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Robustness of Some Estimators of Linear Model with Autocorrelated Error Terms 
When Stochastic Regressors are Normally Distributed 

 
   Kayode Ayinde, Ladoke Akintol             J. O. Olaomi 

               University of Technology             University of Ibadan 
 

 
Performances of estimators of the linear model under different level of autocorrelation )(ρ  are known 
to be affected by different specifications of regressors. The robustness of some methods of parameter 
estimation of linear model to autocorrelation are examined when stochastic regressors are normally 
distributed. Monte Carlo experiments were conducted at both low and high replications. Comparison 
and preference of estimator(s) are based on their performances via bias, absolute bias, variance and 
more importantly the mean squared error of the estimated parameters of the model. Results show that 
the performances of the estimators improve with increased replication. In estimating all the parameters 
of the model, the Ordinary Least Square (OLS) estimator is more efficient than any of the Generalized 
Least Square (GLS) estimators considered when 25.025.0 ≤<− ρ ; and the Maximum Likelihood 
(ML) and the Hildreth and LU (HILU) estimators are robust. 

 
Key words: Robustness, Stochastic regressors, linear model with autocorrelated error, OLS estimator, 
Feasible GLS Estimators.  
 
 

Introduction 
 
The Ordinary Least Square (OLS) estimator is 
unbiased but inefficient in estimating the 
parameters of the linear model with 
autocorrelated error terms, and its predicted 
values are inefficient if the variance of the 
autocorrelated error terms are underestimated 
(Johnston, 1984; Fomby et. al, 1984; Maddala, 
2002). Consequently, the Generalized Least 
Square (GLS) estimator was developed. 
 Aitken (1935) had shown that the GLS 
estimator given by   
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with the variance – covariance matrix  
 

                   ( ) 1112
^ −−Ω=





 XXV σβ             (2) 

 
is efficient among the class of linear unbiased 
estimator provided Ω  is known. Consider the 
linear model where the error terms follow AR 
(1) process 
 
                              Y X Uβ= +                           (3) 
 
where  
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Then the inverse of Ω  is given as  
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Cochrane and Orcutt (1949) pointed out that the 
presence of antocorrelated error terms in Linear 
Model requires some modifications of the usual 
least square method of estimation. They 
suggested a transformation that uses the matrix 
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which ignores the first observation of the error 
terms.  Paris & Winstein (1954) showed that the 
appropriate transformation required for the 
transformation is  
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which retains the first observation. The 
difference in the usage of P  and Q  can be 

negligible when n  is large, but in small sample 
investigation such as in this study, the difference 
may be major. However, they both require ρ  to 
be known before they can be used. 
 Fomby et al. (1984) and others 
emphasized that in practice ρ (and hence Ω ) is 
usually unknown but has to be estimated. They 

indicated that many consistent estimators 
^

ρ  of  

ρ  (and hence 
^

Ω  of Ω ) can be estimated to 
have the Feasible Generalized Least Square 
estimators. Some of the Feasible GLS estimators 
available in literatures are the Cochrane and 
Orcutt estimator (1949), Hildreth and Lu 
estimator (1960), Paris & Winstein estimator 
(1954), Thornton estimator (1982), Durbin 
estimator (1960), Theil’s estimator (1971), the 

Maximum Likelihood estimator and the 
Maximum Likelihood Grid estimator (Beach and 
Mackinnon, 1978), some of which use either the 
P or Q  transformation matrix. Furthermore, 
some have also been incorporated into White’s 
SHAZAM program (White, 1978) and the new 
version of the time series processor (TSP, 2005). 
 However, these estimators are known to 
be asymptotically equivalent but the question on 
which is to be preferred in small samples is 
another matter. The question at what value of ρ  
does the OLS estimator become inefficient when 
compared with the feasible generalized least 
square estimators arises, and  what 
transformation is to be preferred are still  of 
concern (Johnson, 1984; Fomby et. al, 1984). 
Therefore, the finite properties of these 
estimators are studied through Monte Carlo 
methods.  
 Chipman (1979), Kramer (1980), 
Kleiber (2001) and others observed that the 
efficiency of these estimators depends on the 
structure of the regressors that are used. Rao and 
Griliches (1969) conducted one of the earliest 
Monte Carlo studies on the performances of 
some of these estimators with autoregressive 
stochastic regressor. They observed that the OLS 
estimator is only more efficient than any of the 

GLS estimators considered when 3.0<ρ ; and 

that the performances of the GLS estimators are 
not far apart. Park and Mitchell (1980) observed 
that when regressors are trended, the estimator 
that uses the P transformation (Paris & 
Winstein) is more efficient than the one that uses 
the Q  transformation (Cochrane – Orcutt) and 
that the latter should even be avoided since it is 
less efficient than the OLS estimator. 
 More recently, Nwabueze (2005a) 
examined the performance of some of these 
estimators with exponential independent 
variable. His result, among other things, show 
that the OLS estimator compares favorably with 
the Maximum Likelihood (ML) and Maximum 
Likelihood Grid (MLGD) estimators for small 
value of ρ  but it appears to be superior to 
Cochrane – Orcutt (CORC) and the Hidreth and 
Lu (HILU) especially when ρ  is large. Some 
other recent works that are done with different 
specification of regressors include that of 
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Iyaniwura and Nwabuwze (2004a), Iyaniwura 
and Nwabuwze (2004b), Nwabuwze (2005b), 
Nwabuwze (2005c), and Olaomi and Iyaiwura 
(2006). 
 Consequently, without lost of generality, 
the purpose of this article is to find out if any or 
some of these estimators would be robust to 
autocorrelation when stochastic regressors are 
normally distributed.                   
 

Methodology 
Consider the GLS model with stochastic 
regressors and AR (1) of the form  
 
             tttt uxxy +++= 22110 βββ             (4) 

 
where             ttt uu ερ += −1  

 

( )21 1,2,..., ~ 0,tt n Nρ ε σ< = . 

 
 Its parameter estimations can be done 
using the OLS and the (feasible) GLS 
estimators. Thus, the performances of the OLS 
estimator and the following feasible GLS 
estimators are studied: CORC, HILU, ML and 
the MLGD estimators. The CORC and HILU 
estimators use the P transformation while the 
ML and MLGD estimator use the Q  
transformation. 
 Monte Carlo experiments were 
performed for 20=n , a small sample size 
representative of many time series study (Park 
and Mitchell, 1980) with four replication  (R) 
levels (R = 10, 40, 80, 120) and nine various 
degree of autocorrelation ( =ρ  -0.99,-0.75,-

0.5,… 0.99). At a particular choice of ρ and R (a 
scenario), the first replication was obtained by 
generating )1,0(~ Net  and hence tu . Assuming 

the process start from infinite past and continue 
to operate, the initial value of U  (i.e 1u ) was 
thus drawn from a normal population with mean 

zero and variance
2
11

1

ρ−
. Hence  

 

                       
2

1

1
1

1 ρ
ε
−

=u                          (6) 

            ttt uu ερ += −11  t = 2, 3,…, 20        (7) 

 
Furthermore, )1,0(~1 Nx t  and )1,0(~2 Nx t  

were generated. Hence, the values of ty in 

equation (1) were also calculated by setting the 
true regression coefficients as 1210 === βββ . 

This process continued until all replications in 
this scenario were obtained. Another scenario 
then started until all the scenarios were 
completed. 
 Evaluation and comparison of 
estimators were examined using the finite 
sampling properties of estimators which include 
bias (B), absolute bias (AB), and variance (Var) 
and the more importantly the mean squared error 

(MSE) criteria. For any estimator 
^

iβ of iβ of 

model (4) 
 

                           
=

=
−

R

j
iji R 1

^^ 1 ββ                    (7) 

         i

R

j
iiiji R

B βββββ −=





 −=






 

=1

^^^
_

1
     (8) 

                    
=

−=





 R

j
iiji R

AB
1

^^ 1 βββ          (9) 

                  

2

1

^^^ 1 
= 













−=








−
R

j
iiji R

Var βββ      (10) 

2^ ^

1

1 R

iji i
j

MSE
R

β β β
=

   = −   
   

  

                 

2
^ ^
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    for i = 0, 1, 2 and j= 1,2,…,R. 
 
For each of the estimation methods, a computer 
program was written using TSP software to 
estimate all the model parameters and to 
evaluate the criteria. The four replication levels 
were further grouped into low (R =10, 40) and 
high (R = 40, 80) and the effect of 
autocorrelation on the performances of the 
methods (estimators) were examined via the 
Analysis of Variance of the criteria of each of  
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Table 1. Summary of the ANOVA TABLE showing the sum of squares of the model parameters based 
on the criteria in the two replication groups. 

 
Parameter 

 
Replication 

Group 

 
 

Source 

 
 

d.f 

Type III Sum of squares 

 
Bias 

 
Absolute Bias 

 
Variance 

Mean Squared 
Error 

 
 
 
 

0β  

 
LOW 

R 
M 

R*M 
Error 

8 
4 

32 
45 

22.290*** 
.137 
.619 
22.356 

293.867*** 
7.470E-02 
.876 
2.308 

21568.681*** 
3.560 
29.330 
87.452 

25967.186*** 
7.428 
68.430 
591.721 

Total 89 45.403 297.126 21689.023 26634.766 

 
HIGH 

R 
M 

R*M 
Error 

8 
4 

32 
45 

.319*** 
4.858E-03 
1.862E-02 
2.367E-02 

258.096*** 
4.201E-02** 
.228*** 
.105 

20470.474*** 
1.596** 
10.494*** 
4.651 

20505.716*** 
1.583* 
10.380*** 
4.688 

Total 89 .366 258.471 20487.216 20522.367 

 
 
 
 
 

1β  

 
LOW 

R 
M 

R*M 
Error 

8 
4 

32 
45 

7.462E-02*** 
1.940E-02* 
.162*** 
5.861E-02 

.206*** 

.459** 
1.271*** 
2.786E-02 

1.698*** 
1.445*** 
7.632*** 
.540 

1.763*** 
1.539*** 
8.005*** 
.542 

Total 89 .315 1.964 11.315 11.848 

 
HIGH 

R 
M 

R*M 
Error 

8 
4 

32 
45 

9.684E-03*** 
2.858E-03* 
1.917E-02** 
9.472E-03 

.291*** 

.399*** 
1.451*** 
1.861E-03 

3.657*** 
2.367*** 
14.913*** 
3.527E-03 

3.678*** 
2.393*** 
15.036*** 
5.605E-03 

Total 89 4.118E-02 2.143 20.940 21.113 

 
 

2β  

 
LOW 

R 
M 

R*M 
Error 

8 
4 

32 
45 

.264*** 

.200*** 

.310*** 
5.493E-02 

.407*** 

.550*** 
1.727*** 
9.957E-02 

6.920*** 
4.463*** 
27.988*** 
1.060 

8.095*** 
5.245*** 
32.496*** 
.825 

Total 89 .829 2.783 40.431 46.661 

 
HIGH 

R 
M 

R*M 
Error 

8 
4 

32 
45 

4.806E-02*** 
3.751E-02*** 
7.292E-02** 
3.841E-02 

.323*** 

.420*** 
1.667*** 
2.413E-03 

5.885*** 
3.580*** 
24.255** 
.388 

6.164*** 
3.780*** 
25.385*** 
.267 

Total 89 .197 2.412 34.109 35.595 

 

* Computed F value is significant at α = 0.05.      ** Computed F value is significant at α = 0.01. 

*** Computed F value is significant at α = 0.001.       ρ = R   Autocorrelation levels 

M   Methods (Estimators) 
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the model parameters in the two replication 
groups. Because at least one of the estimators 
(CORC) is biased in small samples (Rao & 
Griliches, 1969), and that the mean squared error 
is known to replace the absolute bias (Kruthkoff, 
1970) and also comprises variance and bias; 
therefore a further test on significant interaction 
effect of autocorrelation by method was 
performed on the basis of the mean squared 
error criterion. The LSD test of the estimated 
marginal mean was done at each level of 
autocorrelation. 

At a particular level of autocorrelation, 
estimators were preferred if their estimated 
marginal means are not significantly different 
from the most preferred one. An estimator is 
most preferred if its estimated marginal mean is 
the smallest. Estimators that are preferred at all 
the levels of autocorrelation are said to be robust 
to autocorrelation; and if estimators are robust to 
autocorrelation in all the model parameters, the 
estimators are simply said to be robust. 
 
Simulation Results and Discussion 

The summary of findings on the 
performances of the estimators based on the 
criteria for each of the model parameters in the 
two replication groups is given in Table 1. It is 
observed that the error sum of square and hence 
the mean square error (if estimated) in all the 
criteria reduce with increased replications. Thus, 
the performances of the estimators in estimating 
all the parameters of the model improve with 
increased replication. 

In estimating 0β  , the interaction effect 

of autocorrelation and method is only significant 
at the high replication group in all the criteria 
except bias. Thus, the performances of the 
methods are not affected by autocorrelation in 
bias criterion but in others criteria they do. The 
estimated marginal means based on the mean 
squared error criterion are shown in appendix. 
From the appendix, it is observed that 
as ρ decreases from zero, the estimated marginal 
means of the GLS estimators decrease while that 
of the OLS estimator first decreases before it 
starts to increase. As ρ increases from zero, the 
estimated marginal means of all the methods 
increase. Furthermore, the OLS estimator is 
observed to be more efficient than any of the 

GLS estimators when 25.025.0 ≤<− ρ . It is 
also noted that the ML and the HILU estimators 
are robust to autocorrelation in estimating 0β .  

In estimating 1β and 2β , the interaction 
effect of autocorrelation and method is 
significant at the two replication groups in all 
the criteria. Thus, the performances of the 
estimators are affected by autocorrelation in all 
the criteria under the two replication groups. The 
estimated marginal means based the mean 
squared error of the estimated parameters under 
the two replication groups are given in appendix. 
The estimated marginal mean of the OLS 

estimator increases as ρ increases while that of 

the GLS estimators decrease as ρ increases, 

although this is not consistently the situation in 

2β especially when replication is low.  

Furthermore, it is observed that in estimating 1β  
the OLS estimator is only more efficient than 
any of the GLS estimators at the two replication 

groups when 25.0≤ρ  while in estimating 2β  

OLS  is more efficient when 25.0<ρ  at the 

low replication and when 25.025.0 ≤<− ρ  at 
high replication. Moreover, the GLS estimators 
are robust in estimating 1β and 2β of the Linear 
Model. 

 
Conclusion 

Because performances of the estimators improve 
with increased replication, it can therefore be 
concluded that in estimating all the parameters 
of the model the ML and HILU estimators are 
robust; and that OLS estimator is more efficient 
than any of the GLS estimators considered 
when 25.025.0 ≤<− ρ .  
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Appendix 

 

+  Estimate that is significantly different from the most preferred  one at α = 0.05 

 
 
 

1ρ  

 
 
 
 

M 

Replication 
= High 

Replication 
= Low 

R replication 
= High 

Replication 
= Low 

R replication 
= High 

Estimated 
Marginal 

Means: 0β  

Estimated 
Marginal 

Means: 1β  

Estimated 
Marginal 

Means: 1β  

Estimated 
Marginal 

Means: 2β  

Estimated 
Marginal 

Means: 2β   

 
 

-.99 

OLS 
COCR 
HILU 
ML 

MLGD 

.467 
1.495E-02 
1.474E-02 
1.491E-02 
1.505E-02 

2.455+ 
3.846E-02 
3.801E-02 
3.882E-02 
4.066E-02 

3.343+ 
4.990E-02 
4.961E-02 
5.013E-02 
5.180E-02 

4.876+ 
3.269E-02 
3.195E-02 
3.217E-02 
3.132E-02 

4.309+ 
4.547E-02 
4.450E-02 
4.430E-02 
4.318E-02 

 
 

-.75 
 

OLS 
COCR 
HILU 
ML 

MLGD 

3.889E-02 
1.961E-02 
1.965E-02 
1.930E-02 
1.931E-02 

.156 
5.127E-02 
5.135E-02 
4.711E-02 
4.732E-02 

.154 
5.972E-02 
5.991E-02 
5.899E-02 
5.898E-02 

.180 
3.624E-02 
3.587E-02 
3.496E-02 
3.446E-02 

.170 
5.597E-02 
5.573E-02 
5.329E-02 
5.293E-02 

 
-.5 

 
 

OLS 
COCR 
HILU 
ML 

MLGD 

3.352E-02 
2.667E-02 
2.664E-02 
2.555E-02 
2.545E-02 

8.808E-02 
8.085E-02 
8.121E-02 
5.732E-02 
5.614E-02 

8.571E-02 
6.966E-02 
6.939E-02 
6.496E-02 
6.438E-02 

7.802E-02 
3.786E-02 
3.831E-02 
3.717E-02 
3.733E-02 

9.500E-02 
6.443E-02 
6.472E-02 
6.206E-02 
6.205E-02 

 
-.25 

 

OLS 
COCR 
HILU 
ML 

MLGD 

3.828E-02 
3.862E-02 
3.848E-02 
3.605E-02 
3.592E-02 

6.348E-02 
.110 
.110 

7.062E-02 
7.074E-02 

6.027E-02 
7.478E-02 
7.427E-02 
6.652E-02 
6.641E-02 

4.305E-02 
3.613E-02 
3.643E-02 
3.866E-02 
3.933E-02 

6.943E-02 
7.206E-02 
7.208E-02 
6.864E-02 
6.864E-02 
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OLS 
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HILU 
ML 
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5.191E-02 
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.113 

7.658E-02 
7.595E-02 

5.130E-02 
7.607E-02 
7.621E-02 
6.765E-02 
6.731E-02 

2.983E-02 
3.812E-02 
3.832E-02 
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7.241E-02 
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9.563E-02 
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.103 
.103 

7.588E-02 
7.998E-02 

5.651E-02 
6.786E-02 
6.807E-02 
6.108E-02 
6.181E-02 

2.732E-02 
4.053E-02 
3.995E-02 
2.549E-02 
2.547E-02 

5.110E-02 
6.463E-02 
6.518E-02 
5.632E-02 
5.688E-02 

 
.5 

OLS 
COCR 
HILU 
ML 

MLGD 

.169 

.204 

.214 

.169 

.168 

.102 
7.069E-02 
7.025E-02 
5.501E-02 
5.247E-02 

8.018E-02 
4.837E-02 
4.845E-02 
4.556E-02 
4.464E-02 

4.270E-02 
3.784E-02 
3.799E-02 
2.237E-02 
2.206E-02 

5.670E-02 
5.399E-02 
5.443E-02 
4.720E-02 
4.688E-02 

 
 

.75 

OLS 
COCR 
HILU 
ML 

MLGD 

.571 

.936 

.861 

.549 

.546 

.180 
4.010E-02 
3.989E-02 
2.681E-02 
2.550E-02 

.133 
3.969E-02 
3.975E-02 
3.800E-02 
3.752E-02 

.126 
3.493E-02 
3.485E-02 
2.284E-02 
2.284E-02 

9.479E-02 
4.611E-02 
4.577E-02 
4.071E-02 
4.036E-02 

 
.99 

OLS 
COCR 
HILU 
ML 

MLGD 

48.841+ 
49.897+ 
46.888 
47.537 

47.727+ 

.320+ 
3.654E-02 
3.479E-02 
2.156E-02 
2.171E-02 

.208+ 
3.466E-02 
3.396E-02 
3.373E-02 
3.391E-02 

.329+ 
4.112E-02 
3.954E-02 
2.539E-02 
2.542E-02 

.202+ 
3.995E-02 
3.967E-02 
3.758E-02 
3.746E-02 
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