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Measuring Overall Heterogeneity in Meta-Analyses: 
Application to CSF Biomarker Studies in Alzheimer’s Disease 

 
Chengjie Xiong1, Feng Gao1, Yan Yan1,2, Jingqin Luo1, YunJu Sung1,  & Gang Shi1 

Washington University in St. Louis 
 

 
The interpretations of statistical inferences from meta-analyses depend on the degree of heterogeneity in 
the meta-analyses. Several new indices of heterogeneity in meta-analyses are proposed, and assessed the 
variation/difference of these indices through a large simulation study. The proposed methods are applied 
to biomakers of Alzheimer’s disease. 

Keywords: Alzheimer’s disease, heterogeneity, meta-analysis, standard errors, uncertainty interval. 

 
 

Introduction 
 
Medical practitioners and their patients make 
decisions within the context of a rapidly 
changing body of scientific evidence on 
medicine and health care system that influence 
the availability, accessibility, and cost of 
diagnostic tests and therapies (Sackett & 
Haynes, 1995). 

Timely, useful evidence from the 
biomedical literature should be an integral 
component of clinical and medical decision 
making. The importance of basing medical 
practice more firmly on the results of existing 
scientific evidence through systematic reviews 
was starkly demonstrated by a paper in the early 
1990s (Antman, Kupelnick, Mosteller, & 
Chalmers, 1992), which compared the results of 
meta-analyses of trials of treatments for people 
who have suffered a heart attack as the trials 
were published with the recommendations of 
experts published in review articles and 
textbooks over the same time period. 
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This showed a significant divergence between 
expert recommendations and the summaries of 
the trials. 

Ineffective treatments were being 
recommended, and highly effective treatments 
were not. As a result, lives that could have been 
saved were lost, and resources were wasted.  
Systematic reviews can be very useful medical 
decision-making tools by objectively 
summarizing large amounts of information, 
identifying gaps in medical research and 
evidence, and identifying beneficial or harmful 

interventions. Clinicians can use systematic 
reviews to guide their patient care. Consumers 
and patients can use systematic reviews to help 
them make health care decisions. Policymakers 
can use systematic reviews to help them make 
decisions about the types of health care to 
provide.  

Systematic reviews can provide 
convincing and reliable evidence relevant to 
many aspects of medical and biological research 
and health care (Egger & Smith, 1997), 
especially when the results of individual studies 
they include show clinically important effects of 
comparable magnitude. Such reviews aim to 
comprehensively identify and assess all studies 
relevant to a given scientific question, and meta-
analysis has been the major statistical 
methodology for the quantitative synthesis of 
study results. Many methods for meta-analysis 
are available, and the most popularly applied in 
the medical research focus on the optimum 
combination of published summary statistics in 
some form of weighted averages (DerSimonian 
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& Laird, 1986; Egger, Smith, & Phillips, 1997; 
& Whitehead & Whitehead, 1991). 

Usually, each study is given a weight 
according to the precision of its results on 
summary statistics. Studies with good precisions 
are weighted more heavily than studies with 
greater uncertainty. The variance for the overall 
estimate of the parameter under study in meta-
analyses is in general from two different 
sources, one is associated with the individual 
studies (i.e., the within-study variance), and the 
other is associated with the possible difference 
between different studies (i.e., between-study 
variance). When the between-study variance is 
assumed to be 0, each study is simply weighted 
according to its own variance. This approach 
characterizes a fixed effects model which is 
exemplified by the Mantel-Haenszel method 
(Mantel & Haenszel, 1959) or the Peto method 
(Yusuf, Peto, Lewis, Collins, & Sleight, 1985). 

When the between-study variance is not 
zero, methods which incorporate a between-
study component of variation for the overall 
effect under estimation are based on random 
effects models (Laird, & Mosteller, 1990). The 
between-study variance represents the excessive 
variation in observed individual study effects 
over that expected from the imprecision of 
results within each study. Fixed effects and 
random effects model for general continuous 
outcome and specific survival outcomes have 
also been described in Hedges and Olkin (1985), 
Earle & Wells (2000), Parmar, Torri, & Stewart, 
(1998) and Srinivasan & Zhou (1993). 

When individual studies used in a meta-
analysis have very differing results, however, 
the results from systematic reviews may be less 
convincing and reliable. In an attempt to 
establish whether study results are consistent, 
reports on meta-analysis commonly present a 
statistical test of heterogeneity among studies 
used in a meta-analysis. This test seeks to 
determine whether there are genuine differences 
underlying the results of the studies, or whether 
the variation in these results is compatible with 
chance alone (i.e., homogeneity). A common 
statistical test used for this purpose is the 
Cochran’s Chi-squared test or the Q-test 
(Whitehead & Whitehead, 1991; Cochran, 
1954). It has been widely realized, however, that 
this test has poor power when the number of 

studies in a meta-analysis is small, and excessive 
power to detect clinically insignificant 
heterogeneity when there are too many studies 
(Higgins & Thompson, 2002).  

Addressing statistical heterogeneity of 
studies is one of the most fundamental aspects of 
many systematic reviews. The interpretative 
aspects of statistical inferences from a meta-
analysis depend on the degree of heterogeneity 
of the studies used in the meta-analysis. Because 
the heterogeneity may determine the extent to 
which the conclusions of a meta-analysis can be 
generalized, it is important to quantify the extent 
of heterogeneity among a collection of studies. 
Realizing the potential limitations of a statistical 
test to characterize the degree of heterogeneity 
in a meta-analysis, Higgins and Thompson 
(2002) proposed a new measure of the extent of 
heterogeneity in a meta-analysis that overcomes 
the shortcomings of existing measures. 

Their focus is on the impact of 
heterogeneity on the results of a meta-analysis 
and therefore, on the degree to which conclusion 
might be generalized to situations outside those 
investigated in the studies at hand. Their 
measure is easily interpretable by non-
statisticians as the proportion of variation that 
was explained by the difference among studies. 
Further, the measure does not intrinsically 
depend on the number of studies or the type of 
outcome data, therefore offering the possibility 
that statistical heterogeneity can be compared 
across different meta-analyses with differing 
number of studies and types of outcome data.  

In this article, several new indices are 
proposed that measure the heterogeneity from 
studies used in a meta-analysis. The proposed 
methodology can be regarded as a generalization 
of the index of heterogeneity proposed by 
Higgins and Thompson (2002). The difference 
among the proposed measures of heterogeneity 
are examined, along with the variation of each 
proposed measure when a large number of 
simulated meta-analyses are conducted. The 
proposed methodology is demonstrated by 
presenting an example to study possible 
cerebrospinal fluid (CSF) biomakers that could 
be used to identify subjects with high risk of 
developing Alzheimer’s disease (AD) when they 
are still cognitively normal.  
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Indices of overall heterogeneity in a meta-
analysis 

Assume that a total of k studies are used 
in a meta-analysis to address a scientific 

question as represented by parameterθ . Let iθ̂  

be the estimate from the  i-th study and 2ˆ iσ be 

the associated estimated variance which is 

assumed to be known. Let 2ˆ/1 iiw σ=  denote 

the precision of the estimate. In a classic fixed 
effect meta-analysis, iθ ’s are assumed identical 

and a summary estimate, θ̂ ,  is computed to the 
common parameter as a weighted average of the 
study specific estimates, using the precisions as 
weights: 
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A random effects meta-analysis can be 
conceptualized by incorporating a random effect 
to account for the between-study 

variation, ),0( 2τN , into the estimated study-
specific parameters, in addition to the within-

study random variation, ),0( 2
iN σ . The 

summary estimate to the mean parameter across 

the distribution of the studies, rθ̂ , has exactly 
the same form as above, but with weights 
replaced by 
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The estimated variance of the summary estimate 
is now given by  
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A test of homogeneity of the iθ ’s is given by  
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which has a Chi-squared distribution with k-1 
degrees of freedom under the assumption of 
homogeneity within the fixed effects model.  
Within the framework of the random effect 

model, a method of moment estimate to 2τ  can 
also be obtained as  
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Higgins and Thompson (2002) proposed a 
simple index to quantify the overall 
heterogeneity among studies in a meta-analysis: 
 

22

2
2

στ
τ
+

=I , 

 

where 2σ  is the shared within-study variance 
among individual studies, or when the studies 
have differing within-study variations, the 
typical within-study variance  in the term of 
Higgins and Thompson (2002). This intuitive 
definition of the heterogeneity has several major 
advantages as compared to the standard 
statistical test based on Q. First, the definition of 

2I  depends on the study specific estimates and 
is therefore based on the impact rather than the 
extent of heterogeneity in a meta-analysis. 
Second, the measure does not inherently depend 
on the number of studies in the meta-analysis. 
Third, the measure is not specific to a particular 
metric of treatment effect and therefore can be 
applied similarly irrespective of the type of 
outcome variables (e.g., dichotomous, 
continuous, and survival). Fourth, the measure is 
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easy to compute and has a very appealing 
interpretation as the percentage of the total 
variation across studies due to heterogeneity.  

The estimation of overall heterogeneity 
among studies in a meta-analysis requires the 
estimate to both the between-study variation and 
the typical within-study variance. For the latter, 
Higgins and Thompson (2002) used the 
following estimator 
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This, along with the method of moment 

estimator 2τ̂ , results in the index of overall 
heterogeneity 
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Higgins and Thompson’s (2002) intuitive 
conceptualization of the measure of 
heterogeneity is followed, and several new 
measures of heterogeneity are proposed. First, as 
pointed out by Takkouche et al. (Takkouche, 
Cadarso Surez, & Spiegelman, 1999), the typical 

within-study variance 2σ  can also be estimated 
by taking the reciprocal of the arithmetic mean 
weights: 
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Combine this with the method of moment 

estimator 2τ̂  in Equation (1) to obtain another 
index of overall heterogeneity 
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Another straightforward estimator to the typical 

within-study variance 2σ  can be obtained by 
simply averaging the within-study variances 
from all studies: 
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which, again along with the method of moment 

estimator 2τ̂  in Equation (1), results in another 
index of overall heterogeneity 
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These proposed indices of heterogeneity are set 
to 0 if )1( −≤ kQ . By Schwartz’s inequality 
(Nobel & Daniel, 1977), 
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It then follows that  
 

22
TS II ≤  

 
and  
 

22
THT II ≤ . 

 
Notice that for all these indices of overall 
heterogeneity, although they have different 
denominators, they share the same numerator, 
which is )1( −− kQ . If all within-study 
variations are exactly the same, 

then 222
STHT III == .  Notice that the 

denominator of all these proposed overall 
measures of heterogeneity is the unconditional 
variance of the estimated effect from a typical 
study in the meta-analysis, which contains 
additive components due to the within-study 
variance (i.e., from between-patient variation 
within a study) and the between-study variation 
(i.e., heterogeneity).  
 
Variation of the proposed overall measures of 
heterogeneity 

Higgins and Thompson (2002) proposed 
several ways of estimating the variation 

associated with 
2

HTI . They recommended the 
use of an uncertainty interval based on the 
statistical significance of Q due to the 
appropriate nominal coverage in their simulation 
studies. Because the other measures of overall 
heterogeneity we proposed here also depend on 
Q, we use similar test-based methods (Miettinen, 
1976) to estimate the variability associated with 

2
TI  and 

2
SI  as well. More specifically, let 

 

322 −−= kQZ . 

 
Based on a well known normal approximation to 
Chi-squared distributions (Abramowitz & 
Stegun, 1965), when the degrees of freedom are 
large, Z follows approximately a standard 

normal distribution. Therefore, if )ln(Q is 
assumed a normal distribution, by equating 

Z with 
))(ln(

)1ln()ln(

QSE

kQ −−
, one can approximate 

the standard error of ln(Q) by 
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This then results in a 95% uncertainty interval to 

2
TI  as ],[ 2

2
2
1 TT II , where 
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Similarly, a 95% uncertainty interval to 
2

SI  is 

],[ 2
2

2
1 SS II , where 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



XIONG, GAO, YAN, LUO, SUNG, & SHI 
 

291 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Comparison of the proposed overall indices of 
heterogeneity 

Although mathematically, 22
TS II ≤ , 

22
THT II ≤ , it is important to understand how 

different these measures are when they are used 
to measure the overall heterogeneity in a meta-
analysis and how much variation each index has 
when a large number of meta-analyses are 
conducted. Given the fact that when all studies 
have exactly the same degree of within-study 
variation, i.e., when all iw ’s are the same, these 

measures are identical to each other, we 
anticipate that these measures will be close to 
each other when the difference among within-
study variations is relatively small.  

A simulation study is performed to look 
at the performance of our proposed measures of 
overall and study-specific heterogeneity. We 
first examined the distributions and consistency 
of three different measures of overall 

heterogeneity, 2
SI , 2

TI , and 2
HTI , over a large 

number of simulated meta-analyses. Assume 

that the between-study variance is 42 =τ . The 
number of studies in each simulated meta- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analysis is 13 += sk  for s = 2, 4, 8, and 12. 
In each simulated meta-analysis, three different 
within-study variances are assumed such that the 
precision iw  is either 0.5+v, or 0.5+2v, or 

0.5+3v for a range of v. More specifically, 
among 13 += sk  studies in the meta-analysis, 
s+1 studies have within-study precision 0.5+v, 
and the other 2s studies are equally distributed 
with study precision 0.5+2v and 0.5+3v. A 
random effect model was used to generate the 
study-specific estimates such that the between-
study component was generated from the normal 
distribution )4,5(N through a linear 
transformation of the SAS Institute function 
RANNOR (SAS, 1999). One thousand 
independent simulated meta-analyses were 
performed such that study specific estimates 
from each individual simulation were 
independently generated. Table 1 presents the 
mean and the associated standard error for the 
three proposed measures of overall 
heterogeneity over 1000 simulated meta-
analyses as a function of k and v (notice that 
parameter v here indicates a measure of 
difference among the study precisions). 
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From the simulated meta-analyses, it is 
clear that three different measures of overall 
heterogeneity are very consistent. In fact, under 
the assumption that the three measures of 
heterogeneity are estimating the same 
underlying trait of heterogeneity, the intraclass 
correlation coefficient (ICC) (Shrout & Fleiss, 
1979) was computed over 1,000 simulated meta-
analyses for each choice of k and v. All these 
computed ICCs were at least 0.99, indicating 
extremely high consistency among these 
measures.  
 
Application to biomarker studies in Alzheimer ’s 
disease 

An application to the proposed overall 
measures of heterogeneity is presented to study 
possible biomakers that can be used to identify 
subjects with high risk of developing 
Alzheimer’s disease (AD) when they are still 
cognitively normal. Researchers in Alzheimer’s 
disease have identified Apolipoprotein E4 
(ApoE4) alleles as a crucial genetic risk factor of 
AD (Myers, Schaefer, Wilson, et al., 1996). 
Although the pathological hallmarks of AD are 
the neurofibrillary tangles and the senile plaques 
in the brain (Braak & Braak, 1991, McKell, 
Price, Miller, Grant, Xiong, Berg, & Morris, 
2004), the diagnosis of AD in living patients is 
still largely a clinical judgment based on careful 
neurological and/or neuropsychological 
examinations combined with results from other 
clinical tests.  

Therefore, the search for biomarkers 
that could be used to diagnose AD from normal 
aging has been one of the primary research 
activities in AD. In several publications (Fagan, 
Roe, Xiong, et al., 2007, Sunderland, Linker, 
Mirza, et al., 2003), subjects with AD have been 
found to have decreased level of cerebrospinal 
fluid (CSF) β -amyloid 42  as compared to 
subjects with normal aging. Because AD is a 
progressive neurodegenerative disorder that 
leads to the death of brain cells that cannot be 
replaced once lost, it is important to assess the 
potential of these biomarkers to identify subjects 
that are at high risk of AD while they are still 
cognitively normal. The importance of such 
biomarkers is further highlighted by the fact that 
no pharmaceutical treatments are effective for 

the disease’s later stages.  Thus, whether CSF 
β -amyloid 42  is decreased among subjects of 
normal aging who are ApoE4 positive as 
compared to these who are ApoE4 negative is 
studied. 

Although many publications have 
compared CSF β -amyloid 42  level between 
subjects with AD and these with normal aging 
(Fagan, Roe, Xiong, et al., 2007, Sunderland, 
Linker, Mirza et al., 2003), very few have 
actually reported CSF β -amyloid 42  as a 
function of ApoE4 status among subjects who 
were still cognitively normal. As a matter of 
fact, our comprehensive MEDLINE search 
identified a total of 6 published studies on CSF 
β -amyloid 42  during the period of 1990 to 2007 
which actually reported summary statistics as a 
function of ApoE4 status for subjects who were 
not demented (Prince, Zetterberg, Andreasen, et 
al. 2004, Sunderland, Mirza, Putnam, et al., 
2004, Jensen, Schroder, Blomberg et al., 1999, 
Andreasen, Hesse, Davidson et al., 1999, 
Tapiola, Pirtitla, Mehta, et al., 2000, 
Riemenschneider, Schmolke, Lautenschalager, 
et al, 2000). The summary statistics reported 
from these six published studies are presented in 
Table 2 (summary statistics from study by 
Prince, Zetterberg, Andreasen, et al., 2004) was 
obtained through eye-balling because only a 
graphical presentation on summary statistics was 
available in the publication). 

Based on the proposed methodology and 
a random effect model, the pooled estimate to 
the mean difference of CSF β -amyloid 42  
between subjects of normal aging who are 
ApoE4 positive and subjects who are ApoE4 
negative is -31.69 pg/mL, and an asymptotic 
95% confidence interval estimate to the mean 
difference of CSF  β -amyloid 42  is from -
128.93 pg/mL to 65.56 pg/mL. The observed 
significance level for the observed mean 
difference is 0.407. The measures of overall 
heterogeneity from this meta-analysis are 

estimated as   =2
HTI 0.56,  =2

TI 0.66,   and 

=2
SI 0.20, respectively, indicating from low to 

moderate degree of heterogeneity among studies 
used in the meta-analysis (Higgins, Thompson, 
Deeks et al., 2003). Further, an estimated 95% 
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Table 1. Three Measures of Overall Heterogeneity from 1000 Simulated Meta-analyses 
(k = the number of studies in meta-analyses, 

(0.5+v, 0.5+2v, 0.5+3v) = the three within-study precisions) 
 

k v Mean 2
HTI (SE) (%) Mean 2

TI  (SE) (%) Mean 2
SI  (SE) (%) 

7 0 39.29 (0.85) 39.29 (0.85) 39.29 (0.85) 

7 0.5 73.83 (0.58) 74.06 (0.57) 72.68 (0.58) 

7 1.0 83.73 (0.45) 83.97 (0.45) 82.46 (0.46) 

7 1.5 88.48 (0.31) 88.70 (0.30) 87.28 (0.32) 

7 2.0 90.17 (0.29) 90.38 (0.29) 89.04 (0.31) 

13 0 43.04 (0.66) 43.04 (0.66) 43.04 (0.66) 

13 0.5 79.33 (0.34) 79.43 (0.34) 78.14 (0.35) 

13 1.0 87.27 (0.19) 87.37 (0.19) 85.99 (0.21) 

13 1.5 90.80 (0.15) 90.89 (0.15) 89.65 (0.16) 

13 2.0 92.56 (0.14) 92.64 (0.14) 91.53 (0.15) 

25 0.0 46.16 (0.50) 46.16 (0.50) 46.16 (0.50) 

25 0.5 81.25 (0.18) 81.30 (0.18) 80.05 (0.19) 

25 1.0 88.62 (0.13) 88.66 (0.12) 87.40 (0.14) 

25 1.5 91.89 90.08) 91.93 (0.08) 90.81 (0.09) 

25 2.0 93.69 (0.07) 93.73 (0.07) 92.76 (0.08) 

37 0.0 47.41 (0.39) 47.41 (0.39) 47.41 (0.39) 

37 0.5 81.88 (0.15) 91.91 (0.15) 80.69 (0.16) 

37 1.0 89.22 (0.09) 89.25 (0.09) 88.03 (0.10) 

37 1.5 92.16 (0.07) 92.18 (0.07) 91.10 (0.08) 

37 2.0 93.94 (0.05) 93.96 (0.05) 93.03 (0.06) 
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uncertainty interval for 2
HTI  is from 0.00 to  

0.82, an estimated 95% uncertainty interval for 
2
TI  is from 0.00 to 0.88, and an estimated 

uncertainty interval for 2
SI  is from 0.00 to 0.48 

(the uncertainty intervals were truncated to 0 
when the left limits were negative as similarly 
recommended in Higgins & Thompson, 2002). 

If the heterogeneity is ignored in the 
meta-analysis, i.e., the between-study variance 

2τ  is treated as 0 (therefore 

=2
HTI =2

TI =2
SI 0), then a fixed effect model 

would be used for the meta-analysis. The 
estimated overall mean difference of CSF β -

amyloid 42  between subjects of normal aging 
who are ApoE4 positive and subjects who are 
ApoE4 negative under the fixed effect model is -
45.35 pg/mL. An asymptotic 95% confidence 
interval estimate to the mean difference of CSF 
β -amyloid 42  under the fixed effect model is 
from -74.89 pg/mL to -15.82 pg/mL, suggesting 
a statistically significant difference at a 5% 
significance level on CSF β -amyloid 42  between 
subjects of normal aging who are ApoE4 
positive and subjects who are ApoE4 negative. 
This discrepancy on the statistical inference 
between the two approaches that either take into 

 
 
 
account of heterogeneity (i.e., random effect 
models) or ignore the heterogeneity (i.e., fixed 
effect models) further highlights the importance 
to assess the heterogeneity in meta-analyses.  
 

Conclusion 
 
We proposed several new indices that measure 
the overall heterogeneity among studies used in 
a meta-analysis. By estimating the typical 
within-study precisions, we developed indices 
that measure the degree of heterogeneity among 
studies by their impact to the overall conclusion 
of the meta-analysis. The proposed methodology 
can be regarded as a generalization of the index 
of heterogeneity proposed by Higgins and 
Thompson (2004). We assessed the variation 
associated with each proposed index of 
heterogeneity through a large simulation study 
of 1000 meta-analyses for a range of relevant 
parameters. We also examined the difference 
among the proposed overall measures of 
heterogeneity when a large number of meta-
analyses were conducted. We found that these 
different indices provided highly consistent 
results in measuring the overall heterogeneity in 
meta-analyses. Finally, we demonstrated our 
proposed methodology by presenting an 
example to study possible biomakers that could 

Table 2. Reported Summary Statistics from Six Studies on CSF β -amyloid 42  (in pg/mL) as a 
Function of ApoE4 Genotype 

 
(Author  =  the first author of the study, Year = the year of the publication, 

=+n  the sample size of subjects who are ApoE4 positive, 

=−n  the sample size of subjects who are ApoE4 negative, 
Mean (SD)+  = mean (standard deviation) in subjects who are ApoE4 positive, 
Mean (SD)-  = mean (standard deviation) in subjects who are ApoE4 negative) 

 
Author Year 

+n / −n Mean (SD)+ Mean (SD)- 

Andreasen N 1999 8/13 1641.00 (587.00) 1702.00 (339.00) 
Jensen M 1999 4/20 365.72 (85.79) 329.60 (139.97) 
Tapiola T 2000 13/25 500.00 (211.00) 522.00 (136.00) 

Riemenschneide M 2000 3/15 914.67 (11.37) 860.00 (194.00) 
Sunderland T 2004 57/85 389.00 (108.00) 443.00 (109.00) 

Prince JA 2004 32/86 697.00 (228.00) 840.00 (185.00) 
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be used to identify subjects with high risk of 
developing Alzheimer’s disease (AD) when they 
are still cognitively normal. The inconsistent 
statistical inferences to this real world example 
based on statistical approaches with or without 
taking into account of heterogeneity highlight 
the crucial role heterogeneity plays in meta-
analyses. 
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