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INVITED ARTICLES 
Estimating Explanatory Power in a Simple Regression Model Via Smoothers 

  
 

   
 

Rand R. Wilcox 
University of Southern California 

 
 

Consider the regression model ( )Y Xγ ε= + , where ( )Xγ  is some conditional measure of location 

associated with Y , given X . Let Ŷ  be some estimate of Y , given X , and let 2 ( )Yτ  be some measure 

of variation. Explanatory power is 2 2 2ˆ( ) / ( )Y Yη τ τ= . When 0 1( )X Xγ β β= +  and 2 ( )Yτ  is the 

variance of Y , 2 2η ρ= , where ρ  is Pearson's correlation. The small-sample properties of some 
methods for estimating a robust analog of explanatory power via smoothers is investigated. The robust 
version of a smoother proposed by Cleveland is found to be best in most cases.  
 
Key words: strength of association, smothers, effect size, robust methods and nonparametric regression. 
 
 

Introduction 
 
Consider the simple, nonparametric regression 
model  

( )Y Xγ ε= + , (1) 

where X  and ε  are independent random 
variables, and ( )Xγ  is some unknown function 
that represents some conditional measure of 
location associated with Y  given X . A 
fundamental goal is measuring the strength of 
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the association between Y  and X . Certainly 
the best-known approach is to assume 
  

0 1( )X Xγ β β= + ,  

estimate 0β  and 1β  via ordinary least squares, 

and then use 2ρ , where ρ  is Pearson's 
correlation. It is well known that Pearson's 
correlation is not robust (e.g., Wilcox, 2005) and 
can yield a highly misleading sense about the 
strength of the association among the bulk of the 
points. Yet another concern is the assumption 
that the regression line is straight. Situations are 
encountered where this assumption seems to be 
a reasonable approximation of reality, but 
experience with nonparametric regression 
methods (e.g. Efromovich, 1999; Eubank, 1999; 
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Fan & Gijbels, 1996; Fox, 2001; Green & 
Silverman, 1993; Gyofri et al., 2002; Hardle, 
1990; Hastie & Tibshirani, 1990), sometimes 
called smoothers, suggest that it is common to 
encounter situations where this is not the case.  

Let Ŷ  be some estimate of Y given X , 

and let 2 ( )Yτ  be some measure of variation 

associated with the marginal distribution of Y . 
Then a general approach to measuring the 
strength of the association between Y  and X , 
called explanatory power, is  

 
2

2
2

ˆ( )

( )

Y
Y

τη
τ

=  (2) 

 
(e.g., Doksum, Blyth, Bradlow, Meng, & Zhao, 
1994; Wilcox, 2003, p. 506). If it is assumed that 
the conditional distribution of Y given X  has 
the form 
 

0 1Y Xβ β ε= + + , 

 

where ( ) 0E ε = , and if 2τ is taken to be the 

usual variance, 2 2η ρ= . It is well-known, 
however, that the usual variance and Pearson's 
correlation are not robust. Roughly, small 
changes in any distribution can substantially 
alter ρ  resulting in a potentially misleading 
sense about the strength of the association 
among the bulk of the points. In particular, slight 
departures from normality can be a practical 
concern when interpreting ρ . 

A simple method for robustifying 2η is 

to take 2τ to be some robust measure of 
variation. Many such measures have been 
proposed, comparisons of which are reported by 
Lax (1985). Based on efficiency, Lax concludes 
that two so-called A-estimators are best, one of 
which corresponds to the percentage bend 
midvariance that was studied by Shoemaker and 
Hettmansperger (1982). It can be designed to 
have a reasonably high breakdown point, its 
efficiency compares well to the usual sample 
variance under normality, and its standard error 
can be substantially smaller than the standard 
error of the sample variance when sampling 
from a heavy-tailed distribution. For these 

reasons it is used here, but this is not to suggest 
that all other measures of variation have no 
practical value for the problem at hand.  

In addition to many robust measures of 
variation, there are many nonparametric 
regression methods that might be used when 
trying to deal with curvature. Here, no attempt is 
made to examine all such methods when 
estimating explanatory power, but rather to 
consider a few methods that appear to deserve 
serious consideration, with the goal of finding 
one method that performs well over a fairly 
broad range of situations when the sample size is 

small. In particular, three estimates of 2η  are 
considered that are based on three nonparametric 
regression estimators: the robust version of the 
method in Cleveland (1979), a particular version 
of a kernel regression estimator derived by Fan 
(1993), and the running interval smoother (e.g., 
Wilcox, 2003, section 11.4.4). Consideration 
was given to a variation of the running interval 
smoother based on bootstrap bagging (e.g., 
Buhlmann & Yu, 2002), but it performed rather 
poorly in the simulations reported here, so 
further details are omitted.  

To add perspective, some results are 
included assuming  

 

0 1( )X Xγ β β= +  
 
with 0β  and 1β  estimated using the robust 

method derived by the Theil (1950) and Sen 
(1968) as well as the ordinary least squares 
estimator. Of course, when there is curvature, 
any method that assumes  
 

0 1( )X Xγ β β= +   

 
has the potential to perform poorly. The issue 
here is how much is sacrificed when a 
nonparametric estimate of the regression line is 
used and the regression line is indeed straight. 
As is well known, there are many robust 
alternatives to the Theil-Sen estimator that have 
excellent theoretical properties. The Theil-Sen 
estimator is used because, in terms of efficiency, 
it seems to perform about as well as the ordinary 
least squares (OLS) estimator when the error 
term has a normal distribution, and it continues 
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to perform well in situations where OLS 
performs poorly (e.g., Wilcox, 2005). If the 
regression line is straight, perhaps there is some 
practical advantage to using some other robust 
estimator, but this issue is not addressed here. 
The primary goal is to consider methods that can 
be used when curvature might exist. Although 
not considered here, another well-known 
approach to nonparametric regression is based 
on what are called splines, and so for 
completeness, some comments seem in order. 
Some informal comparisons with other 
smoothers suggest that sometimes splines are 
not quite as satisfactory as other methods 
(Hardle, 1990; Wilcox, 2005). For this reason, 
they are not considered, but in fairness, it seems 
that an extensive formal comparison with the 
regression methods used here has not been 
made.  

An attempt could be made to fit a 
parametric model in a manner that takes into 
account curvature, but simulating this process is 
difficult. The results reported here suggest that, 
even when fitting a correct parametric model, 
little is gained relative to method C, which is 
described below.  
 

Methodology 
 
The Percentage Bend Midvariance 

The objective now is to summarize how 
the percentage bend midvariance measure of 
dispersion is computed. For a recent summary of 
how this measure of dispersion compares to 
other robust measures of variation, see Wilcox 
(2005, section 3.12). Let 1, , nX X  be a 

random sample. For some β  satisfying 0< β  < 

.5, compute (1- β )n+.5, round the result to the 
nearest integer, and label the result m. The 
choice β =.1 results in good efficiency under 
normality, but a relatively low breakdown point. 
That is, with β =.1, only 10% of the 
observations have to be changed to destroy this 
measure of dispersion. Accordingly, β =.2 is 

used. Let | |i iW X M= − , 1,...,i n= , and let 

(1) ( )... nW W≤ ≤ be the iW  values written in 

ascending order. Set ( )ˆ mWβω = ,and 

ˆ
i

i
X MU

βω
−= . 

Let 1ia =  if 1iU < ; otherwise 0ia = . The 

estimated percentage bend midvariance is  
 

2 2
2

2

( )

( )
i

i

n U
a

βω ψ
τ = 


, (3) 

 
where ( ) max[ 1, min(1, )]x xψ = − . 
 
Fan's Kernel Regression Estimator 

The first of the nonparametric regression 
methods considered here stems from Fan (1993). 

1 1( , ),..., ( , )n nX Y X Y  be a random sample of n 

points. Let ( )K u  be the Epanechnikov kernel 
given by  

23 1
( ) (1 ) / 5

4 5
K u u= −

 
 

If | | 5u < ; otherwise ( )K u =0. Let 

min( , /1.34)h s IQR= , where s  is the 

standard deviation of the X  values and IQR is 
the interquartile range. Bjerve and Doksum 
(1993) take h s= , but it is well known that a 
robust measure of variation, such as the 
interquartile range, can have practical value 
when using a kernel density estimator (e.g., 
Silverman, 1986). 

There is the issue of how to estimate 
IQR. Many quantile estimators have been 
proposed, comparisons of which were made by 
Parrish (1990) as well as Dielman, Lowry, and 
Pfaffenberger (1994). Here the interquartile 
range is estimated via the so-called ideal fourths 
(Frigge, Hoaglin, & Iglewicz, 1989). Perhaps 
some alternative quantile estimator offers a 
practical advantage for the problem at hand, but 
this goes beyond the scope of this paper.  

To be more precise, the ideal fourths are 
computed as follows. Let (1) ( )nX X≤ ≤  be 

the observations written in ascending order. 
Estimates of the lower quartile typically have the 
form 

1 ( ) ( 1)(1 ) j jq X X += − +   
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The ideal fourths are computed by taking j to be 
the integer portion of (n/4)+(5/12) and 

5

4 12

n j= + −  

The estimate of the upper quartile is taken to be 

2 ( 1)(1 ) k kq X X −= − +  where k=n-j+1, in 

which case the interquartile range is estimated 
with 2 1IQR q q= − . Let ( ) ( | )m x E Y X x= = . 

Then ( )m x  is estimated with 0 1ˆ ( )m x b b x= + , 

where 0b  and 1b  are determined via weighted 

least squares with weights (( ) / )i iw K X x h= −
. This will be called method F. 
 
Cleveland's Method 

To outline Cleveland's method, for any 
x, let | |i iX xδ = − . Sort the iδ  values and 

retain the nκ  pairs of points that have the 
smallest iδ  values, where κ is some number 

between 0 and 1 and is called the span. Let  
| |i

i
m

x XQ
δ
−= , and if 0 1iQ≤ < , set 

3 3(1 )i iw Q= − , otherwise 0iw = . Next, use 

weighted least squares to estimate m(x) using 

iw  as weights.  

Cleveland (1979) also discussed a 
robustified version of this method, which is used 
here. In effect, extreme Y  values get little or no 
weight, and so they have little or no impact on 
the smooth. (An outline of these additional 
computations can also be found in Hardle, 1990, 
p. 192.) Both R and S-PLUS provide access to a 
function, called lowess, which performs the 
computations, and the R version was used in the 
simulations reported here using the default value 
κ =.75. This will be called method C. 
 
The Running-Interval Smoother 

Finally, the so-called running interval 
smoother was considered. For some constant f, 
declare x to be close to iX  if  

| |iX x f MADN− ≤ × , 

where MADN=MAD/.6745, MAD is the median 
of the values 1| |, ,| |nX M X M− − , and M
is the usual sample median of the iX  values. Let 

( ) { :| | }i j iN X j X X f MADN= − ≤ × . That is, 

( )iN X  indexes the set of all jX  values that are 

close to iX . Then m( iX ) is taken to be some 

measure of location based on all jY  values such 

that ( )ij N X∈ . Here, a 20% trimmed mean is 

used. It has nearly the same efficiency as the 
mean under normality, but it continues to have 
high efficiency, relative to the usual sample 
mean, when sampling from heavy-tailed 
distributions. It appears that often a good choice 
for the span, f, is f=1 (e.g., Wilcox, 2005) and 
this value is used here. However, results in the 
next section indicate that this choice can be 
relatively ineffective for the problem at hand; a 
smaller value for f seems to be desirable, at least 
with small sample sizes. But even now, all 
indications are that Cleveland's method gives 
superior results. This will be called method R. 
 
The Theil-Sen Estimator 

This section reviews how the Theil-Sen 
estimator is computed. Let iX  and jX  be any 

two X  values such that i jX X>  . Denote the 

slope corresponding to the two points ( , )i iX Y  

and ( , )j jX Y  by 1ijb . The median of all such 

slopes is the Theil-Sen estimate of 1β  and is 

labeled 1tsb . The intercept is estimated with  

0 1ts y ts xb M b M= − ,where yM  and xM  are the 

sample medians corresponding to the Y  and X  
values, respectively. Estimation of explanatory 
power via the Theil-Sen estimator will be called 
method TS. 
 
Estimating Explanatory Power 

Based on the regression estimators just 
described, explanatory power is estimated in an 

obvious way. For each iX , compute îY , the 

estimate of Y  given that iX X= . Then 

explanatory power is estimated with  
2

2
2

ˆˆ ( )
ˆ

ˆ ( )

Y
Y

τη
τ

= , 



 EXPLANATORY POWER IN A SIMPLE REGRESSION MODEL VIA SMOOTHERS 
 

372 
 

where 2ˆ ( )Yτ  indicates the estimated percentage 

bend midvariance based on 1, , nY Y . 

 
Results 

 
Simulations were used to the check the small 
sample properties of the methods just described 
Here, two types of regression lines are 

considered: Y X ε= +  and 2Y X ε= + . In 
both cases, bias was found to be an important 
issue, as will be seen. It is noted that additional 
simulations were run with Y ε= , in which case 

2 0η = , again bias is an issue, but for brevity, 

no additional details are given. For 2Y X ε= + , 
no results are reported when using OLS and 
method TS, since they are based on the 
assumption that 0 1Y Xβ β ε= + +  and are 

clearly unsatisfactory when in fact 2Y X ε= + . 
Both X  and ε  are assumed to have one of four 
g-and-h distributions (Hoaglin, 1985), which 
contains the standard normal distribution as a 
special case. If Z  has a standard normal 
distribution, and if 0g > , then 
  

2exp( ) 1
exp( / 2)

gZW hZ
g

−=  

 
has a g-and-h distribution where g  and h  are 
parameters that determine the first four 
moments. If 0g = , this last equation is taken to 

be 2exp( / 2)W Z hZ= . The four distributions 

were the standard normal ( 0g h= = ), a 
symmetric heavy-tailed distribution (h=.5, g=0), 
an asymmetric distribution with relatively light 
tails (h=0, g=.5), and an asymmetric distribution 
with heavy tails (g=h=.5). Table 1 shows the 
theoretical skewness ( 1κ ) and kurtosis ( 2κ ) for 

each distribution considered. When h=.5, the 
fourth moment is not defined and the value for 

2κ  is left blank. Additional properties of the g-

and-h distribution are summarized by Hoaglin 
(1985). 
 
 
  

There remains the problem of 

determining the population value of 2η  when 

and ε  have some specified distribution. First 
consider the case Y X ε= + , where both X  
and ε  are assumed to have one of four g-and-h 
distributions previously described. Then the 

correct estimate of Y  is Ŷ X= , in which case  
2 2ˆ( ) ( )Y Xτ τ= , which was determined by 

randomly sampling n=100,000 observations 
from the distribution under consideration. As for 

2 ( )Yτ , the following process was used. First 

generate 5000 values for both ε  and X , which 
yields 5000 values for Y . Computing τ  based 
on these 5000 values yields an estimate 
of τ . Here, this process was repeated 5000 
times, and the average of the resulting τ  values 

is taken to be the population value of 2 ( )Yτ . 

And of course, having determined both 2 ˆ( )Yτ  

and 2 ( )Yτ , 2η  is taken be 2 ˆ( )Yτ / 2 ( )Yτ . As 

for the case 2Y X ε= + , the same process was 

used. For Y X ε= + , the values of 2η  were 
found to be .499, .409, .338, .314 corresponding 
to (g,h)=(0,0), (.5,0), (0,.5) and (.5,.5), 
respectively. As for 2Y X ε= + , the values 
were found to be .323, .242, .365 and .330. 

Each replication in the simulations 
consisted of generating n values for X , another 
n values for ε , computing Y X ε= +  or 

2Y X ε= + , and then applying the estimators 
described in the previous section. Two sample 
sizes were considered: n=30 and 100. Here, X  
and ε  have the same g-and-h distribution. 

 
 

Table 1:  
Some properties of the g-and-h distribution 

g h 
1κ  2κ  

0.0 0.0 0.0 3.0 
 

0.0 0.5 0.00 --- 
 

0.5 0.0 0.61 9.7 
 

0.5 0.5 2.81 
 

--- 
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Table 2: Estimated bias  
 
 

g  h   TS    C    F      R  OLS 
 

Y X ε= +  
 

0.0  0.0  .017  .007  -.005  -.109  .019 
 

0.5  0.0  .028  .040  .021   -.052  .094 
 

0.0  0.5  .042  .047  .396  -.015  .158 
 

0.5  0.5  .045  .050  .313  .013  .207 
 

2Y X ε= +  
 

0.0  0.0  ---  .022  .009  -.112  --- 
 

0.5  0.0   ---  .086  .021  -.019  --- 
 

0.0  0.5  ---  .084  -.013  -.003  --- 
 

0.5  0.5  ---  .121  .047  .077  --- 
 

 
Table 3: Estimated squared standard error  

 
g h  TS  C  F  R  OLS 
       

Y X ε= +  
       

0.0  0.0 .031 .034 .037  .035 .038 
0.5  0.0 .029 .035 .051  .051 .062 
0.0  0.5 .035 .039 83.875 .047 .178 
0.5  0.5 .034 .040 6.490 .063 2.452

       

 
2Y X ε= +   

      
0.0  0.0  --- .035 .033  .038  --- 
0.5  0.0  --- .074 .052  .076 --- 
0.0  0.5 ---  .142 .559  .135 --- 
0.5  0.5  --- .159 1.018 .343 --- 
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This process was repeated 1000 times 

yielding 1000 estimates of 2η , say 2 2
1 1000, ,η η . 

Bias was estimate with  

2 21
ˆ( )

1000 iη η−  

and the squared standard error of 2η was 
estimated with  

2 2 21
( )

999 iη η− , 

where 2 2 /1000iη η= . The results are 

summarized in Tables 2 and 3 for the case n=30.  
First consider bias. Method F performs 

well when the regression line is straight and 
when both X  and ε  have symmetric 
distributions. But when the distributions are 
skewed, bias can be severe, suggesting that 
method F be eliminated from consideration. 
Method R performs reasonably well, except 
under normality where it performs poorly. 
Increasing n to 100, it still performs poorly, in 
terms of bias, for this special case. Only method 
C has relatively low bias, and it competes well 
with OLS and method TS, even when the 
regression line is straight. However, when there 
is curvature, now the bias of method C is rather 
high compared to method F. Again, method R is 
found to be unsatisfactory under normality.  

As for the squared standard error of the 
estimators, Table 3 indicates that method F can 
be relatively disastrous when the regression line 
is straight and sampling is from skewed 
distributions. And for heavy-tailed distributions, 
OLS does not perform well compared to 
methods C and R. Method R competes 
reasonably well with method C, but there are 
obvious exceptions. Generally, method C 
performed best among the situations considered.  

To provide some sense of how method 

C improves when 2Y X ε= + , as n gets large, 
some additional simulations were run with 
n=100 for the cases (g, h)=(0.0, 0.5) and (0.5, 
0.5). Now the bias of method C was estimated to 
be .088 and .080, respectively. So for the 
skewed, heavy-tailed distribution considered 
here, the reduction in bias is substantial, but for 
the skewed, light-tailed distribution the amount 
of bias remains about the same. Method F has 
small bias for these situations, but its squared 

standard error is relatively high. Method R has 
about the same amount of bias as method C and 
a smaller standard error, but because it performs 
poorly in other situations, it would seem that it 
should be used with caution. 
 

Conclusion 
One limitation of the results reported here is 
that, when using a smoother, the span was 
chosen to be a fixed constant that is often used 
as the default value. Checks made when using 
method R indicate that a smaller span can 
improve its performance considerably. However, 
it remains unknown how best to adjust the span 
when estimating explanatory power, and even 
for the adjustments considered here (f=.7 and 
.5), it was found that method C remains a bit 
more satisfactory in most situations.  

Although method C offers protection 
against the deleterious effects of outliers among 
the Y  values, it is known that a sufficient 
number of outliers can negatively affect its 
performance relative to method R (Wilcox, 
2005).  

This was one of the main reasons for 
considering method R and it might explain why 
method C can be unsatisfactory when there is 
curvature and when dealing with extremely 
heavy-tailed distributions. Perhaps in most 
practical situations this is not an issue, but the 
extent to which this is true is difficult to 
determine. 

When the usual variance is used, rather 
than the percentage bend midvariance, results in 
Doksum and Samarov (1995) suggest estimating 

explanatory power with 2r , the square of 
Pearson's correlation, rather than with the ratio 

of the variances of Ŷ  and Y . An analog of this 
approach is to use the percentage bend 
correlation (Wilcox, 2005, p. 391). 
Consideration was given to this approach, but it 
proved to be unsatisfactory in the simulations 
described here. 

Perhaps the most surprising result is that 
there is little or no advantage to fitting a straight 
line to the data, versus using something like 
method C, when in fact the regression line is 
straight and when using the percentage bend 
variance. Consequently, method C is 
recommended for general use. 
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