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When data are nonnormal in form classical procedures for assessing treatment group equality are prone to 
distortions in rates of Type I error and power to detect effects. Replacing the usual means with trimmed 
means reduces rates of Type I error and increases sensitivity to detect effects. If data are skewed, say to the 
right, then it has been postulated that asymmetric trimming, to the right, should be better at controlling rates 
of Type I error and power to detect effects than symmetric trimming from both tails of the data distribution. 
Keselman, Wilcox, Othman and Fradette (2002) found that Babu, Padmanabhan and Puri's (1999) test for 
symmetry when combined with a heteroscedastic statistic which compared either symmetrically or 
asymmetrically determined means provided excellent Type I error control even when data were extremely 
heterogeneous and very nonnormal in form. In this paper, we present a detailed discussion of the Babu et al. 
procedure as well as a numerical example demonstrating its use. 
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Introduction 
 
Keselman, Wilcox, Othman and Fradette (2002) 
found that by utilizing a test for symmetry prior to 
testing for equality of trimmed means they were 
able to achieve excellent Type I error control even 
though data were extremely heterogeneous and 
very nonnormal in form. In particular, they used a 
test  for  symmetry first proposed by Hogg, Fisher,  
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and Randles (1975) and subsequently modified by 
Babu, Padmanaban and Puri (1999) in order to 
determine whether data should be trimmed 
symmetrically or asymmetrically. Asymmetric 
trimming has been theorized to be potentially 
advantageous when the distributions are known to 
be skewed, a situation likely to be realized with 
behavioral science data (See De Wet & van Wyk, 
1979; Micceri, 1989; Tiku, 1980, 1982; Wilcox, 
1995). That is, theoretical considerations suggest 
that when data are say skewed to the right then in 
order to achieve robustness to nonnormality and 
greater sensitivity to detect effects one should trim 
data just from the upper tail of the data 
distribution. Indeed, Keselman et al. found that by 
combining a test for mean equality with a 
preliminary test for symmetry Type I error rates 
could be substantially improved for the nonnormal 
and heterogeneous distributions they examined. 
Because space considerations prevented them 
from providing a full description of the symmetry 
test we present the method herein and illustrate its 
application with a numerical example. 
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Theoretical Background 
 The Babu et al. (1999) procedure is based, 
in part, on the work of Hogg et al. (1975). 
Specifically, for these authors, the hypothesis of 
interest was H0: θ = 0 against HA:  θ > 0, where θ  
is the location parameter of interest. They 
proposed a test to detect the nature of the 
underlying distribution before proceeding with 
(nonparametric) tests of H0. 
 In particular, they defined Y1, Y2,…, Ym 
as a random sample from F(y), and Ym+1, Ym+2,…, 
Yn as a random sample from F(y - θ). Then Y(1), 
Y(2),…, Y(n) are the ordered statistics of the 
combined random samples and Ymed is the median 
of the combined samples.  
 Hogg et al.’s (1975) procedure to detect 
the nature of the underlying distribution is 
composed of two tests, a test of the heaviness of 
the tail of the distribution using the Q2 statistic and 
a test of symmetry using the Q1 statistic. Their 
work was based on papers by Uthoff (1970, 1973). 
Hogg et al. (1975) chose a test statistic enumerated 
by Uthoff (1973, Equation 2) as a basis to define 
their Q2 index. This index determined whether the 
tail of the underlying distribution is light or heavy. 
They first approximated it as 
 

(n) (1)

(i) med

Y   - Y  
.

2 Y -Y / nΣ
 

 
They transformed this ratio into  
 

0.05 0.05
2

0.5 0.5

(U L )Q ,
(U L )

−
=

−
 

 
where U0.05 and L0.05 are, respectively, the means 
of the upper and lower 5% of the order statistics of 
the sample and U0.5 and L0.5 are, respectively, the 
means of the upper and lower 50% of the order 
statistics of the combined sample. 
 Again, based on the work of Uthoff (1970, 
Equation 1), Hogg et al. (1975) derived their Q1 
index:  
 

0.05
1

0.05

( ) ,
( )
U MIDQ
MID L

−
=

−
 

 

where MID is the mean of the middle 50% of the 
combined sample. Thus, this index determines the 
symmetry of the underlying distribution. 
 Babu et al. (1999) extended the use of 
these two indices to more than two groups. They 
proposed that both indices be calculated within the 
groups and weighted means of these indices be the 
overall estimates of Q2 and Q1. They also proposed 
adjustments to the Q1 index whereby the amount 
of data needed to calculate the index depended on 
the outcome of the calculation of the Q2 index.  
 
Determination of Symmetry 
 Consider the problem of comparing 
distributions F1 = F2 = … = FJ. One way of 
approaching this problem is to consider the one-
way ANOVA problem of comparing means µ1 = 
µ2  = … = µJ from J distributions F1(y) = F(y- µ1), 
F2(y) = F(y- µ2), … , FJ(y) = F(y- µJ). When the 
distributions are unknown and one cannot assume 
that they are normal with equal variances, Babu et 
al. (1999) suggested the following procedure to 
determine heavy-tailedness and symmetry prior to 
applying the appropriate test on the location 
parameters: 
 Let 

jij 1 j 2 j n jY (Y ,Y ,...,Y )=  be a sample 

from an unknown distribution Fj. Let 

j(1) j (2) j (n ) jY Y Y≤ ≤ ≤  represent the ordered 

observations associated with the jth group. Let  γ 
be the proportion of the data in the sample that are 
of interest as either the proportion of data to be 
trimmed or the proportion of data to be used in the 
calculation of several intermediate variables 
leading to two statistics, namely Q2 and Q1. Let g 
= [γnj] +1, where [x] represents the greatest integer 
less than γnj and r = g - γnj. It is important to note 
that trimming here, and the amount trimmed, is 
just for purposes of assessing symmetry. 
 
Q2 Index 

Prior to determining the symmetry of the 
distributions, the nature of their tails is examined. 
The Q2 index determines whether F1(y), F2(y),…, 
FJ(y) are normal-tailed, heavy-tailed or very 
heavy-tailed. Tail classification is determined in 
the following manner: 

1. Define Uγj and Lγj as the means of the upper 
and lower γnj order statistics, respectively, of 
the sample Yj. 
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Case 1. If γnj  ≤ 1,  
then Uγj = Y

j(n ) j  and Lγj = Y (1) j . 

 
Case 2. If γnj  > 1 
 then  
 

j

j

j

n

, j (i) j (n g 1), j
j n g 2j

1U Y (1 r)Y
nγ − +

= − +

 
= + −  γ  

∑   and 

 
g 1

, j (i) j (g) j
i 1j

1L Y (1 r)Y
n

−

γ
=

 
= + − γ  

∑  

 
 
2. Calculate U0.05, j and L0.05, j as the mean of the 
upper and lower 0.05nj order statistics of Yj, 
respectively. 
3. Calculate U0.5, j and L0.5, j as the mean of the 
upper and lower 0.5nj order statistics of Yj, 
respectively. 
4. For each j, set Q2, j  = (U0.05, j  -  L0.05, j ) / (U0.5, j  -  
L0.5, j ).  
5. Using Q2, j, j = 1, 2,…, J, from # 4 compute 
 

J J

2 j 2, j j
j 1 j 1

Q n Q n
= =

   
=    
   
∑ ∑  

 
6. If Q2 <  3 then F is classified as normal-tailed. If 
3  ≤  Q2 <  5 then F is classified as heavy-tailed. If 
Q2  ≥ 5 then F is classified as very heavy-tailed. 
 
Q1 Index 
 Once the nature of the tails of the 
distributions is known, the Q1 index, which 
determines the symmetry of the distributions, is 
calculated. To calculate the Q1 index one should: 
1. Based on Q2, determine the number of sample 
points in each sample Yj to be used. Define this as 
nj*. (This is the Babu et al., 1999, modification of 
the Hogg et al., 1975, proposal for computing Q1.) 
Specifically, if Q2 <  3 then use all sample points in 
Yj. If 3  ≤  Q2 <  5  then trim the top and bottom 
10% of the sample points and use the middle 80% 
in Yj. If Q2  ≥ 5  then trim the top and bottom 20% 
of the sample points and use the middle 60% in Yj. 
2. Let MIDj to be the mean of the middle 50% of 
the order statistics of the sample points in sample 
Yj defined in #1. According to A. R. Padmanaban 

(personal communication, June 26, 2001), MIDj is 
calculated in the following manner: 
  Discard the top and bottom 25% of the 
order statistics of Yj. 
  The remainder is the middle 50% of the 
order statistics of Yj. 
 Hence, * *

jg [ 0.25n ] 1= +  and 
* * *

jr g 0.25n= − . Therefore, MIDj is given by 
 

* *
j

* * *
j*

n g
*

j (i) j* (g ) j (n g 1) j
i g 1j

1MID Y r (Y Y ) .
0.5n

−

− +
= +

 
= + + 

  
∑

 
 
3.  For each j, set  
 
           1, j 0.05, j j j 0.05, jQ (U MID ) ( MID L )= − − . 
 
4. Using Q1, j, j = 1, 2,…, J, from # 3 compute 
 

       
j

J J
* *

1 j 1, j
j 1 j 1

Q n Q n
= =

   
=    
   
∑ ∑   . 

 
5. If Q1 < ½, F is deemed to be left skewed. If  ½ ≤ 
Q1 ≤ 2, then F is considered to be symmetric. If Q1 
> 2, then F is designated as right skewed. 
 
Computational Example 
 Suppose we want to test the null hypothesis,  
Ho: F1(x) = F2(x) = F3(x) based on the following 
data set. 
 
Table 1. Data set. 
 
Groups Order Statistics nj 
1 30 32 32 34 35 35 39 40 40 41 42 

48 50 52 99 
15

2 35 36 40 40 41 42 43 49 56 64 10
3 48 48 51 51 51 55 55 60 63 83 10
Note: The tabled values were chosen so that the 
data would be classified as heavy-tailed.  
 
 
Calculating Q2 (Tail thickness)  
 Notice that 0.05nj < 1 for j = 1, 2, 3. 
Therefore, U0.05, 1  = Y(15, 1) = 99, U0.05, 2  = Y(10, 2)  = 
64, U0.05, 3  = Y(10, 3) = 83, and L0.05, 1  = Y(1, 1) = 30, 
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L0.05, 2  = Y(1, 2) = 35, and L0.05, 3  = Y(1, 3) = 48. When 
γ = 0.5, the calculations for U0.5, j, L0.5, j and Q2, j for 
each group are as follows: 
 
Group 1 
n1 = 15, 0.5 n1 = 7.5, g = 8 and r = 0.5. 
 

15

0.5,1 (i1) (8,1)
i 9

1U Y 0.5Y
7.5
1 ((40 41 99) (0.5)40)

7.5
52.2667

=

 = + 
 

= + + + +

=

∑

 

 
7

0.5,1 (i1) (8,1)
i 1

1L Y 0.5Y
7.5
1 ((30 32 39) (0.5)40)

7.5
34.2667

=

 = + 
 

= + + + +

=

∑

 

 

2,1

(99 30)Q 3.8333
(52.2667 34.2667)

−
= =

−
 

 
Group 2 
 
n2 = 10, 0.5 n2 = 5, g = 6 and r = 0. 
 

10

0.5,2 (i2) (5,2)
i 6

1U Y (0)Y
5
1 ((42 43 64) 0)
5
50.8

=

 = + 
 

= + + + +

=

∑

 

 
5

0.5,2 (i2) (6,2)
i 1

1L Y (0)Y
5
1 ((35 36 41) 0)
5
38.4

=

 = + 
 

= + + + +

=

∑

 

 

2,2

(64 35)Q 2.3387
(50.8 38.4)

−
= =

−
 

 
 

Group 3 
 n3 = 10, 0.5 n3 = 5, g = 6 and r = 0. 
 

10

0.5,3 (i3) (5,3)
i 6

1U Y (0)Y
5
1 ((55 55 83) 0)
5
63.2

=

 = + 
 

= + + + +

=

∑

 

 
5

0.5,3 (i3) (6,3)
i 1

1L Y (0)Y
5
1 ((48 48 51) 0)
5
49.8

=

 = + 
 

= + + + +

=

∑

 

 

2,3

(83 48)Q 2.6119
(63.2 49.8)

−
= =

−
 

 
Therefore,  
 

2

(15( 3.8333 ) 10( 2.3387 ) 10( 2.6119 ))Q
(15 10 10 )

3.0573

+ +
=

+ +
=

 

 
and F is classified as heavy-tailed. 
 
Calculating Q1  
 Because F if classified as heavy-tailed, we 
have to symmetrically trim 10% of the data before 
calculating Q1. 
 Notice that 0.05 *

jn < 1 for j = 1, 2, 3. 
Therefore: 
 
           

* *
0.05,1 (13,1)U Y 52= = , * *

0.05,2 (8,2)U Y 56= = ,   
 
        

* *
0.05,3 (8,3)U Y 63= = , and * *

0.05,1 (1,1)L Y 32= = ,      
 
          * *

0.05,2 (1,2)L Y 36= = , * *
0.05,3 (1,3)L Y 48= = . 

 
Let us calculate MIDj and Q1, j, for j = 1, 2, 3. 
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Table 2. 10% Trimming. 
 
Groups Order Statistics Following 

10% Symmetric Trimming 
*
jn

1 32 32 34 35 35 39 40 40 41 42 48 
50 52 

13 

2 36 40 40 41 42 43 49 56 8 
3 48 51 51 51 55 55 60 63 8 

 
 
Group 1  

* * * *
1 1n 13, 0.25n 3.25, g 4,and r 0.75= = = = . 

 
9

* * *
1 (i1) (4,1) (10,1)

i 5

1MID Y 0.75(Y Y )
6.5
1 ((35 39 40 40 41) (0.75)(35 42))

6.5
38.8846

=

 = + + 
 

= + + + + + +

=

∑

 

 

1,1

(52 38.8846)Q 1.905
(38.8846 32)

−
= =

−
 

 
Group 2 
 

* * * *
2 2n 8, 0.25n 2, g 3,and r 0= = = =  

 
6

*
2 (i2)

i 3

1MID Y
4
1 (40 41 42 43)
4
41.5

=

 =  
 

= + + +

=

∑

 

 

1,2

(56 41.5)Q 2.6364
(41.5 36)

−
= =

−
 

 
Group 3 

* * * *
3 3n 8, 0.25n 2, g 3,and r 0= = = = . 

 

6
*

3 (i3)
i 3

1MID Y
4
1 (51 51 55 55)
4
53

=

 =  
 

= + + +

=

∑

 

 

1,3

(63 53)Q 2
(53 48)

−
= =

−
 

 
Therefore, 
 

1

( 13(1.905 ) 8( 2.6364 ) 8( 2 ))Q
(13 8 8 )

2.133

+ +
=

+ +
=

  

 
and F is classified as right skewed.  
 

Discussion 
 

As indicated in our introduction, Keselman et al. 
(2002) found that by first applying the Babu et al. 
(1999) procedure prior to testing for treatment 
group equality with sample symmetrically or 
asymmetrically determined trimmed means one 
could achieve excellent control over Type I errors 
even though data were obtained from very 
heterogenous distributions that were extremely 
nonnormal in form. Accordingly, they 
recommended that users adopt the Babu et al. 
(1999) test for symmetry. 
 It is also interesting to note that Babu et al. 
(1999) used the preliminary test for symmetry in 
order to determine whether groups should be 
compared on their symmmetrically determined 
trimmed means, when distributions were deemed 
symmetric, or on their medians, when distributions 
were deemed asymmetric. Thus, a test for 
symmetry can be beneficial in many different 
applications. 
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