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On the Estimation of Binomial Success 
Probability With Zero Occurrence in Sample 

 
 
 

Mehdi Razzaghi 
Mathematics, Computer Science, & Statistics 

Bloomsburg University 
 

 
The problem of estimating the probability of a rare event when the sample shows no incidence of the event is 
considered. Several methodologies based on various statistical techniques are described and their relative 
performances are investigated. A decision theoretic approach for estimation of response probability when the 
sample contains zero responses is examined in depth. The properties of each method are discussed and an 
example from teratology is used to provide illustration and to demonstrate the results. 
 
Key words: Binomial distribution, response probability estimation.  
 

Introduction 
 
There are many instances in practice that an 
estimate of the probability of occurrence of a rare 
event is desired. Because of the low probability of 
the event, however, the experimental data may 
conceivably indicate no occurrence of that event. 
For example, in cancer risk estimation with 
laboratory animals, often at low doses, data may 
exhibit no animals with tumors, even though there 
is a nonzero probability of response at that dose. 
More specifically, suppose that X is the number of 
occurrences of an event in a sample of n 
independent and identical Bernoulli trials. Then X 
has a binomial distribution with 

n , 1, 0,   x )p1(p
x
n

   x) P(X x-nx =−







==  (1) 

where p is the probability of occurrence in each 
trial.   It     is   well   known   that  the     maximum  
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likelihood estimate of p is x/n. But when x = 0, 
this estimate is often unrealistic and alternative 
methods should be utilized to estimate p. 
Observation of zero occurrence in a sample is not 
uncommon in practice. Table 1 provides numerical 
values of the probability of zero successes in 
binomial experiments for different sample sizes.  
 
Table 1. Probability of zero response for varying 
sample sizes and different true response 
probabilities. 
 
   p 
\ 
n 

 
 
0.01 

 
 
0.02 

 
 
0.05 

 
 
0.07 

 
 
0.10 

 
 
0.15 

 
 
0.20 

1 0.990 0.980 0.950 0.930 0.900 0.850 0.800 
2 0.980 0.960 0.902 0.865 0.810 0.722 0.640 
4 0.961 0.922 0.814 0.748 0.656 0.522 0.410 
10 0.904 0.817 0.599 0.484 0.349 0.197 0.107 
20 0.818 0.668 0.358 0.234 0.122 0.039 0.011 
30 0.740 0.545 0.215 0.113 0.423 0.008 0.001 
 
     Note that even when p is as high as 0.05 and the  
sample is as high as twenty, there is still a 36% 
chance of no response in the data. Bailey (1997) 
considered the problem of estimating p when the 
sample has no occurrence and proposed a method 
currently used in risk analysis of energetic 
initiation in the explosive testing field. This 
estimator is given by 
 
  1/n(0.5) - 1  p̂ =               (2) 
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which is obtained by setting the probability of 
observing n failures equal to 0.5 and solving for p. 
Bailey noted that this estimator is nearly identical 
to the median of the Bayesian posterior 
distribution for p, derived with respect to a 
uniform distribution using the absolute error loss 
(AEL) function. 

The problem of Bayesian estimation of p 
with respect to the more general class of a 
conjugate beta prior distribution but using the 
squared error loss (SEL) was considered by Basu 
et at. (1996). By comparing (2) with a few other 
estimates, Bailey (1997) concluded that p̂  
performs relatively well in practice and can be 
used in certain circumstances. It is also worth 
noting that because the upper 100(1 - α)% 
confidence limit for p is (see Bickel & Doksum, 
2001) given by  

 
 1/n - 1 u α=  
 

then (2) can be interpreted as the median of the 
sampling distribution of the random variable X/n. 
Moreover, as mentioned in Louis (1981), u may be 
thought of as the proportion of the number of 
successes in a future experiment of the same size 
and it is the upper 100(1 - α)% Bayesian 
prediction interval based on a uniform prior 
distribution. 

In this paper, the problem of point 
estimation of p when a sample shows no 
occurrence is considered from a more general 
viewpoint. Several potential estimates based on 
statistical methods in addition to those suggested 
in Bailey (1997) and Basu et al. (1996) will be 
proposed and their properties will be discussed. 
Next, I review the Bayesian approach and consider 
the use of other loss functions, and then discuss 
the properties of an estimate derived from 
information theory. The next section is devoted to 
the discussion of a decision theoretic approach for 
estimating p, and the use of minimax estimation of 
p is considered. In the final section of this article, I 
give an example from teratology to provide further 
illustration of the results. 

 
Bayesian Estimation 

It is well known that when the prior 
distribution of p belongs to the family of a beta 
distribution β(a, b), 

 

1  p  0 0,  b a,  p)1(p
b)B(a,

1  g(p) 1-b1a <<>−= −  

                                                          (3) 
where 
 

  
b) (a
(b)(a)  b)B(a,

+Γ
ΓΓ

=   

      
then the posterior distribution of p belongs to the 
beta family β(a + x, b + n – x) and the Bayes 
estimate p* of p based on the SEL function L(p,p*) 
= (p – p*)2, is given by (Basu et al., 1996)  
 

  
n)  b  (a

 x) (a  p*

++
+

=              (4) 

 
Thus, if x = 0, then the Bayes estimator for a zero 
occurrence is 
 

  
n  b  a

a  p*

++
=               (5) 

 
and in particular if a = b = 1, then the Bayes 
estimator under a uniform prior is derived. Also, 
when Jeffreys’ non-informative prior, for which a 
= b = 0.5 is used, then the Bayes estimator of no 
response is given by   

  
)1n(2

1p*
ni +
=              (6) 

 
Basu et al. (1996) compared (5) and (6) with the 
classical approach based on upper confidence 
limits and conclude that the Bayes estimate under 
an informative prior is best. Both estimates (5) and 
(6), however, are derived using the SEL function 
which is but one of several possible loss functions 
that may be used to derive the Bayes estimate of p. 
In practice, there are many instances that other 
functions may be preferred. 

Actually the SEL is a special case of a 
larger class of weighted quadratic loss functions 

 
  2** )p-p)(p(w)p L(p, =         (7) 
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where w(p) ≥ 0 is an appropriate weight function. 
For the class (7) the posterior expected loss is 
minimized when 
 

  
E(w(p))
E(pw(p))p* =               (8) 

 
where the expectation is with respect to the 
posterior distribution of p. In particular if w(p) is 
of the form 
 
  βα p)1(p  w(p) −=               (9) 
 
for some α and β, then from (8) 
 

  
)p)1(E(p

))p1(1E(p*P βα

βα

−

−+
=             (10) 

 
which for the family of beta prior, yields 
 

  
    n   b  a

xa*p
βα

α
++++

++
=            (11) 

 
Now, if 0== βα , then (4) is obtained as a 
special case of this larger class of estimates. 
Another special case, and possibly more 
appropriate for the purpose of risk assessment, in 
(11) is when ,1−== βα  corresponding to the 
scaled square error loss (SSEL) function 
 

  
p) -p(1
)p - p()p L(p,

2*
* =  

 
In this case, however, it is easy to see that when x 
= 0, and a = 1, then *p  is the only estimate which 

produces an infinite posterior expected loss.  
Hence, when there is no occurrence in the sample 
the SSEL function does not produce a useful 
solution. Indeed, when x = 0, the SSEL function 
produces a negative estimate of p for a < 1. Note 
also from (11) that in this case the Bayes estimate 
with respect to a uniform distribution is identical 
to the maximum likelihood estimate. 

Aside from the class of squared error loss 
functions, a class of functions often used in 

Bayesian estimation is the absolute error loss 
(AEL) given by 

 
  ,  |p-p|)p L(p, ** =  
 
for which the Bayes estimate is the median of the 
posterior distribution. Hence for the family of beta 
prior (3), when x = 0, we seek *

1p  such that 
 

∫ =−
+

=+ +
*
1

*
1

p 
0 

1-nb1-a
p 0.5  dpp)1(p

n) b B(a,
1 n)b a,(I

                (12) 
 
which for given values of a and b can be evaluated 
using tables of incomplete beta functions (e.g. 
Pearson & Hartley, 1956) or any standard 
numerical technique. Specifically, if a = b = 1, 
then (12) yields 
 
  1)1/(n*

1 )5.0(1p +−=             (13) 
 
which, as noted earlier, is for large n 
approximately equal to the Bailey (1997) estimate. 
Also, when Jeffrey’s non-informative prior (a = b 
= 0.5) is used, an approximation to the solution of 
(12) may be obtained by using a procedure 
described in Johnson and Kotz (1995) regarding 
the approximations to the beta function ratio. 
Accordingly, if  *

1.ni
p  denotes the solution of (12) 

for a = b = 0.5, then an approximate value of 
*

n 1, i
p  can be obtained as the solution of 
 

0
1 n

1/2-x
1 2n

x2 
5
1  x)1(

3
7 n 

6
1n =

+
+

+
+−






 +−+

                (14) 
 
where the error of approximation is generally 
below .001. 

Another choice of a loss function for 
Bayesian estimation is the so-called zero-one loss 
defined as 
  

 






>
≤=
ε
ε

 |p-p|  if1
 |p-p|  if0)pL(p, *

*
*  
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which amounts to no loss if the estimate p* is 
within a distance ε from p. For this loss function, 
the expected posterior is given by 
 
       x).| |p-pP(| - 1    x)|   |)p-pP(| ** εε ≤=>  
 

Consequently, if a modal interval of 
length 2ε is defined as an interval with center at 
the mode of the distribution, then as ε→0, the 
Bayes estimate with respect to the zero-one loss 
approaches the mode of the posterior distribution, 
provided that a mode exists. This in turn implies 
that the Bayes estimate in this case becomes the 
maximum likelihood estimate. 

 
 
Maximum Information Estimation 

Good(1965) and Typlados and Brimley 
(1962) showed that Shannon’s information content 
of the observation x from the binomial distribution 
(1) is given by 

 









−








+= x-nx )p1(p

x
n

lnp) - p)ln(1 - (1  -  pln(p)-  I(p)

                (15) 
 
By maximizing I(p), one obtains the maximum 
information (MIE) estimate pMIE of p as the 
solution of the equation 
 

  
p1
x-n

p
x

p-1
pln

−
−=








            (16) 

 
In particular when x = 0, the MIE of p is the 
solution of 
 

  .
p1

1exp
p-1

p
n 








−

−=           (17) 

 
Chew (1971) pointed out that for n > 7, the 
solution of (17) is up to 3 decimals equal to zero 
and, once again, it is seen that this method fails to 
produce a reasonable estimate for p. 
 
Minimax Estimation 

The minimax criterion stems from the 
general theory of two-person zero-sum games of 
von Neuman and Morgenstern (1944). Loosely, 

instead of averaging the risk as in Bayesian 
estimation, one looks at the least favorable 
scenario for each decision, that is the worst 
possible risk for that decision, and chooses a 
decision which gives the least value of the worst 
risk. Thus, the minimax rule minimizes the 
maximum risk. Although the methodology ignores 
all references to prior knowledge, but in the 
absence of any information regarding p, the 
minimax estimator provides a Bayesian estimate 
without knowing the prior distribution. As pointed 
out by Cox and Hinkley (1974), the minimax rule 
is defensible when the risk is small, since it 
ensures that, whatever the true parameter value, 
the expected loss is small. Although there may be 
an apparently better rule, any improvement can 
only be small and may carry with it the danger of a 
seriously bad performance for some values of the 
parameter. 

Now, for the binomial parameter p in (1), 
it can be shown that the minimax decision rule, 
based on the SEL function, is given by (Bickel and 
Doksum, 2001) 

 

  
nn

2
n x 

  p~
+

+
=              (18) 

 
with variance bounded by 
 

  [ ] 2
)n2(1v
−

+=             (19) 
 
The minimax estimator (18) is Bayes with respect 
to a beta prior with parameters 
 

2/n  and .2/n  If x = 0, then from (18), 
  

[ ] 1
)n2(1p~
−

+=             (20) 
which can be used to estimate the probability of a 
rare event. In order to compare the minimax 
estimator given in (20) with those considered in 
Bailey (1997), p~  was evaluated for several values 
of n. Table 2 presents these numerical values, 
where for comparison, the values of p̂  in (2), the 
estimator suggested by Bailey and the Bayes 

estimator *
nip  based on a noninformative prior 

given in (6) are also included. As the sample size 
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increases, the minimax method appears to produce 
numerically larger point estimates. 
 
Table 2. Numerical values of minimax ( )p~ , Bayes 

( )*
nip  and Bailey ( )p̂  estimator.  

  

 
 
 

 
 
Example 

Kochhar et al. (1992) describes an 
experiment to examine the developmental toxicity 
of two retinoylamino acids, RG and RL in IRC 
mice and compare them with other retinamides. 
One of the observed effects was the incidence of 
cleft palate in the viable fetuses. Table 4 presents 
the percentage of fetuses with cleft palate for 
different doses together with the number of 
implants per dose group as a result of maternal 
exposure to retinoic acid (RA). 

 
 Table 4. Incidence of cleft palate in offspring of 
mice exposed to retinoic acid (RA). Source: 
Kochhar et al. (1992). 

Because the binomial distribution E(X) = 
np, it is clear from (4) and (18) that 

  
1)2(n
12np)E(p*

ni +
+

=             (21) 

and 

  
)1n(2
1n2  )p~E(

+
+

=
p

            (22) 

Table 3 provides the numerical values of (21) and 
(22) for selected values of n and p where for 
completeness we also include a crude estimate of 

),p̂E(  computed by using (2) for x = 0. 
 
 
 

 
 
It is observed that even though there was 

1% response rate in the control group, there was 
no occurrence of cleft palate in the 5 mg/kg dose 
group. The incidence rate in other dose groups 
showed a statistically significant difference from 
the control group. For risk assessment purposes, in 
practice one would fit a suitable dose-response 
model to these data and extrapolate to low 
exposure levels to obtain an upper confidence 
limit for the risk at a fixed low dose. 

 The model can equivalently be used to 
obtain a benchmark dose, which is the lower 
confidence limit for dose corresponding to a given 
low negligible level of risk.  However, because of 
no incidence at the lowest non-zero dose level, one 
might erroneously consider fitting a non-
monotonic dose-response function. 

That is, the analysis might lead to the 
conclusion that the chemical has a hormetic effect, 
i.e. it is low dose stimulative and high dose 
inhibitive. For a discussion on the concept of 

n 1 2 4 10 20 30 40 
p~  .250 .207 .167 .120 .091 .077 .062 

*
nip  .250 .167 .100 .045 .024 .016 .010 

p̂  .500 .293 .159 .067 .034 .023 .014 

p .01 .05 .10 
n p~  *

nip  p̂  p~  *
nip  p̂  p~  *

nip  p̂  

4 0.173 0.108 0.169 0.200 0.140 0.209 0.233 0.180 0.259 
10 0.128 0.054 0.077 0.158 0.091 0.117 0.196 0.136 0.167 
20 0.099 0.033 0.044 0.132 0.071 0.084 0.173 0.119 0.134 
30 0.086 0.026 0.033 0.119 0.064 0.073 0.162 0.113 0.123 
40 0.077 0.022 0.027 0.111 0.061 0.067 0.155 0.110 0.117 
50 0.071 0.020 0.023 0.105 0.059 0.064 0.149 0.108 0.114 

Table 3. Expected values of minimax ( )p~ , Bayes ( )*
nip  and Bailey ( )p̂  estimators for varying sample 

sizes and for different true response probabilities. 
 

Dose mg/kg 0 5 10 25 100
Number of 
Implants 

152 98 78 86 164

% with Cleft 
Palate 

1 0 13 33 82 
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chemical hormesis we refer to Calabrese and 
Baldwin (2000). However, as shown in Razzaghi 
and Loomis (2001), in developmental toxicology, 
more than a single replication of an experiment 
must be considered before a chemical can be 
declared as being hormetic. For the present data, 
therefore, in order to fit a monotonic dose-
response function, one might consider replacing 
the observed incidence of zero by an estimate of it. 
In such a situation, it would seem unreasonable to 
estimate the probability of response in the 5 mg/kg 
dose group as 0, as given by the maximum 
likelihood method. In this case, because n = 98, 
from (2), (6), (14) and (20), 

0.046  p~   ,021.p   ,005.p    .007,  p̂ *
ni 1,

*
ni ====

are four different point estimates for the 
probability of response at the first nonzero dose 
level. 

In order to further investigate the 
properties of these estimates, a probit model was 
used to fit the response probability p as a function 
of the natural logarithm of dose, i.e.  
  d) log b  a(p +Φ=             (23) 
Using PROC PROBIT in SAS (1996), it was 
found that the maximum likelihood estimates of 
the model parameters are 

0.987.b̂ and  03.601  â ==  Using these 
parameter estimates, it is found that the point 
estimate of p when d = 5 mg/kg is .022. 
Furthermore, the standard deviation of 

5  log  b̂  â +  is 0.163. Based on these quantities, if 
the 95% confidence interval is evaluated for the 
predicted proportion, one finds that this range is 
(.010, .046). Interestingly, although the minimax 
estimator p~  is equal to the upper bound in this 
range, both the Bailey estimator p̂  and the 

Bayesian estimator   p*
ni are outside this range and 

far too small to be plausible. Therefore, in this 
instance, and p*

ni1,  the minimax procedure appear 
to produce more realistic estimates of p compared 
to other methods. 
 

Discussion 
 
Lack of occurrence of rare events in biological and 
physical experiments is not uncommon. In such 
situations, the maximum likelihood estimate 

becomes unusable and one needs to resort to 
alternative statistical methods.  Here, I have 
considered this problem and investigated the use 
of several other statistical techniques and the 
minimax estimator. 

It is immediately noted from (2) that for 

the Bailey estimator, .
n
10  p̂ 





=  This property 

also holds for the Bayesian estimator considered 
by Basu et al. (1996). However, for the minimax 

estimator, from (18) .
n

10  p~ 







=  This means that 

for relatively large values of n, both p̂  and the 
Bayes estimate lead to numerically smaller values 
than the minimax estimator. Actually, it can be 
shown (Roussas, 1997) that the Bayes estimate for 
the family of beta prior and SEL has the same 
asymptotic distribution as the maximum likelihood 
estimate for arbitrary fixed values of α and β, 
while the asymptotic distribution of p)- p~(n  is 

normal with mean p
2
1
−  and variance p(1-p). 

Thus, I can say that the minimax estimator is 
comparatively more conservative. 

However, as discussed by Carlin and 
Louis (1996), although informative priors enable 
more precise estimation, extreme care must be 
taken in their use because they also carry the risk 
of disastrous performance when their informative 
content is in error. Although using a non-
informative prior leads to a more conservative 
Bayes estimate, there may be situations when 
Bayes and other methods underestimate the value 
of this rare event. This result is demonstrated 
through an example in developmental toxicology. 

The conclusion of this paper is not 
necessary to recommend the minimax or any other 
estimator in all situations when there is a zero 
response. Rather, the goal is to increase awareness 
and recommend that more caution should be taken 
when any single method is used to estimate the 
success probability when sample shows zero 
occurrence. The choice of the estimate should to a 
large extent depend on which kind of optimality is 
judged to be most appropriate for the case in 
question. 
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