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Estimation of Covariance Matrix in Signal Processing
When the Noise Covariance Matrix is Arbitrary

Madhusudan Bhandary
Columbus State University

An estimator of the covariance matrix in signal processing is derived when the noise covariance matrix is
arbitrary based on the method of maximum likelihood estimation. The estimator is a continuous function

2 _l #* & _l *x .
of the eigenvalues and eigenvectors of the matrix X, 2.5 X, 2, where S is the sample covariance

matrix of observations consisting of both noise and signals and X, is the estimator of covariance matrix

based on observations consisting of noise only. Strong consistency and asymptotic normality of the

estimator are briefly discussed.
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Introduction

The covariance and correlation matrices are used
for a variety of purposes. They give a simple
description of the overall shape of a point-cloud

in p-space. They are used in principal
component analysis, factor analysis,
discriminant analysis, canonical correlation

analysis, tests of independence etc. In signal
processing, estimation of covariance matrix is
important because it helps to discriminate
between signals and noise (filtering).

The problem of estimation of the

dispersion matrix of the form T+0’°X, is
considered, where the unknown matrix I is
n.n.d. of rank q(< p), o> (> 0) is unknown and
X, is some arbitrary positive matrix. In general,
the model is signal processing is

X(t) = AS(t) + n(t) (1.1)
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where, X(t) = (Xi(t), Xa(1), ..., Xp(t)) is the px1
observation vector at time t, S(t) = (S(t), Sx(t),
.. Sq(t)) is the gx1 vector of unknown random
signals at time t, n(t) = (n;(t), no(t), ..., ny(t))" is
the px1 random noise vector at time t, and A =
(A(D)), A(Dy), ..., A(Dy)) is the pxq matrix of
unknown coefficients, A(®,) is the px1 vector of
functions of the elements of unknown vector @,
associated with the ™ signal and q < p.

In model (1.1), X(t) is assumed to be
distributed as p-variate normal distribution with
mean vector zero and dispersion matrix
AYA +0°%, =T +0°%,, where T = A¥A’
is unknown n.n.d. matrix of rank q(<p) and ¥
o’ (>0) is

2% . .
unknown, 0°X, is the covariance matrix of the

= covariance matrix of S(t),

noise vector n(t) and X, is some arbitrary

positive definite matrix. In the above situation,
when the covariance matrix of the noise vector

n(t)is o ] ,»» Where I, denotes identity matrix of
order pxp, the model is called white noise
model. If the covariance matrix of n(t) is 0'221 ,
where X, is some arbitrary positive definite

matrix, the model is colored noise model.

One of the important problems that arise
in the area of signal processing is to estimate q,
the number of signals transmitted. The problem
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is equivalent to estimate the multiplicity of the
smallest eigen value of the covariance matrix of
the observation vector. Anderson (1963),
Krishnaiah (1976), Rao (1983), Wax and Kailath
(1984), Zhao et.al (1986a,b) considered the
above problem. Chen (2001), Chen (2002) and
Kundu (2000) developed procedures for
estimating the number of signals.

Another important problem in this area
is to have some idea about covariance and
correlation matrix. The estimation of the

dispersion matrix of the form I'+ 0o 221 is of
interest, and then, the derivation of the estimator

is discussed. Strong consistency and asymptotic
normality of the estimator are then discussed.

Derivation of the Estimator

Let the observations x(t;), x(t,), ..., X(t,)
be n observed p-component signals at n different
time points which are independently and
identically distributed as p-variate normal
distribution with mean vector zero and

dispersion matrix T+ 0’%,, where T’ = A¥A’

and is n.n.d. of rank q(<p) and X, is some

arbitrary positive definite matrix.

Because I'is n.n.d. of rank q(<p), it can
be assumed that I'= BB’, where B is a pxq
matrix of rank q and

B'B = Diag.(6,,0,,...,6,), 2.1

where 6, 26, 2...2 6, are the non-zero eigen

values of T'.

The log-likelihood of the observations
based on x; ‘s, apart from a constant term, can be
written as follows :

logL = —%log|BB’+ 0'221|

—%tr.(BB'—Ir o’%)’'S (2.2)

where, S= le.xi',xl. =x(t,),i=12,...,n

i=1

Following Lawley and Maxel (1963,
Chapter 2):

dlogl _
0B
[_g (BB’ +0°%) " + % (BB'+0°%,)"'S(BB'+ 0'221)_1}

2B=0
ie. Z,7(Z,-8HZ,B=0 (23)

where, £, = BB'+0°%, and S" = s
n
Using Rao(1983, p.33)
2, =(BB'+0°%)"
" 3z BY B By

_~1p 1 +7 ) 1 \_
e L R

_ i} By
iz(z1 '-3 B, +D) 1) (24)
o o

2

B'L'B
o
matrix of order pxp. Using (2.4) in (2.3),

where, D = and I, denotes identity

R I B LBET
=,-S )? " -2 "B, +D) 1021}3—0

.2 'B
e (Z,-S)= 21, —(1,+D)' D] =0
(0}
.2 'B
e (2,822, +D)" =0
(0}
ie. (Z,-SHZ,'B=0 (2.5)

which after substitution of %, from (2.3) and
rearrangement of terms gives

S’E,'B=B(c’1,+B’Y,'B)
1 1

B R |
ie. (T, 28T, )T, *B) =

1
(2, 2B)(0’1,+B'Z'B) (2.6)
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It can be seen that the right hand side of
(2.2) remains the same, if the matrix B is
replaced by BP where P is an orthogonal

matrix and hence B'Zlle can be reduced to
P'B'ZI_IBP which can be reduced to a

diagonal form because B'ZI_IB is a real

symmetric matrix (See Bellman (1960) p.54).
From (2.6) it is trivial that columns of

1
>, 2B

are eigenvectors of the matrix

1 1
X, 28 X, 2 and the diagonal elements of
o’l, +B’L "B are the corresponding

eigenvalues (2.7).
Let o, 2a, 2...2a, be the ordered
let

values and

Aot
28 22
@,). Since the diagonal

eigen of X,
O = Diag .(,,,,...,

elements of B'ZI_IB are the column sum of

1
squares of X, 2B, each eigenvector should be

normalized so that the sum of squares equal the
corresponding eigenvalue minus o> . Let B be

a pxq matrix whose columns are Wy, wy,...,w,
where W, W,y,..., W, are a set of unit-length

eigen vectors corresponding to the q largest

1 1
eigen values of X, 725 %, 2. Then,
BB=1,

and
1

1~ 1
3 2B=B(O-0"I)> (2.8)
Another likelihood equation can be written as
follows:

dlogL
do’

r(Z,7'(Z,-5HZ, ') =0 (2.9)

From (2.4) and (2.9),

tr.[(lp —2215*)(012(1p -3, 'BU,+D)" 52

:0,

200

—(1 -X B, +D)" — B
tr. 5 -ig* ! o’ B
2y —+—2,'SE B, +D) —
(o} O' G
=0
] —1
L 3, (1 D),IB
i ; s R IB i B
- (,+D)y"'—
(o} O'

=0 (using (2.5))

_l *
tr. [—P— z, S
o’ o’

=0

I 1 |- . _
tr{p—{Zl '-%, "B, +D)"

o’ o’
L, 3's" I BU+D)'BES |
tr| ?— e + p;

1 1
r(Z,28'2,2) tr(B'Z,"B)
o’ " o’

=0

ps|s
o’ | o?

=0 (using (2.4))
1.e.,

P _
0_2
(2.10)
(2.10) is obtained due to the fact that

% 'B(I,+D)y'BES"

0.6

% 'B(I,+D)"BE 'z,

0_6

(using (2.5))
_%,'B(I,+D)"'(,+D)o’B’

(because B'E, "%, = B'’E,” (BB’ +0°%,))
=B’Y,"'BB’ +0’B’=
2 ’
(D+1,)0°B")



MADHUSUDAN BHANDARY

From (2.10),

p
.
p Z ’+l‘l’.(@—0'21q)

2 4 4

=0 (using (2.8))

i=l i=1
Le. —— + =0
0_2 4 0_4
p
2.9
ie. 62 =22 (2.11)
Y2’}

It remains to estimate the matrix 2X,.An
independent set of observations on noise is
necessary to be found only to estimate X, . Let

y(t), y(t2),..., ¥(tw) be iid. ~ N0, 0°Z,). Let

y(t) = yi = ( Yit, Yizs--., ¥ip) for convenience.
Then the trivial estimator of the covariance
matrix

e I &
Tis X ==Y y ¥l (2.12)
mi- -~ -~
Hence, final estimator of the covariance matrix
can be written as follows:

Estimator of (' +0°X,) = BB’ + 6‘221

1 1
=32B(©@-671,)B'E? +67°%, (2.13)
where

B = (wiwy...owy)

© = Diag.(2,,2,,...,2,)

o, = 1" ordered eigen value of ﬁ‘,l_%S *21_5
w, = r' orthonormal eigenvector of
$25°8
corresponding to «,

67 is given by (2.11)
and 21 can be obtained from (2.12).

Strong Consistency of the Estimator
Lemma 3.1.
Let the observations yi, ya,..., Ym be

i.i.d. ~Ny(0,0°%,), where X, is some arbitrary
positive definite matrix. Let ﬁ)l be the estimator

of X, given by (2.12). Then 21 is a strongly

consistent estimator of X, .

Proof.
The proof of Lemma 3.1 is trivial from
Strong Law of Large Number Theory.

Lemma 3.2
Suppose A, A, n=1, 2, ..., are all pxp
symmetric matrices such that A,-A = O(¢,,) and

a,—0 as n —oco. Denote by
(n) (n) (n)
AzA 2.2, and A" 24" 220

the eigenvalues of A and A,, respectively. Then,
A -2 =0(ex,) asn >0, i=1,.,p.

Proof.
The proof of Lemma 3.2 is given in
Zhao, Krishnaiah and Bai (1986a).

Lemma 3.3

Suppose A, A, n=1, 2, ..., are all pxp
symmetric matrices such that A,-A = O( 5,) and
B, — 0 asn — co. Denote f}, f,..., f,and £,

6" fp(“)the eigenvectors of A and A,
respectively, corresponding to 4,,4,,...,4, and

A0 /1(;) respectively.

Then, Hfl.(”) —le =0(f,) as n

— oo i=1,..,p.

Note: Lemma 3.3 may not be true, if the
symmetric matrix A has same eigenvalues. But
it is true for those eigenvectors corresponding to
distinct eigenvalues of A.

Proof.

The proof of Lemma 3.3 can be done
similar way as in Zhao, Krishnaiah and Bai
(1986a).
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Theorem 3.1

Let lﬂ+0'22l be an estimator of
I+0°%, obtained from (2.13). Then

A
F+o’y, —“— I'+0’%, as n—> and
m-—oo |

Proof.
Using Lemma 3.1,

A

X, —=¥ as m—>o

(3.1)
From Strong Law of Large Number Theory,

S 21236,. x, —* E(x, x7)
ne o
as N —» oo
=V (x,)+ 00’
=T+0°%,

Hence,
PN _1 ) _L
22852 —=3 :(T+0°X)Z 2
as n —> oo and m — o

1 1
=3 2TE 24071, (3.2)

Let ll>lz>...>lq>0'2 be the ordered

1 1
of 3T 2 +0%,

and d,,d,,...d, be the corresponding

eigenvalues

orthonormal of

1 1
X, 2TX, 2 +0°[,. Then, using (3.2) and

Lemma 3.2,

eigenvectors

a- a.s. Z

1 1

;i=12,...,q
and
o ——0 fori=q+1,.,p

as n —> oo (3.3)

202

Because the eigenvalues /,/,,....[,  of
1 1
DINEY IR O'zlp are not the same, using
(3.2) and Lemma 3.3,
w,—=2d, ;i=12,..,q
as n—> oo (3.4)
where ¢,'s and w,'s are explained in (2.13).
P
2.
Now, &%= Eel asv s5? a5 p—>oo
P—q
(using (3.3)) (3.5)
and
A 1 L
I'+0’% =22B(©-6°1,)B'E} +67°%,

1 9 1
— 53201, —0*)d, d)Z2 + 0L, (3.6)
i=1 ~ o~
orthonormal

Because are

P

dd,,..d

eigenvectors,

DD'=1, where D=(d,:d,:..:d,)

pxp ~ ~

Hence,

q p
o’l,=c’) d d/+c> > d d] (3.7
=1~ ~ i=qtl~ =

Again, from Spectral Decomposition,

1 1

3 TE 24071, =

Sidd+o Y ddl
=l o~ -

i=q+l~ =

(3.8)

Therefore,
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q
>, -0%)d,d]
i=1 ~ -

=Nidd -0y d d
=l o~ -

=l ~ -

1 1 P
=(%, 2T 2+0%1, -0 ) dd])-

i=q+1~ ~

P
(c’l,-0°> d.d))
i=q+l~ =

(‘using (3.7) and (3.8) )

1 1
) DR (3.9)

Using (3.9) in (3.6), we get Theorem 3.1.

Asymptotic Normality of the Estimator
Theorem 4.1

Let T+0°%, be an estimator of

I+ 0, obtained from (2.13).

Then the limiting distribution of v/ ( T+ 0%,
-T'+07%,) is normal with mean 0 and variance
B where B is given by (4.5) later.

Proof.
From (3.1) %, —%5% as m—>oo
Because
N lei X,
ng o -
where

X; ~ NP(Q,F+G2ZI); i=12,...,n,

using Theorem 3.4.4 of Anderson (1984), p.81,
the limiting distribution of

P N 1 1
Cn)=vn(E, 288,72 =2 2TE 2 +0°1 )
1s normal with mean 0 and covariance

E(C,(nCy(n)=0,0,+0,0, (4.1)

_ . Nth
where 0,= (i, /)" element of

1

1
2, 2TE 2 407,

203

(4.1) is obtained due to the fact that

ok ke ,l * O ,l 1 < * *
S :EI 2§ 21 2 :—Zui U,
ns o -

asymptotically (using 3.1) and
* L LI 5
u, =%, 2 X, NNP(Q,ZI 22 240°1))

From (2.13), estimator of "+ 0'221 is

where @,"'s, w,'s and &° are explained in

(2.13).

Because
3 42 33 as m —> oo
(using (3.1))
w,—=">d, ;i=12,.,q as n —>oo

(using (3.4))
and
66— 50 asn— oo
(using (3.5)),

the limiting distribution of '+ 0%, is same
as that of

1 4 1
220 e —0%)d, d)%2 +0°%,
i=1 ~o

(see Rao, 1983, p.122, (x)(b) ) 4.2)
Using the result of Anderson (1984) p.468,
E(a)=1;i=12,..,q

asymptotically. Hence, from (4.2),
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1 4 1
EE2Q e, —0%)d d)%2 +0°%))

i=1

[ 1
:215(2(11' _O-z)di d))X,» +6221
=1 ~ -

=T'+0°%, (see 3.6 and 3.9).

From (4.2), the asymptotic variance of the
estimator is same as that of

q 1
Zai fi /] ,where f,=X2d, (4.3)
=~ - -

From the result of Anderson (1984) p.468,
\/;(a,. —1,) ;i=12,.,q are independently
distributed and

Jn(a, =1) ~ N(021>) ; i=12,...q (4.4)

q

Hence, asymptotic variance of Zai fi f can
-~ o~

be obtained using (4.4). Call the asymptotic

variance as

q
v, f, f))=B. (4.5)
=l o~
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