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Using Connectionist Models to Evaluate Examinees’ Response Patterns to 
Achievement Tests 

 
Mark J. Gierl     Ying Cui     Steve Hunka 

University of Alberta 
 
 

The attribute hierarchy method (AHM) applied to assessment engineering is described. It is a 
psychometric method for classifying examinees’ test item responses into a set of attribute mastery 
patterns associated with different components in a cognitive model of task performance. Attribute 
probabilities, computed using a neural network, can be estimated for each examinee thereby providing 
specific information about the examinee’s attribute-mastery level. The pattern recognition approach 
described in this study relies on an explicit cognitive model to produce the expected response patterns. 
The expected response patterns serve as the input to the neural network. The model also yields the 
cognitive test specifications. These specifications identify the examinees’ attribute patterns which are 
used as output for the neural network. The purpose of the statistical pattern recognition analysis is to 
estimate the probability that an examinee possess specific attribute combinations based on their observed 
item response patterns. Two examples using student response data from a sample of algebra items on the 
SAT illustrate our pattern recognition approach. 
 
Keywords: Attribute hierarchy method, multilayer perceptron, neural network, educational measurement. 
 
 

Introduction 
 

Educational measurement is undergoing 
profound changes, as developments in cognitive 
science, mathematical statistics, computer tech- 
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nology, educational psychology, and computing 
science are permeating the testing field. In 
particular, the influence of cognitive psychology 
on educational measurement, which began 
almost 20 years ago (Snow & Lohman, 1989), 
has become a source of great activity 
contributing to many of the ideas and 
innovations in cognitive diagnostic assessment 
(Leighton & Gierl, 2007a). One consequence of 
these interdisciplinary influences is the 
emergence of a new area of research called 
assessment engineering (AE) (Luecht, 2006). 
AE is an innovative approach to measurement 
where engineering-like principles are used to 
direct the design as well as the analysis, scoring, 
and reporting of assessment results. With this 
approach, an assessment begins with specific, 
empirically-derived cognitive models of task 
performance. Next, assessment task templates 
are created using established frameworks 
derived from the cognitive model to produce 
replicable test items. Finally, psychometric 
models are applied to the examinee response 
data collected using the templates to produce 
scores that are both replicable and interpretable. 
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AE differs from more traditional 
approaches to test design and analysis in four 
fundamental ways. First, cognitive models guide 
task design and item development, rather than 
content-based test specifications. While the 
database “tags” associated with content 
specifications can be included in the task 
templates, the assessment principles used to 
develop items are much more specific allowing 
items to be created quickly and efficiently 
during the development cycle. Second, explicit 
data models and assessment task templates are 
created to control and manipulate both the 
content and cognitive attributes of the items. 
Item writers are required to use the templates 
during development thereby producing items 
that adhere to strict quality controls and that 
meet high psychometric standards. Third, 
automated test assembly procedures are 
employed to build assessments that function to 
exacting specifications, as outlined in the task 
templates. Hence, multiple test forms can be 
created from a bank of items very efficiently 
according to both content and statistical 
specifications. Fourth, pursuant to scoring and 
score-reporting, psychometric models are 
employed in a confirmatory—versus 
exploratory—manner to assess the model-data 
fit relative to the intended underlying structure 
of the constructs or traits the test is design to 
measure. The outcomes from these model-data 
fit analyses also provide developers with 
guidelines for specific modifications to the 
cognitive models and task templates, as needed, 
to facilitate the acquisition of data that supports 
the intended assessment inferences. 
 

Overview of Attribute Hierarchy Model 
Recently, Leighton, Gierl, and Hunka 

(2004; see also Gierl, Leighton, & Hunka, 2007) 
proposed the attribute hierarchy method (AHM). 
The AHM is a psychometric method used to 
classify examinees’ test item responses into a set 
of structured attribute patterns associated with 
different components from a cognitive model of 
task performance (Leighton & Gierl, 2007b). 
Attributes include different procedures, skills, 
and/or processes that an examinee must possess 
to solve a test item. These attributes are 
structured using a hierarchy so the ordering of 
the cognitive skills is specified. As a result, the 

attribute hierarchy serves as an explicit cognitive 
model. This model, in turn, provides the 
structure for both developing test items and 
linking examinees’ test performance to specific 
cognitive inferences about skill acquisition. The 
AHM was developed to address two specific 
problems associated with feature creation and 
statistical pattern recognition (Gierl, 2007). Our 
solutions to these problems are described in the 
next two sections. 
 
Feature Creation with the AHM 

To make specific inferences about 
problem solving, cognitive models are required 
to operationalize the construct of interest. A 
cognitive model in educational measurement 
refers to a simplified description of human 
problem solving on standardized tasks at some 
convenient grain size or level of analysis in 
order to facilitate explanation and prediction of 
students’ performance. These models provide an 
interpretative framework that can guide item 
development so test performance can be linked 
to specific cognitive inferences about 
examinees’ knowledge, processes, and 
strategies. These models also provide the means 
for connecting cognitive principles with 
measurement practices. 

A cognitive model of task performance 
is specified at a small grain size because it 
magnifies the cognitive processes underlying 
test performance. Often, a cognitive model of 
task performance will also reflect a hierarchy of 
cognitive processes within a domain because 
cognitive processes share dependencies and 
function within a much larger network of inter-
related processes, competencies, and skills. 
Assessments based on cognitive models of task 
performance should be developed so test items 
directly measure specific cognitive processes of 
increasing complexity in the examinees’ 
understanding of a domain. The items can also 
be designed with this hierarchical order in mind, 
so that test performance is directly linked to 
information about students’ cognitive strengths 
and weaknesses. Strong inferences about 
examinees’ cognitive skills can be made because 
the small grain size in these models help 
illuminate the knowledge and skills required to 
perform competently on testing tasks. Specific 
diagnostic inferences can also be generated 
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when items are developed to measure different 
components and processes in the model. 

To specify the relationships among the 
attributes in the hierarchy using the AHM, the 
adjacency and reachability matrices are defined. 
The direct relationship among attributes is 
specified by a binary adjacency matrix (A) of 
order ( ,k k ), where k  is the number of 

attributes, such that the ij th element represents 
the absence (i.e., 0) or presence (i.e., 1) of a 
direct connection between two attributes. The 
adjacency matrix is of upper triangular form. 
The direct and indirect relationships among 
attributes are specified by the binary reachability 
matrix (R) of order ( ,k k ), where k  is the 

number of attributes. To obtain the R matrix 
from the A matrix, Boolean addition and 
multiplication operations are performed on the 
adjacency matrix, meaning ( )nR A I= + , 

where n  is the integer required to reach 
invariance, 1,2,...n m= , and I  is the identity 
matrix. 

Next, the potential pool of items is 
generated. This pool is considered to be those 
items representing all combinations of attributes 
when the attributes are independent of one other. 

The size of the potential pool is 2 1k - , where 
k  is the number of attributes. The attributes in 
the potential pool of items are described by the 
incidence matrix (Q) of order ( ,k p ), where k  is 

the number of attributes and p  is the number of 
potential items. This matrix can be reduced to 
form the reduced Q matrix (Qr) by imposing the 
constraints of the attribute hierarchy as defined 
in the R matrix. The Qr matrix represents the 
items from the potential pool that fit the 
constraints defined in the attribute hierarchy. 
The Qr matrix is formed using Boolean inclusion 
by determining which columns of the R matrix 
are logically included in each column of the Q 
matrix. The Qr matrix is of order ( ,k i ) where k  

is the number of attributes and i  is the reduced 
number of items resulting from the constraints in 
the hierarchy. 

Given a hierarchy of attributes, the 
expected response patterns for a group of 
examinees can then be generated. The expected 

response matrix (E) is created, again using 
Boolean inclusion, where the algorithm 
compares each row of the attribute pattern 
matrix (which is the transpose of the Qr matrix) 
to the columns of the Qr matrix. The expected 
response matrix, of order ( ,j i ), is calculated, 

where j  is the number of examinees and i  is 
the reduced number of items resulting from the 
constraints imposed by the hierarchy. 

Assessment engineering principles are 
used explicitly with the AHM to design test 
items and analyze examinees’ observed response 
patterns. To design test items, the Qr matrix is 
used. Recall, the Qr matrix is produced by 
determining which columns of the R matrix are 
logically included in columns of the Q matrix, 
using Boolean inclusion. The Qr matrix can be 
interpreted as the cognitive test specification 
because it contains the attribute-by-item 
specification for each component of the 
cognitive model of task performance outlined in 
the A matrix. Hence, the results from the Qr 
matrix can be used to develop items that 
measure each specific attribute combination 
defined in the hierarchy. Then, in the pattern 
recognition stage, as described in the next 
section, examinees’ observed response patterns 
can be analyzed according to the cognitive 
characteristics probed by each item. 
 
Pattern Recognition with the AHM 

An examinee’s observed response 
pattern is judged relative to expected response 
pattern with the AHM under the assumption that 
the cognitive model is true. Hence, the purpose 
of the statistical pattern recognition analysis is to 
estimate the probability that an examinee 
possess specific attribute combinations based on 
their response patterns. These probabilities 
provide examinees with specific information 
about their attribute-level mastery as part of the 
test reporting process. To estimate the 
probability that examinees possess specific 
attributes, given their observed item response 
pattern, an artificial neural network approach is 
used.  

The input to train the neural network is 
the expected response vector derived from the 
cognitive model. The expected response vectors 
serve as the exemplars. For each expected 
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response vector, there is a specific combination 
of examinee attributes described in the transpose 
of the Qr matrix. Recall, Qr matrix is of order (
,k i ) where k  is the number of attributes and i  

is the reduced number of items resulting from 
the constraints specified by the hierarchy. The 
transpose of this matrix is of order ( ,j k ) where 

j  is the number of examinees and k  is the 
number of attributes. In other words, the 
transpose of the reduced incidence matrix has a 
distinct row and column interpretation—the 
rows serve as the examinees and the columns 
serve as the items. The examinee attribute 
patterns, like the expected response vectors, are 
derived from the cognitive model and, thus, 
specify the attribute pattern that should be 
associated with each expected response pattern. 
The relationship between the expected response 
vectors with their associated attribute vectors is 
established by presenting each pattern to the 
network repeatedly until it learns each 
association. The final result is a set of weight 
matrices that can be used to transform any 
observed response vector to its associate 
attribute vector. The transformed result can be 
interpreted as the attribute probability, scaled 
from 0 to 1, where a higher value indicates that 
the examinee has a higher probability of 
possessing a specific attribute (McClelland, 
1998). 

A multilayer perceptron is the parallel-
processing architecture used in the neural 
network. This network transforms the stimulus 
received by the input unit to a signal for the 
output unit through the hidden units. The 
contribution of each input unit i  to hidden unit 
j  is determined by weight, jiw . Similarly, the 

contribution of each hidden unit j  to output unit 

k  is determined by weight, kjv . The input layer 

contains the exemplars (i.e., expected response 
patterns) the network is designed to learn. 
Learning is deemed to occur when the output 
layer, containing the desired response output 
(i.e., the attribute patterns), is correctly 
associated with the exemplars, as indicated by 
the value of the root mean square error. That is, 
the connection weights in the hidden layer 

transform the input stimuli into a weighted sum 
defined as 
 

                        
1

p

j ji i
i

S w x
=

= å                     (1) 

 
where jS  is the weighted sum for node j  in the 

hidden layer, jiw  is the weight used by node j  

for input ix , and ix  is the input from node i  of 

the input layer with i  ranging from 1 to p  for 

the input node and j  ranging from 1 to q  for 

the hidden layer node. jS  is then transformed 

by the logistic function, 
 

                      * 1
1 jj SS
e-

=
+

                     (2) 

 
Similarly, the hidden layer produces a 

weighted linear combination of their inputs 
which are transformed to non-linear weighted 
sums that are passed to every output layer unit to 
produce the final attribute-level responses. The 

output, *
jS , from every hidden layer unit is 

passed to every output layer unit where a 
linearly weighted sum, kT , is formed using the 

weights kjv , and the result transformed for 

output *
kT  using a nonlinear function. In other 

words, 
 

                       *

1

q

k kj j
j

T v S
=

= å                      (3) 

 
where kT  is the weighted sum for each of k  

output nodes using weights kjv , with j  ranging 

from 1 to q  for the hidden layer nodes. kT , like 

jS , is transformed by the logistic function to 
*
kT . Because the correct activation function is 

scaled using the logistic transformation, the 
output values range from 0 to 1. The result can 
be interpreted as the probability the correct or 
target value for each output will have a value of 
1. 
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The attribute-based targets in the output 
units are compared to the pattern associated with 
the exemplars, which are the expected response 
patterns. However, the solution produced 
initially is likely to be discrepant resulting in a 
relatively large root mean square error. This 
discrepancy can be used to modify the 
connection weights leading to a more accurate 
solution and a smaller error term. With the 
AHM, the weights are approximated so the error 
term is minimized using the well-known 
learning algorithm called the generalized delta 
rule that is incorporated in the back propagation 
of error training procedure (Rumelhart, Hinton, 
& Williams, 1986a, 1986b). The final result is a 
set of weight matrices, one for cells in the 
hidden layer and one for the cells in the output 
layer, that can be used to transform any 
examinee response vector to its associate 
attribute vector. The functional relationship for 
mapping the examinees’ observed response 
pattern onto the expected response patterns so 
their attribute probabilities can be computed is 
given as follows. Let 
 

         
1

( )
1 z

F z
e-

=
+

                    (4) 

 
and 
 

     
1 1

( )
q p

k kj ji i
j i

a v F w x
= =

= å å             (5) 

 

then the output for unit k , *
kM , is given as 

 
* ( )k kM F a=                         (6) 

 
where q  is the total number of hidden units, kjv  

is the weight of hidden unit j  for output unit k , 

p  is the total number of input units, jiw  is the 

weight of input unit i  for hidden unit j , and ix  
is the input received from input unit i . Using 
this transformation, attribute probabilities can be 
computed for each observed response pattern 
thereby providing examinees with specific 
information about their attribute-mastery level. 
Two Examples Using SAT Algebra Items 

To illustrate how a multilayer 
perceptron can be used to estimate the attribute 
probabilities in an actual testing situation, two 
examples are provided. Each example is based 
on the observed response data from a random 
sample of 5000 students who wrote the algebra 
items on the March 2005 administration of the 
SAT. The SAT is a college admissions test 
developed, analyzed, and scored by the College 
Board. The Mathematics section contains items 
in the content areas of Number and Operations; 
Algebra I, II, and Functions; Geometry; and 
Statistics, Probability, and Data Analysis. For 
our analysis, only a subset of items in Algebra I 
and II were evaluated. Sample algebra items 
from the SAT Mathematics section are available 
from the College Board website at 
www.collegeboard.com. 

Note that cognitive models of task 
performance guide diagnostic inferences 
because they are specified at a small grain size 
and they magnify the cognitive processes that 
underlie performance. Ideally, a theory of task 
performance would direct the development of a 
cognitive model of task performance. But, in the 
absence of such a theory, a cognitive model 
must still be specified to create the attribute 
hierarchy. Another starting point is to develop a 
cognitive model from a task analysis of the 
items in the domain when a theory or model of 
task performance is unavailable. In conducting 
the task analysis of the SAT algebra items we, 
first, solved each test item and attempted to 
identify the mathematical concepts, operations, 
procedures, and strategies used to solve each 
item (see Gierl, Wang, & Zhou, 2006; Gierl, 
Leighton, Wang, Zhou, Gokiert, & Tan, 2006). 
These cognitive attributes were categorized so 
they could be ordered in a logical, hierarchical 
sequence to summarize problem-solving 
performance. The cognitive model used to 
characterize examinee performance on the items 
is presented in Figure 1. Each attribute is 
denoted with an A (e.g., A1, A2, etc.). Each 
attribute was measured by one test item. The 
cognitive model in Figure 1 was used to created 
the Qr matrix. 

This hierarchy presents a cognitive 
model of task performance for skills in the areas 
of ratio, factoring, function, and substitution. 
The hierarchy contains two independent 
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branches which share a common prerequisite, 
attribute A1. Aside from attribute A1, the first 
branch includes two additional attributes, A2 
and A3, and the second branch includes a self-
contained sub-hierarchy which includes 
attributes A4 through A9. Three independent 
branches compose the sub-hierarchy: attributes 
A4, A5, A6; attributes A4, A7, A8; and 
attributes A4, A9. 

As a prerequisite attribute, attribute A1 
includes the most basic arithmetic operation 
skills, such as addition, subtraction, 
multiplication, and division of numbers. 
Attributes A2 and A3 both deal with factors. In 
attribute A2, the examinee simply needs to have 
knowledge about the property of factors. In 
attribute A3, the examinee not only requires 
knowledge of factoring (i.e., attribute A2), but 
also the application of factoring. Therefore, 
attribute A3 is considered a more advanced 
attribute than A2. The self-contained sub-
hierarchy contains six attributes. Among these 
attributes, attribute A4 is the prerequisite for all 
other attributes in the sub-hierarchy. Attribute 
A4 has attribute A1 as a prerequisite because A4 
not only represents basic skills in arithmetic 
operations (i.e., attribute A1), but it also 
involves the substitution of values into algebraic 
expressions which is more abstract and, 
therefore, more difficult than attribute A1. The 
first branch in the sub-hierarchy deals, mainly, 
with functional graph reading. For attribute A5, 
the examinee must be able to map the graph of a 
familiar function (e.g., a parabola) with its 
corresponding function. Attribute A6 deals with 
the abstract properties of functions, such as 
recognizing the graphical representation of the 
relationship between independent and dependent 
variables. The second branch in the sub-
hierarchy considers the skills associated with 
advanced substitution. Attribute A7 requires the 
examinee to substitute numbers into algebraic 
expressions. The complexity of attribute A7 
relative to attribute A4 lies in the concurrent 
management of multiple pairs of numbers and \ 
multiple equations. Attribute A8 also represents 
the skills of substitution. However, what makes 
attribute A8 more difficult than attribute A7 is 
that algebraic expressions, rather than numbers, 
need to be substituted into another algebraic 
expression. The last branch in the sub-hierarchy 

contains only one additional attribute, A9, 
related to skills associated with rule substitution. 
It is the rule, rather than the numeric value or the 
algebraic expression, that needs to be substituted 
in the item to reach a solution. 
 
SAT Example 1: Training without Extra Output 

In the first example, training was 
conducted without extra output. That is, the 
input to train the network is the expected 
response vectors produced from the AHM 
feature creation analyses and the output is the 
specific combination of examinee attributes 
derived from the transpose of the Qr matrix for 
each expected response vector. The relationship 
between the expected response vectors with their 
associated attribute vectors was established by 
presenting each pattern to the network 
repeatedly. 

Using nine hidden units, the network 
converged using a model with 9 input, 9 hidden, 
and 9 output units. The value for the root mean 
square was 0.00082 after 500 epochs. The 
probabilities associated with each attribute 
across the nine expected response patterns was 
used to define the functional relationship for 
mapping the examinees’ observed response 
pattern onto the expected response pattern so 
their attribute mastery levels could be 
determined. 

Seven examples are presented in Table 
1. The first three include attribute probabilities 
for observed response patterns that are 
consistent with the cognitive model in Figure 1. 
Take, for instance, an examinee who possesses 
the first three attributes, A1 to A3, thereby 
producing the response pattern 111000000 (i.e., 
example 1). This observed response pattern is 
consistent with one of the 58 expected response 
patterns. The attribute probabilities for this 
response pattern are 0.91, 1.00, 1.00, 0.08, 0.02, 
0.00, 0.00, 0.00, and 0.00 for attributes A1 to 
A9, respectively. Examples 2 and 3 illustrate the 
attribute probabilities associated with observed 
response patterns that are also consistent with 
the hierarchy in Figure 1. 

Alternatively, examples 4 to 7 illustrate 
attribute probabilities for observe response 
patterns that are inconsistent with the attribute 
hierarchy. In other words, these response 
patterns are not one of the 58 patterns in  
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expected response matrix. These inconsistency 
can be addressed using the network because its 
purpose is to define the functional relationship 
for mapping the examinees’ observed response 
pattern onto the expected response pattern using 
* ( )k kM F a= . 

The first inconsistent pattern, example 4, 
includes examinees who correctly solve the 
items associated with attributes A1 and A3, but 
then incorrectly solve the item associated with 
attribute A2. According to the cognitive model 
in Figure 1, this response patterns is not 
expected because A3 requires A1 and A2. Yet, 
we have an observed response pattern where A3 
is solved correctly while A2 is not. This 
inconsistency or slip means that the examinee’s 
item response is unexpected because the 
attributes probed by the item are assumed to be 
mastered by the examinee, given the cognitive 
model of task performance. The attribute 
probabilities for this observed response pattern 
are 0.92, 0.99, 1.00, 0.16, 0.04, 0.00, 0.00, 0.00, 
and 0.00 for attributes A1 to A9, respectively, 
indicating that it is very unlikely that an 
examinee who possesses attribute A3 would not 
also possess attribute A2, if the cognitive model  

 
 
 

 
in Figure 1 is true. The attribute probability level 
is also unusually high, in this example, because 
we only have one item measuring each attribute 
and this branch (A1 to A3) has only three 
attributes, in total. However, when a larger 
number of items are used to measure the 
attributes across a larger number of branches, 
the attribute probabilities decrease, as illustrated 
in examples 5 to 7. 

For these three examples, attribute A4, 
which is the prerequisite attribute in each case, is 
missing. In example 5, the examinee correctly 
solves the items measuring A1, A5 and A6, but 
incorrectly solves the item measuring A4. The 
attribute probabilities for this observed response 
pattern are 0.69, 0.01, 0.00, 0.31, 1.00, 1.00, 
0.00, 0.00, and 0.00 for attributes A1 to A9, 
respectively, indicating that the examinee 
possesses A1, A5, and A6, but likely not A4. A 
value of 0.50 is used in our example to interpret 
the probabilities, meaning that if the probability 
is greater that 50%, the examinee is believed to 
possess the attribute. In example 5, however, it 
is difficult to evaluate A4 because the examinee 
only solves two items correctly that required A4. 
In example 6, on the other hand, the examinee 

 
Figure 1. 
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correctly solves the items measuring A1 and A5 
to A8. In this case, four items that require A4 are 
correctly solved. The attribute probabilities for 
this observed response pattern are 0.43, 0.00, 
0.00, 0.95, 1.00, 1.00, 0.99, 0.78, and 0.00 for 
attributes A1 to A9, respectively, indicating that 
the examinee possesses A4 to A8. The 
examinees may also possess A1, but the 
probability is low (the result for A1 in this 
example is unusual because the examinee must 
possess A1 to solve the remaining items). Notice 
that when all four items requiring the 
prerequisite attribute are correctly solved (i.e, 
A5 to A8), but the prerequisite attribute is 
incorrectly solved (i.e., A4), the probability is 
high that the examinee, in fact,    possesses the 
prerequisite A4. Or, stated differently, it is 
unlikely that the examinee could solve the items 
associated with A5 to A8 without possessing 
A4, if the cognitive model in Figure 1 is 
accurate. When the final attribute is included, 
A9, in example 7, the attribute probabilities are 
0.87, 0.01, 0.00, 0.96, 1.00, 0.99, 0.97, 0.62, 
0.98 indicating that the examinee possesses A1,  
 
 
 
 

 

A4 to A9. The results across the seven examples 
are consistent with our expectations based on the 
cognitive model, for the most part. The only 
unusual results occurred in example 5 where the 
probability for A4 was unexpectedly low and 
example 6 where the probability for A1 was also 
low. 
 
SAT Example 2: Training with Extra Output 

In the second example, training was 
conducted with extra output (Gällmo & 
Carlström, 1995). That is, the input to train the 
network is the expected response vectors 
produced from the AHM feature creation 
analyses, as in example 1, but the target output is 
the specific combination of examinee attributes 
derived from the transpose of the Qr matrix as 
well as the ability estimate for each expected 
response vector. 

With a cognitive diagnostic model like 
the AHM, expected item and ability parameters 
can be estimated. The expected item parameters 
can be produced using an item response theory 
(IRT) model. For example 2, the two-parameter 
(2PL) logistic IRT model is used. This model is 
given by 
 

Table 1. Attribute Probabilities for Seven Observed Examinee Response Patterns using the SAT 
Algebra Hierarchy in Figure 1 with No Extra Output 

 
 

Pattern 
 

 
Attribute Probability 

 
 1 2 3 4 5 6 7 8 9 

Consistent          
1. A1 to A3 0.91 1.00 1.00 0.08 0.02 0.00 0.00 0.00 0.00 
2. A1, A4 to A6 0.94 0.01 0.00 0.96 1.00 0.97 0.01 0.00 0.00 
3. A1, A4 to A8 0.96 0.00 0.00 1.00 1.00 0.97 1.00 0.98 0.02 

          
Inconsistent          
4. A1, A3 (Missing A2) 0.92 0.99 1.00 0.16 0.04 0.00 0.00 0.00 0.00 
5. A1, A5, A6 (Missing 

A4) 0.69 0.01 0.00 0.31 1.00 1.00 0.00 0.00 0.00 
6. A1, A5 to A8 

(Missing A4) 0.43 0.00 0.00 0.95 1.00 1.00 0.99 0.78 0.00 
7. A1, A5 to A9 

(Missing A4) 0.87 0.01 0.00 0.96 1.00 0.99 0.97 0.62 0.98 
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where ai  is the item discrimination parameter, 
bi  is the item difficulty parameter, and Θ  is the 
ability parameter. Using the 2PL logistic IRT 
function, the a and b parameters can be 
determined for each item using the expected 
item response patterns given by the columns of 
the expected response matrix. The expected 
ability parameters are then produced by locating 
the maximum of the likelihood function defined 
by 
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where 
iju

ijP is the probability, based on the 2PL 
logistic function, for a correct response to item i  

and 
i j1 u

ijQ −

 is 
iju

ij1-P
. The likelihood function is 

typically placed on a unidimensional scale with 
a mean of 0 and a standard deviation of 1. 

To illustrate the extra output training 
method, a random sample of 5000 simulated 
examinees was generated for the 58 unique 
patterns in the expected response matrix with the 
constraint that the distribution of total score be 
normal in shape. Then, the simulated response 
data were fit to the 2PL logistic IRT model to 
estimate the item and ability parameters. 
Estimation was conducted with the computer 
software BILOG-MG (du Toit, 2003). Default 
settings in BILOG-MG were used, except the 
calibration option that was set to “float” 
indicating that the means of the priors on the 
item parameters were calculated using marginal 
maximum likelihood estimation, and both the 
means and the item parameters were updated 
after each iteration. The ability estimates provide 
a measure of the expected examinees’ score on a 
(0, 1) unidimensional scale which typically 
ranges from -4 to +4. Thus, a higher score 
indicates a higher ability level. 

These ability scores have an important 
role in the example 2 analysis: They serve as 
extra output or “hints” that provide prior 
knowledge to the neural network about a feature 
in each expected response pattern that may 

increase the accuracy of learning. The ability 
level extra output is only included to help the 
network learn, and once training is complete, the 
extra output is removed. The benefit of adding 
an extra output, like ability level, is that it can 
act as a side constraint thereby increasing the 
representational power of the network and 
potentially increase the accuracy and 
generalizability of the network solution.  

Using nine hidden units, the network 
converged using a model with 9 input, 9 hidden, 
and 9 output units. The value for the root mean 
square was 0.00028 after 500 epochs. The 
probabilities associated with each attribute 
across the nine expected response patterns was 
used to define the functional relationship for 
mapping the examinees’ observed response 
patterns from the SAT dataset onto the expected 
response patterns derived from the cognitive 
model so their attribute mastery levels can be 
determined. The attribute probabilities for the 
same seven response patterns in Table 1 are 
presented in Table 2. 

The results between Tables 1 and 2 are 
similar, except for two important exceptions. 
Recall, for example 5 in Table 1, the examinee 
correctly solved the items measuring A1 and A5, 
but incorrectly solved the item measuring A4. 
The attribute probabilities for this observed 
response pattern was 0.69, 0.01, 0.00, 0.31, 1.00, 
1.00, 0.00, 0.00, and 0.00 for attributes A1 to 
A9, respectively, indicating that the examinee 
possesses A1, A5, and A6, but not A4. The same 
example, but with extra output, shown in Table 
2, yields a more interpretable result. The 
attribute probabilities are 0.95, 0.01, 0.00, 0.60, 
1.00, 0.99, 0.01, 0.01, and 0.00 for attributes A1 
to A9, respectively, indicating that the examinee 
possesses A1 and A5, and likely possesses A4, 
which is expected given that the examinee 
correctly solved the item measuring A5. In 
Table 1, example 6, the attribute probability for 
A1 was low, given that the examinee required 
this attribute to solve the items. But, in Table 2, 
example 6, the attribute probabilities are more 
consistent with the cognitive model at 0.97, 
0.01, 0.00, 0.95, 1.00, 0.99, 1.00, 0.99, and 0.00 
for attributes A1 to A9, respectively, indicating 
that the examinee possesses A1, A4 to A8. 
When A9 is added in example 7, the attribute 
probabilities are 0.98, 0.04, 0.00, 1.00, 1.00, 
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0.98, 1.00, 1.00, 0.98 indicating that the 
examinee possesses A1, A4 to A9. The 
probability for A8 in example 1 was reasonably 
high at 0.62. But, in example 2, the probability 
for A8 is much higher at 1.00 and, thus, easier to 
interpret. To summarize, the results across the 
seven examples in Table 2 are consistent with 
our expectations based on the cognitive model in 
Figure 1, particularly when compared to the 
results in Table 1. These outcomes also reveal 
that extra output learning improved the 
interpretability of the network solutions. 
 

Discussion 
 
Assessment engineering with the AHM relies on 
two stages. In the feature creation stage, 
principled test design procedures are used to 
develop items that systematically measure each 
component in the cognitive model. In the pattern 
recognition stage, the functional relationship 
between the examinees’ expected response 
patterns and item attributes is established so the 
attribute probabilities for the examinees’ 
observed response patterns can be estimated. 
The purpose of the present study was to describe 
the analytic procedures in the pattern recognition 
stage. 

Using response data from a sample of 
examinees who wrote algebra items on the SAT, 
the results from two different examples were 
presented. In the first example, the attribute 
probabilities were computed by training the 
network without extra output. The value for the 
root mean square was small at 0.00082. The 
results across the seven examples were 
consistent with our expectations from the 
cognitive model, for the most part, as only two 
anomalous results were noted. In the second 
example, the attribute probabilities were 
computed by training the network with extra 
output associated with the ability estimates for 
each expected response pattern. The ability 
estimates served as an excellent source of extra 
learning output because they were derived from 
an IRT model fit to the expected response 
patterns to produce a single score for each 
unique pattern. The network yielded a smaller 
root mean square (0.00028) compared to the 
network without extra output, and the results 
across all seven examples were consistent with 

the cognitive model indicating that extra output 
training increased the interpretability of the 
network solution. 

One limitation of the current study 
stems from the use of a post-hoc or retrofitting 
approach when identifying and applying the 
cognitive model of task performance to the 
algebra items on the SAT. In the current study, 
we generated a cognitive model of task 
performance by conducting a content review of 
the SAT algebra I and II items to identify the 
mathematical concepts, operations, procedures, 
and strategies used by students to solve items on 
the SAT. However, no new items were 
developed from the cognitive models of task 
performance used to produce the attribute 
hierarchies in Figure 3. This decision was made, 
in part, because the purpose of the study was to 
describe and illustrate the analytic procedures in 
the pattern recognition stage. However, in future 
applications of the AHM, researchers and 
practitioners implementing the AHM for AE 
should begin by specifying the cognitive model 
and use the attribute hierarchy to develop test 
items. These model-based test items can then be 
analyzed using the neural network procedures.  

In closing, the role that pattern recognition 
procedures could one-day play in educational 
measurement is significant. In May 2006, 
Eduventures, a market research firm that 
specializes in educational products and 
applications, claimed that new applications of 
formative testing, like cognitive diagnostic 
assessment, may soon emerge to redefine the 
educational measurement practices in American 
classrooms. But they also noted that this 
emergence will only occur when several key 
objectives are met, including “the building of 
truly advanced analytic capabilities, relying on a 
neural network architecture to act as the engine 
to convert assessment inputs into prescriptive 
action” (Wiley, 2006). Our study provides one 
example of the “advanced analytic capabilities” 
that are possible when psychometric methods 
like the AHM incorporate pattern recognition 
procedures to classify examinees’ response 
patterns on educational tests. 
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