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When Sensitivity is a Function of Age and Time Spent in the 
Preclinical State in Periodic Cancer Screening 

 
        Dongfeng Wu   Ricolindo L. Cariño      Xiaoqin Wu 

      University of Louisville           Mississippi State University  
 
 

Probability models are extended for periodic cancer screening trials to model sensitivity when it is 
changing with an individual’s age and time spent in the preclinical state. Wu et al. (2005) showed that 
sensitivity is monotone increasing with age, but intuitively, sensitivity is also a function of the time one 
has spent in the preclinical stage. This allows us to infer sensitivity at a late stage, just before symptoms 
manifest. We developed the probability model and applied Bayesian inference to the HIP study group 
data. The methodology we developed is also applicable to other kinds of chronic diseases.   
 
Keywords: Periodic screening exam, breast cancer, sensitivity, sojourn time, transition probability, 
incidence. 
 
 

Introduction 
 
Early detection and treatment may be effective 
ways to decrease mortality rate from cancer. The 
primary technique for early detection is 
screening exams. According to a recent report of 
the National Institute of Health (NIH 2000), 
breast cancer is the most common form of 
cancer among women in the United States and 
the second leading cause of cancer deaths among 
women. In the past four decades, seven major 
randomized controlled breast cancer screening 
trials have been carried out in North America 
and Europe.  

In a screening program, a large group of 
asymptomatic individuals are enrolled in the 
program to detect the presence of a specific 
disease. The natural history of the disease for an 
individual is assumed to follow a progressive 
stochastic model, which consists of three states,  
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denoted by cp SSS →→0 , corresponding, 

respectively, to the disease-free state; the 
preclinical disease state, in which an 
asymptomatic individual unknowingly has 
disease that the screening exam can detect; and 
the clinical state when the disease manifests 
itself in clinical symptoms. The sensitivity is the 
probability that the screening exam is positive 
given that the individual is in the preclinical 
stage. 

The sojourn time refers to the time 
beginning when the disease first develops until 
the manifestation of clinical symptoms, that 
is )( pc SS − . The transition probability into the 

preclinical stage is the probability density 
function of making transition from the disease-
free to the preclinical state. Knowledge of the 
sensitivity of the screening modality is necessary 
for evaluating the predictive performance of a 
screening exam. The screening sensitivity may 
depend on a variety of factors, including age, 
position, location and size of the tumor, the 
experience of the radiologist, etc. For example, 
recent studies indicate that the sensitivity of 
mammography increases with age at diagnosis 
(Wu et al., 2005; Shapiro et al., 1988; Miller et 
al., 1992a, 1992b), attributable to the fact that 
breast tissue tends to be more dense and fibrous 
in younger women, and more soft and fatty in 
older women (Kerlikowske, et al., 1996).  
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In Walter and Day (1983), it was found 
that sensitivity is negatively correlated with the 
sojourn time, Intuitively, when the tumor cell is 
just formed, the sensitivity is very small, while 
at the late stage, that is, the preclinical stage 
comes to an end and the clinical stage will start 
soon, the sensitivity is close to one. In Wu, et al. 
(2005), the sensitivity was modeled as a function 
of age, while transition probability is age-
dependent as well. Previous result are extended 
by investigating changes in the sensitivity from 
simultaneous variation of age and time spent in 
the preclinical stage.  

 
The Model 
 Consider a cohort of initially 
asymptomatic individuals who enroll in a 
screening program. The sensitivity is denoted by 
β(t,s|T), where t is the individual’s age at the 
screening exam, s is the time duration that one 
has been stayed in the preclinical state, and T 
represents the sojourn time in the preclinical 
state. Define w(t)dt as the probability of a 
transition from S0 to Sp during (t, t+dt). Let q(t) 
be the probability density function of the sojourn 

time in Sp. Let ,)()( 
∞

=
z

dxxqzQ  that is, Q(z) 

is the survivor function of the sojourn time in the 
preclinical state Sp. Throughout this paper, the 
time variable t represents the participating 
individual’s age. If random variables T and S are 
the duration times in S0 and Sp respectively, then 
an individual will enter the clinical state Sc at 
age T+S, the probability density function of 
(T+S) is  

 −=
t

dxxtqxwtI
0

)()()( . 

I(t) is the observable incidence of clinical cases 
if no intervention exists.  

Consider a cohort of women in the study 
group who are all aged t0 at study entry, and a 
protocol for K ordered screening examinations 
occurring at ages ,110 −<<< Kttt  where 

itti += 0 for annual screening exams. Define 

the i-th screening interval as the time interval 
between the i-th and the (i+1)-th screening 
exams ),,( 1 ii tt −  i=1, 2,…, K-1.The i-th 

generation of individuals consists of those who 

enter Sp during this interval. The 0-th generation 
includes all who enter Sp before the initial 
screening exam, and we let .01 ≡−t   

For each screening exam, let 
0,tin  be the 

total number of individuals in this cohort 
examined at the i-th screening, 

0,tis  is the 

number of cases detected at the i-th screening 
exam, and 

0,tir is the number of cases diagnosed 

in the clinical state Sc within the 
interval ),( 1 ii tt − . The latter cases are called 

interval cases. 
Let 

0,tkD  be the probability that an 

individual will be diagnosed at the k-th 
scheduled exam (at which her age is 

101 −+=− kttk ) given that she is already in the 

preclinical state. The probability that an 
individual in pS is detected at the first scheduled 

exam (i.e. 1=k ) at age 0t is 

 

     
∞

−

−=
0

0

0

0

00,1 .)|,()()(
t

xt

t dtdxtxtttqxwD β  (1) 

 
The double integral in equation (1) 

arises because she must have entered the 
preclinical state pS  before 0t , remained in that 

state at least until 0t , and with the sensitivity 

changing with the sojourn time and the time 
spent in the preclinical stage, as well as with 
age.  
 Consider an i-th generation individual 
who was diagnosed at the k-th screening exam 

)1( ki <≤ . There are two possibilities: one is 

that she passed her previous )1( −− ik exams 
undetected and had a sojourn time of at least 

)( 1 xtk −− , where ),( 1 ii ttx −∈  is her onset of 

the preclinical state ;pS  the other possibility is 

that she entered pS in the (k-1)-th screening 

interval ),( 12 −− kk tt . Hence, the probability is  

 



WU, CARIÑO, & WU 
 

299 
 

0

1
1

1

2 1

,

22

, 1 1
0

1 1

( ) ( ) [1 ( | ) ( , | )

( ) ( ) ( , | ) ,

2, , .

i

k
i

k

k k

k t

t kk

j j k kt x
i j it

t

k k

t t x

D

w x q t t t x t t t x t dtdx

w x q t t t x t dtdx

for k K

β β

β

−
−

−

− −

−− ∞

− −−
= =

∞

− −
−

=

 
− − − 

 

+ −

∀ =

 ∏ 

 


 
             (2) 
 

Let 
0,tkI (t)dt be the probability that an 

individual enters the state cS at a small age 

interval ),,( dttt + where ),( 1 kk ttt −∈ . If this 

woman was in the i-th generation, i<k, then she 
must have gone through her previous (k-i) 
screening exams without being detected, and had 
a sojourn time (t-x), where x is her onset age of 
the preclinical state pS . Another possibility is 

that she may have entered pS after the k-th exam 

and incident at age t. Hence for ),,( 1 kk ttt −∈∀   

   

0

1

,
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i
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   (3) 

 
Therefore, for any ,,,1 Kk =  the probability 
of being incident in the k-th screening interval 

),( 1 kk tt −  is 

(4) 
 
The likelihood function for this cohort of women 
is 
 

, , , , , , ,0 0 0 0 0 0 0

0 0 0 0

0

, , , ,
1

( | )

(1 )k t k t k t k t k t k t k t

K
s r s r n s r

k t k t k t k t
k

L t

D I D I
− −

=

⋅ =

− −∏   

               (5) 
 

The full likelihood for the study group 
across all ages is 
 

   , , , , , , ,0 0 0 0 0 0 0

0 0 0 0

0

, , , ,
1

(1 )k t k t k t k t k t k t k t

K
s r s r n s r

k t k t k t k t
t k

L

D I D I
− −

=

=

− −∏∏  

                (6) 
 
The age effect and the time spent in the 
preclinical state were modeled in the sensitivity 
in the following way. The sensitivity is 
associated with age by a logistic link, and it is 
associated with the time spent in the preclinical 
state by a linear function. Let 
 

               

0 1

( , | )

1
,

1 exp( *( ))

t s T

s

b b t t T

β =

×
+ − − −

      (7) 

 
where t is an individual’s age at the screening 
exam, s is the time one has spent in the 
preclinical state, T is the sojourn time in the 
preclinical state, and t is the average age at 
entry in the whole study group. If 

)(,01 tb β> will be a monotone increasing 
function of age t. 

The transition probability density 
function w(t) is the instantaneous probability of 
a transition from S0 to Sp. The integral 


∞

0
)( dttw represents a lifetime risk for a healthy 

female to transit into the preclinical state. 
According to the NCI’s SEER database (Ries et 
al. 2002), a woman’s lifetime risk of being 
diagnosed with breast cancer is 15.7%, which is 
less than a woman’s lifetime risk of entering the 
preclinical disease state. 
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Hence, 20% is chosen as a reasonable 
upper bound.  
 

      }
2

)(log
exp{

2

2.0
)(

2

2

σ
μ

πσ
−−= t

t
tw        (8) 

 
which is the PDF of lognormal(μ, σ2) multiplied 
by 20%. Here, w(t) is a sub-density function, 
where μ and σ2 are parameters to be estimated.  

The log logistic distribution is adopted 
to model the sojourn time in the preclinical state, 
 

                 ,0,
])(1[

)(
2

1

>
+

=
−

x
x

x
xq κ

κκ

ρ
ρκ

        (9) 

 
where x is the sojourn time, and κ and ρ are 
positive parameters representing the scale and 
location in the log logistic family. An advantage 
of this family over the exponential is that it has 
two parameters and is more robust in the tails.  
 

Table 1. Bayesian posterior estimates for the HIP data 
Parameters  Median  Mean  S.E. 

0b   1.730  1.708  0.984 

1b   0.084  0.083  0.072 
μ  4.384  4.392  0.065 

2σ   0.235  0.253  0.095 
κ   1.744  2.126  1.004 
ρ  0.381  0.366  0.104 

                         _______________________________________________________________ 
 

Table 2.  Bayesian posterior estimates for the sensitivity β at the end of the preclinical state 
 

 Age  Median Mean  S.E. 
 40  0.644  0.628  0.215 
 45  0.736  0.716  0.178 
 50  0.829  0.789  0.150 
 55  0.886  0.841  0.129 
 60  0.917  0.877  0.115  
 65  0.940  0.899  0.109 

_____________________________________________ 
 

Table 3.  Bayesian posterior estimates for the transition probability wa . 
 

Age   Median  Mean  S.E. 
40  1.400  1.407  0.243 
45  1.734  1.738  0.210 
50  1.994  2.006  0.254 
55  2.171  2.193  0.335 
60  2.267  2.296  0.404 
65  2.286  2.322  0.441 

_____________________________________________________ 
a The unit is 310− . 
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Figure 1: Density Curve for the posterior samples. 
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Figure 2: Posterior quantiles (5%, 50%, and 95%) of sensitivity and transition probability. 
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Another advantage of this family is that its 
relatively simple form is achieved for the 
survivor function and the hazard function. Its 
first moment can be calculated directly from 

.csc)( 





=

κ
π

ρκ
π

XE  For the r-th moment to 

exist, r>κ is required. For justifications on 
how these age effect functions are chosen, see 
Wu, et al. (2005). 
 
Simulation Procedure and Results  

The analysis of the HIP study data is 
now described based on the likelihood function 
and probability calculation derived above. In the 
proposed model, there are six unknown 

parameters, that is, ).,,,,,( 2
10 ρκσμθ bb=  

Theoretically, the parameters have a domain of 
either ),( ∞−∞  or ),0( ∞ . The practical 
meaning of these parameters will limit them to a 
finite range. The range for each of them was 
identified as: 50 0 << b , 2.02.0 1 <<− b , 

5.45.3 << μ , 10 2 << σ , 0.21.0 << ρ , 

and 51 << κ . For justifications of these 
ranges, see Wu, et al. (2005). 

Markov Chain Monte Carlo (MCMC) 
was used to generate a random sample from the 
joint posterior distribution of the parameters for 
Bayesian inference. The posterior simulation 
was partitioned into four sub-chains, sampling 
the posterior for 

),(,,),,( 2
10 ρκσμbb separately. 

A noninformative bivariate normal prior 
for ),( 10 bb  was chosen, that is, a bivariate 

normal distribution with mean vector (0,0) and 

variance equal to 1010 times the identity matrix. 
A noninformative normal prior was chosen 

for μ , namely )10,0( 10N . The prior for 2σ was 
uniform (0, 1), and the prior distributions for κ 
and ρ were uniform (1, 5) and uniform (0, 2), 
respectively. The two-dimensional integrals in 
the likelihood function do not have an analytical 
form. The trapezoidal rule was used to evaluate 
them when calculating the likelihood.  

The MCMC was run for 4,800 steps, 
with a burn-in of 3,200 iterations. After the 
burn-in time, the posteriors were sampled every 
20 steps, giving 80 posterior samples for the 

parameter vector θ. Sixteen chains were 
simulated, each with different starting values 
that are over dispersed with respect to the target 
distribution. The two-dimensional integrals in 
the likelihood function are very time consuming. 
The chains were simulated in parallel on a Linux 
cluster, taking 192 hours to complete. The 80 
posterior samples from each of the 16 chains 
were pooled for the analysis, giving a total of 
1280 posterior samples.  

The Bayesian posterior estimates of θ 
for the HIP study data are shown in Table 1. 
Sensitivity at the end of the preclinical state 
appears to increase with age. If Ts → , that is, if 
the time spent in the preclinical state s converges 
to the sojourn time T, then the sensitivity in the 
late stage of the preclinical state can be 
estimated. This trend is obvious from the 
quantile plot of the saved posterior samples of 
the parameters in Figure 1. In the HIP data, the 
posterior mean sensitivity increases from 0.628 
to 0.899 from ages 40 to 65 years, and the 
posterior standard error drops from 0.215 to 
0.109. In fact, the posterior error of sensitivity 
was monotone decreasing as age increases. 

The age-dependent transition probability 
is itself a sub-pdf from our model construction. 
The posterior density curve of the transition 
probability could be seen from Figure 1. The 
posterior mean of the transition probability 

varies from 310407.1 −× to 310322.2 −× . The 
transition probability is not a monotone function 
of age; it has a single maximum at age 64. If the 
posterior means for the parameters κ and ρ were 
used, then the posterior mean sojourn time is 
4.06 years, with a mode of 1.70 years. 
 

Discussion 
 
The previous model in Wu, et al. (2005) is 
extended by adding one element in the 
sensitivity function, namely, the time spent in 
the preclinical state, with the sojourn time. 
Walter and Day (1983) found that the sensitivity 
and the sojourn time distribution were 
negatively correlated for a given incidence. Our 
modeling should be able to handle that problem, 
as our sensitivity was defined as a function of 
the sojourn time as well, and it was reciprocal to 
the sojourn time. More complicated models 
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could be explored, but the computation time will 
be greatly increased, and simulation would take 
too long to be finished. 
 The result was compared with Wu, et al. 
(2005). It was found that the late stage 
sensitivity was slightly higher, with a slightly 
smaller standard error. It was also found that the 
transition probability was changing less across 
different ages, with a slightly smaller standard 
error. However, the mean sojourn time is much 
longer than the previous result. 
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