 
written  as follows : 

 

     
2

1log log
2

n
L BB σ′= − + Σ  

                   2 1
1

1
.( )

2
tr BB Sσ −′− + Σ             (2.2) 

where, S= 
=

==′
n

i
iiii nitxxxx

1

,...,2,1),(,                       

 
Following Lawley and Maxel (1963, 

Chapter 2): 

log L

B

∂ =
∂

 

2 1 2 1 2 1
1 1 1

1
( ) ( ) ( )

2 2

n
BB BB S BBσ σ σ− − − ′ ′ ′− + Σ + + Σ + Σ  

 
                             2B = 0  

              i.e. =Σ−ΣΣ −− BS 1
2

*
2

1
2 )(  0      (2.3) 

 

where, 1
2

2 Σ+′=Σ σBB  and 
n

S
S =* . 

Using Rao(1983, p.33)  
 

                 
1

1
21

2 )( −− Σ+′=Σ σBB
=       

     ))((
2

1
11

2

1

1
2

1
1

2

1
1

σσσσ

−
−

−−− Σ′
+

Σ′Σ
−

Σ B
I

BB
B q = 

  

           ))((
1

2

1
111

1
1

12 σσ

−
−−− Σ′

+Σ−Σ
B

DIB q
   (2.4)  

 

where, 
2

1
1

σ
BB

D
−Σ′

=  and Ip denotes identity 

matrix of order pxp. Using (2.4) in (2.3), 
 

B
B

DIBS q 






 Σ′
+Σ−Σ−Σ

−
−−−

2

1
111

1
1

12
*

2 )(
1

)(
σσ

= 0 

  i.e. [ ]DDII
B

S qq
1

2

1
1*

2 )()( −
−

+−
Σ

−Σ
σ

 = 0 

  i.e. 1
2

1
1*

2 )()( −
−

+
Σ

−Σ DI
B

S qσ
  = 0 

       i.e. BS 1
1

*
2 )( −Σ−Σ  = 0                    (2.5) 

                              
which after substitution of 2Σ  from (2.3) and 
rearrangement of terms gives 
                            

       )( 1
1

21
1

* BBIBBS q
−− Σ′+=Σ σ  

      i.e. 
1 1 1

*2 2 2
1 1 1( )( )S B
− − −

Σ Σ Σ =     

         
1

2 12
1 1( )( )qB I B Bσ
− −′Σ + Σ                      (2.6) 
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It can be seen that the right hand side of 
(2.2) remains the same, if the matrix B  is 
replaced by BP  where P  is an orthogonal 

matrix and hence BB 1
1

−Σ′  can be reduced to 

BPBP 1
1

−Σ′′  which can be reduced to a 

diagonal form because BB 1
1

−Σ′  is a real 
symmetric matrix (See Bellman (1960) p.54).   

From (2.6) it is trivial that columns of  

B2

1

1
−Σ  are eigenvectors of the matrix 

2

1

1
*

2

1

1
−− ΣΣ S  and the diagonal elements of 

BBI q
1

1
2 −Σ′+σ  are the corresponding 

eigenvalues (2.7). 
Let pααα ≥≥≥ ...21  be the ordered 

eigen values of 2

1

1
*

2

1

1
−− ΣΣ S  and let 

),...,,.( 21 qDiag ααα=Θ . Since the diagonal 

elements of BB 1
1

−Σ′  are the column sum of 

squares of B2

1

1
−Σ , each eigenvector should be 

normalized so that the sum of squares equal the 

corresponding eigenvalue minus 2σ  . Let B
~

 be 
a pxq matrix whose columns are 1 2, ,..., qw w w , 

where 1 2, ,..., qw w w  are a set of unit-length 

eigen vectors corresponding to the q largest 

eigen values of 2

1

1
*

2

1

1
−− ΣΣ S . Then,  

               qIBB =′~~
 

and   

               2

1
2

2

1

1 )(
~ˆ

qIBB σ−Θ=Σ −
           (2.8) 

Another likelihood equation can be written as 
follows: 

2

log L

σ
∂ =

∂  

             1 * 1
2 2 2 1.( ( ) ) 0tr S− −Σ Σ − Σ Σ =          (2.9) 

 
From (2.4) and (2.9), 
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                                = 0 ( using (2.5)) 
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
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+

Σ
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−−−−

6
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11
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1

1
*

2

1

1
2

).().(

σσσ
BBtrStrp −−− Σ′

+
ΣΣ

−   

                                  = 0                       (2.10) 
 
(2.10) is obtained due to the fact that 
 
 

1 1 1 *
1 1

6

( )qB I D B S

σ

− − −′Σ + Σ
=  

                    

1 1 1
1 1 2

6

( )qB I D B

σ

− − −′Σ + Σ Σ
 

(using (2.5)) 

            = 
6

211
1 )()(

σ
σ BDIDIB qq ′++Σ −−

 

=
4

1
1

σ
BB ′Σ −

 

          

(because )( 1
21

12
1

1 Σ+′Σ′=ΣΣ′ −− σBBBB ) 

                            = BBBB ′+′Σ′ − 21
1 σ =        

                             BID q ′+ 2)( σ ) 
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From (2.10),  
 

4

2

4
1

2

).(

σ
σ

σ

α

σ
q

p

i
i Itrp −Θ

+−


=  

= 0 (using (2.8)) 

i.e. 
4

1
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4
1
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)(

σ

σα

σ

α

σ


==

−
+−

q

i
i

p

i
ip
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                    i.e. 
qp

p

qi
i

−
=


+= 12ˆ

α
σ                   (2.11)     

 
It remains to estimate the matrix 1Σ .An 
independent set of observations on noise is 
necessary to be found only to estimate 1Σ . Let 

y(t1), y(t2),…, y(tm) be i.i.d. ~ Np(0, 1
2Σσ ). Let 

y(ti) = yi = ( yi1, yi2,…, yip)′ for convenience. 
Then the trivial estimator of the covariance 
matrix 

         1Σ  is 
    ~1     ~

1

1ˆ
i

m

i
i yy

m
′=Σ 

=

                  (2.12) 

Hence, final estimator of the covariance matrix 
can be written as follows: 

 

Estimator of 1
2

1
2 ˆˆˆˆ)( Σ+′=Σ+Γ σσ BB  

            = 1
22

1

1
22

1

1
ˆˆˆ~

)ˆ(
~ˆ Σ+Σ′−ΘΣ σσ BIB q    (2.13) 

where 
=B

~
 ( w1: w2: …: wq) 

),...,,.( 21 qDiag ααα=Θ  

rα = rth ordered eigen value of 2

1

1
*

2

1

1
ˆˆ −− ΣΣ S                                

wr = rth orthonormal eigenvector of 

2

1

1
*

2

1

1
ˆˆ −− ΣΣ S  

corresponding to rα  
2σ̂ is given by (2.11) 

and 1Σ̂  can be obtained from (2.12). 
 
 
 
 

Strong Consistency of the Estimator 
Lemma 3.1. 

Let the observations y1, y2,…, ym  be 

i.i.d. ~ Np(0, 1
2Σσ ), where 1Σ  is some arbitrary 

positive definite matrix. Let 1Σ̂  be the estimator 

of 1Σ  given by (2.12). Then 1Σ̂  is a strongly 

consistent estimator of 1Σ . 
 
Proof. 

The proof of Lemma 3.1 is trivial from 
Strong Law of Large Number Theory. 
 
Lemma 3.2 

Suppose A, An, n = 1, 2, …, are all pxp 
symmetric matrices such that An-A = O( nα ) and 

0→nα  as n ∞→ . Denote by 

pλλλ ≥≥≥ ...21  and )()(
2

)(
1 ... n

p
nn λλλ ≥≥≥  

the eigenvalues of A and An, respectively. Then, 
 

)()(
ni

n
i O αλλ =−  as n ∞→ , .,...,1 pi =  

 
Proof. 

The proof of Lemma 3.2 is given in 
Zhao, Krishnaiah and Bai (1986a). 
 
Lemma 3.3 

Suppose A, An, n = 1, 2, …, are all pxp 
symmetric matrices such that An-A = O( nβ ) and 

0→nβ  as n ∞→ . Denote f1, f2,…, fp and f1
(n), 

f2
(n), …, fp

(n)the eigenvectors of A and An 
respectively, corresponding to pλλλ ,...,, 21  and 

)()(
2

)(
1 ,...,, n

p
nn λλλ  respectively. 

Then, )()(
ni

n
i Off β=−  as n 

.,...,1, pi =∞→  
 

Note: Lemma 3.3 may not be true, if the 
symmetric matrix A has same eigenvalues. But 
it is true for those eigenvectors corresponding to 
distinct eigenvalues of A. 
 
Proof. 

The proof of Lemma 3.3 can be done 
similar way as in Zhao, Krishnaiah and Bai 
(1986a). 
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Theorem 3.1 

Let 
∧

Σ+Γ 1
2σ  be an estimator of 

1
2Σ+Γ σ   obtained from (2.13). Then 

∧

Σ+Γ 1
2σ  ⎯→⎯ ..sa  1

2Σ+Γ σ   as ∞→n  and 
∞→m  .  

 
Proof.    
Using Lemma 3.1,  
 

                1
..

1
ˆ Σ⎯→⎯Σ sa  as  ∞→m         (3.1) 

 
From Strong Law of Large Number Theory, 
 

)(
1

   ~
1

   ~
1

..

1   ~   ~

* xxExx
n

S sa
n

i
ii ′⎯→⎯′= 

=

 

as ∞→n  

~~    ~
1 00)( ′+= xV  

1
2Σ+Γ= σ  

 
Hence,  

2

1

11
2

2

1

1
..

2

1

1
*

2

1

1 )(ˆˆ −−−− ΣΣ+ΓΣ⎯→⎯ΣΣ σsaS  

as ∞→n  and ∞→m  

                        pI2
2

1

12

1

1 σ+ΓΣΣ= −−
              (3.2) 

 

Let 2
21 ... σ>>>> qlll  be the ordered 

eigenvalues of pI2
2

1

12

1

1 σ+ΓΣΣ −−
                                                                           

and 
     ~    ~

2
   ~
1 ,...,, pddd  be the corresponding 

orthonormal eigenvectors of 

pI2
2

1

12

1

1 σ+ΓΣΣ −−
. Then, using (3.2) and 

Lemma 3.2,  
 

i
sa

i l⎯→⎯ ..α   ; qi ,...,2,1=  

and 
2.. σα ⎯→⎯ sa

i  for pqi ,...,1+=  

                             as ∞→n                    (3.3) 
 

Because the eigenvalues qlll ,...,, 21  of 

pI2
2

1

12

1

1 σ+ΓΣΣ −−

 
are not the same, using 

(3.2) and Lemma 3.3,  
 

   ~

..

   ~
i

sa
i dw ⎯→⎯  ; qi ,...,2,1=  

                              as ∞→n                   (3.4) 
 

where si 'α  and swi '
   ~

 are explained in (2.13). 

Now, 2..12ˆ σ
α
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−

=


+= sa

p
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i
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(using (3.3) )                                             (3.5) 
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1
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∧
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   ~     ~

2

1

2

1

1
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=
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1
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2
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1
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2

1

2

1

1
.. ))(( Σ+Σ′−Σ⎯→⎯ 

=

σσ ii

q

i
i

sa ddl  (3.6) 

 

Because 
   ~   ~

2
   ~
1 ,...,, pddd  are orthonormal 

eigenvectors,  
 

pIDD =′  where ):...::(
   ~   ~

2
   ~
1 p

pxp
dddD =  

Hence, 
 
 

          
+==

′+′=
p

qi
ii

q

i
iip ddddI

1    ~   ~

2

1    ~   ~

22 σσσ    (3.7) 

Again, from Spectral Decomposition, 
 

                          

1 1
22 2

1 1

2

~   ~    ~    ~   1 1

p

q p

i i i i i
i i q

I

l d d d d

σ

σ

− −

= = +

Σ ΓΣ + =

′ ′+ 
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Therefore, 
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   ~   ~

2

1

)( ii

q

i
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=

σ  

=
   ~   ~1
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q

i
i ddl ′

=
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p

qi
ii dd
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( pI2σ  - 
+=

′
p

qi
ii dd

1    ~   ~

2σ ) 

( using (3.7) and (3.8) ) 

                   = 2

1

12

1

1
−− ΓΣΣ                       (3.9) 

 
Using (3.9) in (3.6), we get Theorem 3.1. 
 
Asymptotic Normality of the Estimator 
Theorem 4.1 

Let 
∧

Σ+Γ 1
2σ  be an estimator of 

1
2Σ+Γ σ  obtained from (2.13). 

Then the limiting distribution of n ( 
∧

Σ+Γ 1
2σ  

- 1
2Σ+Γ σ ) is normal with mean 0 and variance 

B  where B  is given by (4.5) later. 
 
Proof. 

From (3.1) 1
..

1
ˆ Σ⎯→⎯Σ sa  as  ∞→m  .  

Because  
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i
i xx
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=
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2
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using Theorem 3.4.4 of Anderson (1984), p.81, 
the limiting distribution of 
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2
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1
*

2

1
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is normal with mean 0 and covariance 
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(4.1) is obtained due to the fact that  
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From (2.13), estimator of 1
2Σ+Γ σ   is  

 
∧

Σ+Γ 1
2σ  = 1

22

1

1
22

1

1
ˆˆˆ~

)ˆ(
~ˆ Σ+Σ′−ΘΣ σσ BIB q  

1
2

2

1

1
   ~     ~

2

1

2

1

1
ˆˆˆ))ˆ((ˆ Σ+Σ′−Σ= 

=

σσα ii

q

i
i ww  

 

where si 'α , swi '
   ~

 and 2σ̂  are explained in 

(2.13). 
 
Because  

1
..

1
ˆ Σ⎯→⎯Σ sa  as ∞→m   

( using (3.1) ) 

   ~

..

   ~
i

sa
i dw ⎯→⎯  ; qi ,...,2,1=  as ∞→n   

 ( using (3.4) ) 
and 

2..2ˆ σσ ⎯→⎯ sa   as ∞→n  
( using (3.5) ), 

the limiting distribution of  
∧

Σ+Γ 1
2σ  is same 

as that of 
 

1
2

2

1

1
   ~   ~

2

1

2

1

1 ))( Σ+Σ′−Σ 
=

σσα ii

q

i
i dd  

          (see Rao, 1983, p.122, (x)(b) )           (4.2) 
 
Using the result of Anderson (1984) p.468, 
  

ii lE =)(α  ; qi ,...,2,1=  

 
asymptotically. Hence, from (4.2),  
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)))(( 1
2

2

1

1
   ~   ~

2

1

2

1

1 Σ+Σ′−Σ 
=

σσα ii

q

i
i ddE  

= 1
2

2

1

1
   ~   ~

2

1

2

1

1 ))(( Σ+Σ′−Σ 
=

σσ ii

q

i
i ddl  

= 1
2Σ+Γ σ  (see 3.6 and 3.9). 

 
From (4.2), the asymptotic variance of the 
estimator is same as that of  

 

        
~1    ~
i

q

i
ii ff ′

=

α  , where 
   ~

2

1

1
   ~

ii df Σ=       (4.3) 

 
From the result of Anderson (1984) p.468,  

)( ii ln −α  ; qi ,...,2,1=  are independently 

distributed and 
 

     )2,0(~)( 2
iii lNln −α  ; qi ,...,2,1=   (4.4) 

 

Hence, asymptotic variance of 
~1    ~
i

q

i
ii ff ′

=

α  can 

be obtained using (4.4). Call the asymptotic 
variance as 
 

                   V(
~1    ~
i

q

i
ii ff ′

=

α ) = B .             (4.5) 

 
References 

 
Anderson, T. W. (1963). Asymptotic 

theory for principal component analysis, Annals 
of Mathematical Statistics, 34, 122-138. 

Anderson, T.W. (1984). An Introduction 
to Multivariate Statistical Analysis (2nd Ed.). NY: 
Wiley. 

Bellman, R. (1960). Introduction to 
matrix analysis. New York: McGraw-Hill. 
 Chen, P. (2002). A selection procedure 
for estimating the number of signal components. 
Journal of Statistical Planning and Inference, 
105, 299-301. 
 
 
 
  

 Chen, P., Wicks, M.C., & Adve, R. S. 
(2001). Development of a statistical procedure 
for detecting the number of signals in a radar 
measurement. IEEE Proceedings of Radar, 
Sonar and Navigations, 148(4), 219-226.                           

Krishnaiah, P.R. (1976). Some recent 
developments on complex multivariate 
distributions, Journal of Multivariate Analysis, 
6, 1-30. 

Kundu, D. (2000). Estimating the 
number of signals in the presence of white noise.                           
Journal of Statistical Planning and Inference, 
90, 57-68. 

Lawley, D. N., & Maxwell, A.E. (1963). 
Factor Analysis as a Statistical Method, 
Butterworths, London. 

Rao, C.R. (1983). Likelihood ratio tests 
for relationships between two covariance 
matrices. In: T. Amemiya, S. Karlin and L. 
Goodman, eds. Studies in Econometrics, Time 
Series and Multivariate Statistics. NY: 
Academic Press. 

Rao, C.R. (1983). Linear statistical 
inference and its applications. NY: Wiley 
Eastern Limited. 

Wax, M., T. Kailath (1985). 
Determination of the number of signals by 
information theoretic criteria, IEEE Trans. 
Acoustics Speech Signal Processing ASSP-33, 
387-392. 

Wax, M., Shan, T. J., & Kailath, T. 
(1984). Spatio temporal spectral analysis by 
eigen structure methods, IEEE Trans. Acoustics 
Speech Signal Processing ASSP-32, 817-827. 

Zhao, L. C., Krishnaiah, P. R., & Bai, Z. 
D. (1986a). On detection of number of signals in 
presence of white noise, Journal of Multivariate 
Analysis, 20, 1-25. 

Zhao, L. C., Krishnaiah, P. R., & Bai, Z. 
D. (1986b). On detection of the number of 
signals when the noise covariance matrix is 
arbitrary, Journal of Multivariate Analysis, 20, 
26-49. 
 
 


	Journal of Modern Applied Statistical Methods
	5-1-2008

	Estimation of Covariance Matrix in Signal Processing When the Noise Covariance Matrix is Arbitrary
	Madhusudan Bhandary
	Recommended Citation


	Microsoft Word - 1_Algina_p

