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Test for Spatio-Temporal Counts Being Poisson 
 

Haiyan Chen  Howard H. Stratton 
          University of Maryland              SUNY 

 
 

The new Log-Linear Test (TL) is proposed to identify when the Poisson model fails for a collection of 
count random variables. TL is shown to have better rejection rate with small sample size and essentially 
the same power compared to a classical Fisher-Bohning’s Statistic TF for standard alternatives to Poisson.  
 
Key words: Fisher-Bohning’s Statistic, log-linear test, over-dispersion to Poisson, Negative binomial, 
Zero-inflated Poisson. 
 
 

Introduction 
 
Human disease data are often in the form of 
count data and its associated rate. Examples 
include disease incidence, prevalence, and/or 
mortality (Lindsey, 1995, Hinde & Demetrio, 
1998). The Poisson distribution is a traditional 
probability model for count data (Hinde & 
Demetrio, 1998), and has the property that its 
expected value equals its variance, i.e., E(Y) = 
var(Y). Thus, count data for which E(Y) < var(Y) 
indicate over-dispersion relative to the Poisson. 
The extra disparity could be due to heterogeneity 
in the population, or an overabundance of 
certain specific values, e.g., excess zeros (Tiago 
de Oliveria, 1965, Bohning, 1994, Lambert & 
Roeder, 1995, Lindsey, 1995, Hinde & 
Demetrio, 1998, Brown & Zhao, 2002, Smyth,  
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2003). The term ‘over-dispersion’ is reserved for 
over-dispersion relative to the Poisson, i.e., any 
random variable that has variance-mean ratio 
greater than one is called over-dispersed. Failure 
to take account of this over-dispersion can lead 
to serious underestimation of standard errors and 
misleading inference for the regression 
parameters.  

Suppose that I independent count 
variables Yi (i = 1, …, I) are each observed N 
times. The associated I sample means are given 

by /i ijj
Y Y N=  and I sample variances are 

given by 2 2( ) /( 1)i ijj
S Y Y N= − − , where j 

= 1, …, N. Hypothesis tests that an individual 
count variable is Poisson have been developed 
(Hoel, 1943, Tiago de Oliveria, 1965, Cameron  
& Trivedi, 1990, Bohning, 1994, Lambert & 
Roeder, 1995, Lindsey, 1995, Hinde & 
Demetrio, 1998, Brown & Zhao, 2002, Smyth, 
2003), however, little development of tests of 
hypothesis that a group of count variables are 
simultaneously distributed as Poisson has been 
done. This paper investigates three possible 
hypothesis tests that a group of variables are 
simultaneously Poisson vs. over-dispersion to 
the Poisson. It will be seen that only one of these 
tests is feasible in terms of both test size and test 
power for relatively small number of 
observations for each of the variables. 

The main data set used to illustrate the 
proposed tests in this paper, named NYSLD, was 
derived from the New York State Department of 
Health Lyme Registry Surveillance System. 
Only confirmed cases using the Lyme disease 
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(LD) surveillance definition (White, Chang, 
Benach, et al., 1991, CDC, 1997) were selected. 
For each case, county of residence and year of 
onset were used. Cases with either of these two 
pieces of information missing were excluded. 
The LD data of three neighboring states of New 
York were accessed online from the Connecticut 
Department of Public Health (Connectcut State 
Depatment of Health website, 2004), New 
Jersey Department of Health and Senior 
Services (New Jersey Department of Health and 
Senior Services website, 2004), and 
Pennsylvania Department of Health 
(Pennsylvania Department of Health website, 
2004) websites.  
 
A standard reference statistic: the Fisher-
Bohning Statistic 

A simple diagnostic test for over-
dispersion of a single variable has been a long 
sought goal for deciding whether a further 
investigation of latent heterogeneity is 
necessary. Tiago de Oliveira (1965) approached 

this via the difference of Di = 2( )i iS Y− for an 

individual random variable Yi. They argued that 
Di’ variance under the null hypothesis 

~ ( )ij iY Poisson λ is given by 
1/ 2(1 2 3 ) /i i Nλ λ− + , which can be estimated 

by 1/ 2(1 2 3 ) /i iY Y N− + . The proposed test 

statistic, 
1/ 2 2 1/ 2 1/ 2( ) /(1 2 3 )T i i i iO N S Y Y Y= − − + , was 

treated as if it had a standard Normal limiting 
null distribution.  

However, Dankmar Bohning (1994) 
showed by simulation that the limiting 
distribution of Tiago de Oliveira’s statistic under 
the Poisson null hypothesis is neither a standard 
normal nor is it independent of λi. Bohning 
noted that the failure of Tiago de Oliveira’s test 
is due to incorrect computation of the standard 
deviation of Di and showed its correct variance 

to be )1/(2 2 −Niλ . The corrected test statistic,  

}1)/{(}2/)1{(
)1/(2

22/1

2

2

−−=
−

−= ii

i

iin
T YSN

NY

YS
O

is asymptotically N(0, 1).   
 To address the multiple comparison 
problem in this paper, the overall p-value for the 

I independent Bohning’s over-dispersion tests is 
calculated using the Fisher’s statistic for 
combining independent tests (Hedges & Olkin, 
1995) and is named the Fisher-Bohning’s 
Statsitc (TF).  

If pi is p-value of ith individual test for a 
continuous test statistic, pi has a uniform (0, 1) 
distribution when the null hypothesis H0i of the 
test is true. Fisher’s procedure then uses the fact 

that -2log pi has a 2χ distribution with two 
degrees of freedom. Because the sum of 

independent 2χ variables has a 2χ distribution 
with degree of freedom equal to 
sum of the degrees of freedom of each 

individual 2χ , the Fisher-Bohning’s Statistic, 

)log(2 21 nF pppT −=  =
−= I

i ip
1
log2 , has 

a 2χ distribution with 2n degrees of freedom 
under the null hypothesis H0. Although the null 
hypothesis H0i: Yi ~ Poisson involves a discrete 
distribution, it is well approximated by 
continuous normal distributions if the expected 
values of the corresponding Poissons are 
sufficiently large (Johnson, Kotz, & Kemp, 
1992). Thus the χ2 null distribution for Fisher-
Bohning’s statistic TF is applicable to the 
Poisson null hypothesis in this case.  

 
Two new test statistics 

Before presenting new test procedures, 
there are some general concepts and theorems 
that need to be introduced. First, the concepts 
‘corresponding zero-inflated variable’ and 
‘corresponding zero-inflated distribution’ are 
defined. 
 Let Y be a random variable with 
probability function p(Y) and ω be a value 

between 0 and 1. If a random variable Y~ has  
 

                      0 with probability ω  
        
     Y with probability 1-ω   
 

then Y~ has density function: 
 

=Y
~
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(1 ) (0)     0
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and is called the corresponding zero-inflated 
variable to Y with zero-inflated distribution,  

( )p Y . 
Theorem 1: If E(Yk) exists, then 

)()1()~( kk YEYE ω−= , and 
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Corollary 1: If )(1
)(

)var(
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Y η+=  holds, then 
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−
++=  

 The theorem and its corollary presented 
above provide a basis on which new tests 
of whether a distribution with the property 

)(1
)(

)var(
YE

YE

Y η+=  is over-dispersed to the  

Poisson, i.e. 0>η  are developed. More 
precisely the two new proposed tests of 
hypothesis deal with: 

1. {Yi, i =1, …, I} which are I independent 
random variables.  

2. For each Yi, N independent records were 
observed.  

3. Test Yi being simultaneously Poisson 
(λi) by the null hypothesis  

H0: 1
)(

)var(
=

i

i

YE

Y
 for E(Yi) > 0 

for all i 
versus over-dispersion to the Poisson 

H1: )(1
)(

)var(
i

i

i YE
YE

Y η+=  for 

E(Yi) > 0, and η > 0. 
That is, a test of η = 0 vs. η > 0. 
 
A test based on a linear regression of sample 
variance-mean ratio on the sample mean 
 Under H1, 

)(1
)(

))(( 2

i
i

iij YE
YE

YEyE
η=−

−
. If E(Yi) is 

known, a test for over-dispersion is a t-test for η 
in the least-squares (LS) regression 

ii
i

Y
YE

YE

S
i εη +=− )(1

)(

2

, 

where the error term is defined by 

.
)(

)var(

)(

2

i

i

i

Y
i YE

Y

YE

S
i −=ε  Since E(Yi) is unknown, 

it is estimated by iY . A linear regression of the 

sample variance-mean ratio on sample mean 

εββ ++= Y
Y

S
10

2

is made so that a test for 

over-dispersion or under-dispersion is a test of 
whether β1 = 0 by treating the test statistic, 

,
)(r̂va

1ˆ

1

1

β
β −

=LT  as N(0, 1) under H0. WLS is 

used to estimate regression coefficients and t-
test is used to draw statistical inferences. Note 
that above justification has been intuitively 
developed rather than by strict logic. It will be 
shown to be unreliable.  
 
A test based on a linear regression of the log-
sample variance on the log-sample mean 
 An alternative to TS is suggested by re-
expressing the alternative H1, 

)(1
)(

)var(
YE

YE

Y η+=  for E(Yi) > 0, via a 

logarithmic transformation to give  
log(var(Y)) = log(1+η E(Y))+ log(E(Y)). The 
Poisson condition of η = 0 is then equivalent to 
log(var(Y)) = log(E(Y)).  

The unknown var(Y) and E(Y) are 

estimated by S2 and Y . In order to test 
under/over-dispersion to Poisson, a least square 

fit of εββ ++= YS loglog 10
2 is made. 

Rejecting either β0 = 0 or β1 = 1 is sufficient to 
reject the Poisson. Here a test of whether β1 = 1 
is proposed by treating the test statistic, 

,
)(r̂va

1ˆ

1

1

β
β −

=LT  as N(0, 1) in rejecting H0. The 
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validity using this distribution under H0 will be 
confirmed by simulation studies. 
 
Simulation 
General design for the simulations 

Simulations were conducted to examine 
and compare the size and power characteristic of 
the three proposed tests TS, TL, and TF. Two 
alternative hypotheses to a null hypothesis of 
Poisson that will be tested are 1) H1: Yi ~ 
Negative Binomial, i.e. NB (μi, ν), and 2) H1: Yi 
~ Zero Inflated Poisson, ZIP (μi, ω).  

Four sample sizes, N = 5, 11, 50, or 100 
are used to resemble data of small, moderate, 
and large sample size. Each simulation 
experiment is based on 500 replications. Two 
nominal α levels, α = 0.01, or α =0.05 are 
evaluated. 
 In all cases, μi is set equal to ith NYS 
county’s observed average annual incidence 
rates (per 100,000 population) of LD, where i = 
1, …, 57, in order to have a practical sense of 
how the tests perform relative to the NYSLD 
data. Note that during the 11-year studied time 
period, none of the 57 counties in NYS had a 
zero average annual incidence rate of LD, 
indicating that every of those counties had at 
least one case reported in some year. Figure 1a-b 
graph the empirical distributions of μi and 
log(μi), respectively. Range of μi is from 0.55 to 
349.00 and this covers a relative wide range. 
The distribution of log(μi) (skewness = 1.40) is 
much less positively skewed than that of μi 

(skewness = 3.86). 
 
Analysis of test size 

Four sets of data from H0: Yi ~ Poisson 
(μi) were generated corresponding to four 
sample sizes, N = 5, 11, 50, 100 for each i (i = 1, 
…, 57, and see Section ‘General design for the 
simulations’ for the values assigned to μi). 
Percentages of rejections of H0: Yi ~ Poisson (μi) 
were calculated for the two αs: α = 0.01 and α = 
0.05 in order to evaluate whether sizes of tests 
were sufficiently close to their nominal αs. The 
results are summarized in Table 1. 
 The size of the test TS for all four sample 
sizes turns out to be considerably greater than 
both the nominal sizes of 1% and 5% (Table 1). 
The size of the test TL for all four samples sizes 

is statistically indistinguishable from both the 
nominal sizes of 1% and 5%.  

The match between the actual and 
nominal sizes for TF is different for different 
sample sizes: for small sample size as N = 5, the 
size of the test TF turns out to be smaller than 
both the nominal sizes of 1% and 5%; while for 
moderate and large sample size (N = 10, 50, or 
100), the size of the test TF is statistically 
indistinguishable from both the nominal sizes of 
1% and 5%.  
 In summary, the match between the 
actual and nominal size is worst for TS and best 
for TL. When sample size is adequately large, TF 
as well as TL have consistent test sizes. 
Power analysis  
 Because TS does not have consistent test 
sizes but TL and TF, essentially do, in the 
following Sections, power investigations are 
only made for TL and TF as a function of 
increasing sample size or the degree of over-
dispersion. 
 
Power analysis under alternative hypothesis H1: 
Yi ~ NB  

Under the alternative hypothesis H1: Yi ~ 
NB (μi, ν), the probability density is 









+








++ΓΓ

+Γ
=

i

i

ii

i
i y

y
Yp

μν
μ

μν
ν

ν
ν

ν

)1()(

)(
)( an

d its variance-mean ratio is 
var( ) ( )

1 .
( )

Y E Y

E Y ν
= +  

Taking the logarithm, this equation becomes:  
 
log(var( )) log( ( )) log(1 ( ) / )

( ( )).

Y E Y E Y

g E Y

ν= + +
=

 

In this experiment, the test power is set 
up as a function of ν, the dispersion parameter, 
with 25 different values for ν set discretely from 
1 to 5000. This simulates the degree of over-
dispersion from large (1 ≤ ν < 50), moderate (50 
≤ ν < 500) to small (500 ≤ ν < 5,000) 
correspondently. At each value of ν, the 
experiment described is performed.  
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Figure 1.a Empirical distribution of μis 
 

Figure 1b. Empirical distribution of log(μi)s 
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The empirical power curves of the two 
tests (TL, TF) as functions of ν for two nominal 
test sizes (α = 1%, α = 5%) are presented in 
Figure 2a-d for sample sizes N = 5, 11, 50, and 
100. Figure 2a-d indicate that the powers of the 
two tests are nonlinear monotonically decreasing 
functions of ν, which represents the degree of 
over-dispersion. When the degree of over-
dispersion to Poisson is large (i.e., ν is 50 or 
less), both tests TL and TF have fairly high 
powers for all four samples sizes and for two 
nominal test sizes, ranging from 65.4% to 100%. 
The power decreases dramatically when the 
degree of over-dispersion decreases (i.e., ν 
increases from 50 to 1000). When ν is as big as 
5,000, the test powers are very low, ranging 
from 0.8 to 21.6 (Fig. 2a–d). Sample size seems 
to have less influence on powers of the tests than 
the degree of over-dispersion does. When 
sample size is increased from small (N = 5), 
moderate (N =11, 50) to large (N = 100), the 
corresponding test powers only slightly increase. 

With small sample sizes, the ratios 
between the power of TL and the power of TF 
with the increase of values of ν are relative 
unstable (TL1 vs. TF1 and TL5 vs. TF5 in Fig. 
2a-b). With lager sample size, the power of TL 
decreases fast then the power of TF with the 
increase of values of ν (TL1 vs. TF1 and TL5 
vs. TF5 in Fig. 2c-d), indicating TL is more 
sensitive than TF to the degree of over-
dispersion. This is especially true for moderate 
degree of over-dispersion.   
 
Power analysis under alternative hypothesis H1: 
Yi ~ ZIP 

Under the alternative hypothesis H1: Yi 
~ ZIP (μi, ω), the probability density is 

(1 )exp( )

Pr( )

(1 )exp( ) / !y

Y y

y

ω ω μ

ω μ μ

 + − −
= = 
 − −

. 

The variance-mean ratio is 

ω
ω

−
+=

1

)(
1

)(

)var( YE

YE

Y
 . Taking logarithms gives,  

 

 

log(var( ))

log( ( )) log(1 ( ) / (1 ))

( ( ))

Y

E Y E Y

g E Y

ω ω
=

+ + − =  

 
In this simulation, the test power is 

again set up as a function of ω, the dispersion 
parameter. The empirical power curves of the 
two tests (TL, TF) as functions of ω for two 
nominal test sizes (α = 1%, α = 5%) are 
presented in Figure 3a-d for sample sizes N = 5, 
11, 50, 100 respectively. Total 99 different 
values, ω = {0.01, 0.02, …, 0.98, 0.99}, was 
used while only test powers for ω = {0.01, 0.02, 
…, 0.49, 0.50} are presented in Figure 3a-d. At 
each value of ω, the experiment described in 
‘General design for the simulation’ was 
performed. 

Again, it appears that the test power is a 
nonlinear monotone increasing function of the 
degree of over-dispersion to Poisson, which is 
represented here by ω (Smaller values of ω 
index smaller degree of over-dispersion). And 
with small sample size, the ratios of powers of 
the two tests (TL, TF) are unstable with the 
decrease of values of ω (TL1 vs. TF1 and TL5 
vs. TF5 in Fig. 3a-b). With lager sample size, the 
power of TL decreases fast then the power of TF 
with the increase of values of ν (TL1 vs. TF1 
and TL5 vs. TF5 in Fig. 3c-d), indicating TL is 
more sensitive than TF to the degree of over-
dispersion.    

In summary, the simulation experiments 
demonstrate that among the three evaluated 
tests, TS is ruled out due to unacceptable test 
size; the power characteristic of TL is empirically 
superior to TF in terms of sensitivity to degree of 
over-dispersion. Thus, only TL is used in the four 
states (New York, Connecticut, New Jersey, and 
Pennsylvania) LD data including the NYSLD 
data. 
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Applications 

 The new test statistic TL is applied to the 
NYSLD data, as well as LD data of Connecticut 
State, New Jersey State, and Pennsylvania State 
in this section. The reasons that these other three 
states have been chosen are: 1) They are 
geographical neighbors to NYS; 2) In these three 
states, LD was present and incidence rates (per 
100,000 population) at county level have been 
recorded roughly over same period as the 
NYSLD data.  

In the following section, descriptions are 
first given to the LD data for the three 
‘neighboring’ states to NYS. The geographic 
relations of the three states to NYS are displayed 
in Figure 4. The time period from which the data 
for each state were available and the number of 
counties per state are summarized in Table 2. 
The results from the tests are also given. 
 
LD data of Connecticut, New Jersey, and 
Pennsylvania 
 The time period during which yearly LD 
counts and incidence rates were available at the 
county level for all eight counties in Connecticut 
State was from 1991 to 2002, for all 21 counties 
in New Jersey State was from 1990 to 2000, and  
 

 
 
for all 67 counties in Pennsylvania State was 
from 1990 to 2001 (Table 2).  
 
Test results of LD data for the four states 

 The relationships between county 

sample mean, ,Y  and its sample variance- 

mean ratio, 2 / ,S Y  for New York, Connecticut, 
New Jersey, and Pennsylvania are displayed  
in Figure 5a-d. The relationship between log-

sample mean, log ,Y and log-sample 

variance, 2log ,S for the four states are displayed 
in Figure 6a-d. The results of the test TL for each 
of the four states are summarized in Table 3. 
Note that the TL test is developed under the 
assumption that j observations of Yi  
are identical independent distributions, which is 
not the case in the NYSLD data. Figure 7 shows 
the LD incidence curves of each county over the 
years from 1990 to 2000, with a small map of 
NYS to indicate geographic locations of the 
counties. For example,  
 

1. Westchester County’s incidence rate, the 
green curve, was high in 1990, but 
decreased over time.  

Table 1. Percentage rejections of H0: Yi ~ Poisson (μi) 

 
 

For nominal  alpha = 1%

sample size percentage of reject H0 (95%CI)

T S T L T F

5 12.4(11.6, 13.2) 1.2(0.4, 2.0) 0.2(0.0, 1.0)
11 12.0(11.2, 12.8) 1.4(0.0, 1.4) 0.8(0.0, 1.6)
50 13.2(12.4, 14.0) 0.6(0.0, 1.4) 0.6(0.0, 1.4)

100 13.6(12.8, 14.4) 0.6(0.0, 1.4) 1.0(0.2, 1.8)

For nominal  alpha = 5%

sample size percentage of reject H0 (95%CI)

T S T L T F

5 18.4(16.4, 20.4) 6.6(4.6, 8.6) 2.6(0.6, 4.6)
11 20.0(18.0, 22.0) 6.0(2.4, 6.4) 5.0(3.0, 7.0)
50 20.0(18.0, 22.0) 4.4(2.4, 6.4) 5.2(3.2, 7.2)

100 22.2(20.2, 24.2) 4.4(2.4, 6.4) 5.0(3.0, 7.0)
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2. Putnam County’s, the pink curve, was 
high in 1990, increased from 1990 to 
1996,  
and has decreased since then.  

3. Dutchess County’s, the blue curve, was 
high in 1990 and kept increasing over 
time.  

4. Columbia County’s, the red curve, was 
very low in 1990 and then gradually 
increased from 1990 to 1995. It has 
increased very rapidly since 1996. In 
2000, Columbia County had the highest 
LD incidence rate in the United States 
(CDC, 2002).  

5. Rensselaer County’s, the black curve, 
was low in 1990 and stayed the same till 
1998. Then it increased slightly from 
1998 to 2000. 
 

The finding above indicated that LD 
occurrence in some of the NYS counties had 
strong time trends. To adjust for this violation to 
the independence assumption, the TL test is also 
applied to the partial NYSLD data after taking 
out counties having significant time trends. 
Figure 8a displays the relationships between 

county sample mean, ,Y and its sample variance-

mean ratio, 2 / ,S Y  and Figure 8b displays the 
relationship between log-sample 

mean, log ,Y and log-sample variance, 2log ,S  for 
the partial NYSLD data. The result of the test TL 
for it is summarized in the row NY_p of Table 3. 

Note that in Figure 5a-d, 6a-d, and 8a-b, 
the same axis scales are used for plots displaying 

relationship between Y and 2 / ,S Y  so are for 

plots displaying relationships between Ylog and 
2log ,S  for convenience of comparisons.  

The scatter plots in Figure 5a-d and 
Figure 6a-d show that the relation between 

2log S and Ylog has a much clearer linear form 

than the relation between YS /2 and Y for all the 
four states. In contrast to Figure 5a and Figure 
6a for the entire NYSLD data, Figure 8a and b 
show that NYS counties with significant time 
trends tend to have larger LD counts and sample 
variances than those without time trends. 
 The facts that p-values of TL were close 
to zero and 95% Confidence Interval (95%CI) of 

β1 did not include one for the data from all the 
four states and for the partial NYSLD data give 
strong evidence of over-dispersion to Poisson. 
The p-value of TL for Connecticut was less than 
0.05 but greater than 0.01. This may be caused 
by larger variation due to the fewer number of 
observations. The consistent test results of β1 for 
both the entire and the partial NYSLD data 
indicate that the TL test is robust to time trend in 
Poisson data. Note that the values of β1 for New 
York, Connecticut, and New Jersey are very 
close to each other (ranging from 1.26 to 1.72). 
 

Conclusion 
 

In this paper, two simple, easy to implement 
tests (TS and TL) are proposed for assessment of 
simultaneous over-dispersion of a group of 
random variables to the Poisson model. These 
tests specify a relationship between the mean 
and variance. However, they do not require 
specification of the distribution under the 
alternative. The tests are easy to implement: the 
TS  is computed as the t-test from an WLS 
regression, and the TL from an OLS regression. 
In this sense, the two tests can be given the name 
‘regression-based’ tests.  

Simulation experiments implemented in 
samples of small (5), moderate (11 and 50), and 
large (100) sizes shows that the empirical test 
size matches the nominal size well for TL, but is 
unacceptably liberal for TS for all experimented 
sample sizes, which suggests the log-
transformation makes TL less possible to break 
assumptions of linear regression. It is noted that 
the reference test TF has unfit empirical test size 
when sample size is small but performs fine with 
moderate or bigger sample sizes. This may be 
due to the fact that the Fisher statistic is strictly 
correct for continuous variables, which becomes 
more realistic for Poisson as the sample size N 
increases. The power simulation experiments 
performed on TL and TF treat power as a function 
of dispersion parameter of alternative 
distributions. The empirical comparisons of 
power curves suggest that although both tests 
have adequate power even for small sample size, 
the power characteristic of TL empirically 
superior to TF in terms of sensitivity to degree of 
over-dispersion. This is especially true when 
over-dispersion is moderate. 
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a. sample size = 5                                                        b. sample size = 11 

 
 
c. sample size = 50                                                    d. sample size = 100 
 

 
(Notes: 1. x-axis is ν and y-axis is the percentage of reject H0 for plots a-d. 

2. TL1 = TL for α =0.01; TF1 = TF for α =0.01; TL5 = TL for α =0.05; TF5 = TF for α =0.05.) 
 

Figure 2. The empirical power curve of TL, and TF under alternative hypothesis H1: 
Yi ~ NB 
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a. sample size = 5                                                        b. sample size = 11 

 
c. sample size = 50                                                    d. sample size = 100 

 
 
(notes: 1. x-axis is ω and y-axis is the percentage of reject H0 for plots a-d.  
           2. TL1 = TL for α =0.01; TF1 = TF for α =0.01; TL5 = TL for α =0.05; TF5 = TF for α =0.05.) 

 
Figure 3. The empirical power curve of TL, and TF under alternative hypothesis H1: 

Yi ~ ZIP 
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The most commonly used probability 
models for discrete data are binomial (Bin), 
Poisson (Pois), and Negative Binomial (NB) 
(series 1) and their corresponding zero-inflated 
models: zero-inflated binomial (ZIBin), zero-
inflated Poisson(ZIP), and zero-inflated 
Negative Binomial (ZINB) (series 2). Each of 
them has different flexibility to model over-
dispersion to Poisson. Table 4 summarizes their 
variance-mean relationships (VMR) and relative 
over/under dispersion to Poisson. 

Table 4 reveals that the Bin probability 
model only allows under-dispersion to Poisson, 
while the ZIP, NB, and ZINB probability models 
only allow over-dispersion to Poisson. Among 
these six probability models, ZIBin is the most 
flexible model. It allows all the three situations 
(under-dispersion, over-dispersion, and none) 
based on different relative values of ω and n. 

On the other hand, after we assess the 
over or under-dispersion of a data set using the 
test TL, different choices of probability models 
can be recommended based on different 
estimated values of β1 (Table 5). For example, if 
a test result indicates that the estimated β1 is 
statistically significantly greater than one (β1 > 
1), probability models that allows over- 
 

 

 
 
 
dispersion will be recommended such as ZIBin, 
ZIP, NB, or ZINB. 

Although the motivation and essential 
theory of these tests exploits only the equality 
between mean and variance, this approach can 
be extended to tests of other relationships 
between mean and variance.  

Equal observation points (N) for each 
variable are assumed in this study. Future 
research can be done by studying a group of 
variables with unequal observation points (i.e., I 
independent variables, each with Ni observation 
points). In this paper, when the linear regression 
is applied to mean and variance-mean ratio, a 
common regression coefficient (β1) is assumed 
for the group of variables. In the future research, 
individual regression coefficient (β1i) can be 
given to each variable and Bayesian approaches 
can be used to estimate the parameters of 
interest. 

Applications of the TL test to the NYSLD 
and the LD data for Connecticut, New Jersey, 
and Pennsylvania suggest that the Poisson model 
is not statistically consistent with these count 
data and a natural alternative is the Negative 
binomial model. The fact that the values of β1 
for New York, Connecticut, and New Jersey are 
close to each other (ranging from 1.26 to 1.72)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Geographic location of the four states 
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Table 2. Summary of time periods and locations studied 
 

 
 

Table 3. Summary of the tests TL on LD data for the four states 
 

 
 

Table 4. Variance-mean relationships of six commonly used probability models 
for discrete data and their relative over/under-dispersion to Poisson 

 
 

 
* The over or under-dispersion to Poisson is dependent on the relative values between ω and n: if ω > 
1/ n, then this model is over-dispersion to Poisson; if ω = 1/ n, then this model is neither over nor 
under-dispersion to Poisson; if ω > 1/ n, then this model is under-dispersion to Poisson. 
 

      
 

NY CT NJ PA

Starting year 1990 1991 1990 1990
Ending year 2000 2002 2000 2001
No. year 11 12 11 12
No.county 57 8 21 67

State TL

beta_1(95%CI) p-value

NY 1.70 (1.61, 1.79) 0.00

NY_p 1.34 (1.16, 1.51) 0.00

CT 1.72 (1.22, 3.23) 0.03

NJ 1.72 (1.40, 2.05) 0.00

PA 1.26 (1.10, 1.43) 0.00

series 1 Variance-Mean Relation dispersion

Bin under

Pois none

NB over

series 2 Variance-Mean Relation dispersion

ZIBin dependent*

ZIP over

ZINB over
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a. New York   
b. Connecticut 

 
c. New Jersey       d. Pennsylvania 

 

Figure 5. Scatter plots of YS /2 vs. Y for the four states 

(note: x-axis is Y and y-axis is YS /2  for plots a-d.) 
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a. New York       b. Connecticut 

 
c. New Jersey       d. Pennsylvania 

 

Figure 6. Scatter plots of 2log S vs. Ylog for the four states 

(note: x-axis is Ylog and y-axis is 2log S  for plots a-d.) 
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Figure 7. Fifty-seven NYS county annual incidence rates from 1990 to 2000 

 
 
 
 
 

 
 Figure 8a. Scatter plots of YS /2  

vs. Y for the partial NYS 

Figure 8b. Scatter plots of 2log S  

vs. Ylog for the partial NYS 
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may suggest a general pattern of LD existing in 
the studied geographic area.  

Results from the NYSLD data suggested 
that the new test statistic TL seems robust to data 
with time trend in Poisson model. This is 
probably related to the fact that sums involved in 
the averages of individual Poissons are also 
Poissons. However, more systematic studies are 
needed before making any determinant 
conclusions.  
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Table 5. Recommended probability models based on estimated coefficient 
for regression of log-sample variance on log-sample mean 

  
 

est. Beta1 suggested models     
 Bin ZIBin Pois ZIP NB ZINB 

> 1  +  + + + 

1  + +    

< 1 + +     
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