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Variance Estimation in Time Series Regression Models 
 

Samir Safi 
The Islamic University of Gaza 

 
 
The effect of variance estimation of regression coefficients when disturbances are serially correlated in 
time series regression models is studied. Variance estimation enters into confidence interval estimation, 
hypotheses testing, spectrum estimation, and expressions for the estimated standard error of prediction. 
Using computer simulations, the robustness of various estimators, including Estimated Generalized Least 
Squares (EGLS) was considered. The estimates of variance of the coefficient estimators produced by 
computer packages were considered. Models were generated with a second order auto-correlated error 
structure, considering the robustness of estimators based upon misspecified order. Ordinary Least Squares 
(OLS) (order zero) estimates outperformed first order EGLS. A full comparison of order zero and four 
estimators indicate that over specification is preferable to under specification. 
 
Key words: Autoregressive models, auto-correlated, disturbances, ordinary least squares, generalized least 
squares. 
 
 

 
Introduction 

 
In the standard linear regression model, 

y X u= β + ,                       (1) 

where y is the ( )1T ×  response variable; X is an 

( )kT ×  model matrix; β  is a ( )1k ×  vector of 
unknown regression parameters; and u is a 
( )1T ×  random vector of disturbances, it is well 
known that Ordinary Least Squares (OLS) yield 
unbiased, but inefficient estimates for the 
regression parameters with serially correlated 
disturbance structures. OLS regression estimates 
have larger sampling variances than the 
Generalized Least Squares (GLS) estimator 
which accounts for auto-correlated nature of 
disturbances. 

An important consideration is the 
estimation of the standard errors of the 
estimators, because estimates of the variance 
enter into usual inference procedures such as 
prediction and confidence intervals, hypotheses 
testing, spectrum estimation, expressions for 
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the estimated standard error of prediction, and 
other inferential procedures. 

In practice, if using a statistical package 
to compute the OLS estimators the variance 
estimate produced would be based on 

( ) 12
u X X

−′σ , which may be biased for the true 

variance ( ) ( )1 12
u X X X X X X

− −′ ′ ′σ  . For 

GLS estimation ( Σ known), on the other hand, 
the variance estimate is unbiased for the true 
variance of the GLS estimator. It is unclear, 
however, how the variance estimators for EGLS 
estimation behave. In order to investigate how 
well the variance estimators function in the 
different cases, the ratio of the variance of the 
OLS estimated variance to that for the estimated 
GLS estimators from the simulation results was 
computed. 

The most commonly assumed process in 
both theoretical and empirical studies is the first-
order autoregressive process, or AR(1), which 
can be represented in the autoregressive form as 

( )2
t t 1 t tu u , ~ i.i.d. N 0,− ε= ρ + ε ε σ     (2) 

where ρ  is the first order autoregressive 
disturbance parameter. The second-order 
autoregressive process, or AR(2) error process, 
may be written 
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t 1 t 1 2 t 2 tu u u− −= φ + φ + ε            (3) 

where 1φ  and 2φ  are the second-order 

autoregressive disturbance parameters. 
Numerous articles describe the 

efficiency of the OLS coefficient estimator 
relative to the GLS estimator which takes this 
correlation into account. Safi & White (2006) 
have shown that, if the error structure is 
autoregressive and the dependent variable is 
non-stochastic and linear or quadratic, the OLS 
estimator performs nearly as well as its 
competitors. When faced with an unknown error 
structure, however, AR(4) may offer the best 
choice. Koreisha & Fang (2004) investigated the 
impact that the EIGLS correction may have on 
forecast performance. They found that, for 
predictive purposes, not much is gained in trying 
to identify the actual order and form of the auto-
correlated disturbances or in using more 
complicated estimation methods such as GLS or 
MLE procedures which often require inversion 
of large matrices. Krämer & Marmol (2002) 
showed that OLS and GLS are asymptotically 
equivalent in the linear regression model with 
AR(p) disturbance and a wide range of trending 
independent variables, and that OLS based 
statistical inference is still meaningful after 
proper adjustment of the test statistics. 
Grenander & Rosenblatt (1957) gave necessary 
and sufficient conditions for X such that the 
OLS and GLS estimators have the same 
asymptotic covariance matrix. This class of X 
matrices includes polynomial and trigonometric 
polynomial functions of time. 

In addition, it is known from Anderson's 
(1948) results that if the columns of observations 
on k independent variables are linearly 
dependent on a set of k eigen vectors of the 
variance matrix of the errors, then the efficiency 
of the OLS estimator will be identical with the 
GLS estimator for most values of the 

autocorrelation coefficient 1ρ < . By contrast, 

if this matrix is allowed to vary arbitrarily, the 
efficiency of the OLS relative to the GLS 
estimator with a known autocorrelation 
coefficient can approach zero. Good references 
of techniques for analysis in time series models 
are Anderson (1971) and Fuller (1996). 

The GLS estimator based on an under 
parameterized AR(1) disturbance model 
structure with an estimated AR(1) coefficient 
denoted, EIGLS-AR(1) will have the highest 
variance estimation among the other estimators. 
For example, for some cases the variance 
estimation of EIGLS-AR(1) is at least more than 
six times higher than the OLS estimator. This 
indicates that EIGLS-AR(1) can be much less 
efficient than OLS. 
 This article is organized as follows: 
Simulation setup, definitions of the mean 
squared error of the variance for each of the 
regression coefficients, the bias and the variance 
of the estimated variance, and the ratio of the 
variance of the OLS estimated variance to that 
of four GLS estimators are introduced. Complete 
simulation results based on the variance of OLS 
and GLS estimated variance of each of the 
regression coefficients are shown and the ratio 
of variance estimation of OLS to that of GLS 
estimators for each of the regression coefficients 
is discussed. This simulation study was designed 
to compare the performance of different 
estimators and to characterize the effect of the 
design on the efficiency of OLS. Lastly, 
conclusions based on the comparison of the 
variance estimation of OLS and GLS on the 
regression coefficients is provided. 
 

Methodology 
 

The robustness of various estimators, including 
estimated generalized least squares (EGLS) was 
considered. These simulations examined the 
sensitivity of estimators to model 
misspecification.  

The the ratios of the variances of the 
OLS estimator relative to four GLS estimated 
variances were compared: the GLS based on the 
correct disturbance model structure and known 
AR(2) coefficients denoted as GLS-AR(2); the 
GLS based on the correct disturbance model 
structure but with estimated AR(2) coefficients 
denoted as EGLS-AR(2); the GLS based on an 
under parameterized AR(1) disturbance model 
structure with an estimated AR(1) coefficient 
denoted as EIGLS-AR(1), and the GLS based on 
over parameterized AR(4) disturbance model 
structure with estimated AR(4) coefficients 
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denoted as EIGLS-AR(4). AR(p) GLS 
corrections disturbances. 

Three finite sample sizes (50, 100, and 
200) and three non-stochastic design vectors of 
the independent variable were used; linear, 
quadratic, and exponential. A standard normal 
stochastic design vector of length 1,000 was 
generated, assuming the variance of the error 

term in AR(2) process was ( )2 1εσ = . In 

addition, 1,000 observations were generated for 
each of the AR(2) error disturbances with four 
pairs of autoregressive coefficients: (.2,-.9), (.8,-
.9), (.2,-.7), and (.2,-.1).   

The regression coefficients 0β , and 1β  

for an intercept and the slope were each chosen 
to equal one. Breusch (1980) has shown that for 

a fixed design, the distribution of 
2
u

EGLS
ˆ

σ
β−β

 

does not depend on the choice for β  and 2
uσ , 

and the result holds even if the covariance 
matrix Σ  is misspecified.  
 
Definition 1 
The simulation mean squared error (

j
ˆ βη ) of an 

estimated variance W, of the true variance ( τ ), 

is the function defined by ( )2
E Wτ − τ . That is 

( )
j

k 21
ij

i 1

ˆ k W−
β

=

η = − τ                (4) 

where j = 0,1, k is the number of simulations, 
 ( ) ( )ij ij T jW Var , Var= β τ = β . 

 
An estimate with the smallest value in (4) 
indicates that it was the most efficient among 
other estimates. 
 
Definition 2 
The bias of an estimated variance (W), of the 
true variance ( τ ), is the difference between the 
expected value of W and τ . That is, 

                          
j

ˆ E Wβ τδ = − τ                       (5) 

where 

 ( )
k

1
ij

i 1

E W k Var−
τ

=

= β . 

An estimator whose bias is identically 
(in τ ) equal to zero is called unbiased and 
satisfies E Wτ = τ  for all τ . 

Note that ( )T jVarτ = β is different for 

each case of the estimation procedure; since no 
known explicit formula exists for EGLS cases,  
this quantity is estimated from the simulation 
results in all cases. 
 
Definition 3 
The variance of the estimated variance (W), of 
the true variance ( τ ), is the difference between 

the estimated mean squared error (
j

ˆ βη ), and the 

bias of an estimated variance W, 
j

ˆ
βδ . That is, 

( )j j j

2ˆˆVar Var β β β= η − δ              (6) 

 
Definition 4 
The ratio of the variance of the OLS estimated 
variance to that of GLS is 

j

j

ji

V
R

Vβ =                         (7) 

where  
( )
( )

j.OLS

j.GLS

j

ji

V Var Var ,

V Var Var ,

j 0,1, i 1, 2,3,4

β

β

=

=

= =

 

 
for four GLS estimates such that:  

( )
( )
( )
( )

j.GLS AR (2)

j.EGLS AR (2)

j.EIGLS AR (1)

j.EIGLS AR (4)

j1

j2

j3

j4

V Var Var ,

V Var Var ,

V Var Var ,

V Var Var .

β −

β −

β −

β −

=

=

=

=

 

 
A ratio (

j
Rβ ), less than one indicates 

that the OLS estimate is more efficient than 
GLS, if 

j
Rβ  is close to one then the OLS 

estimate is nearly as efficient as GLS, otherwise, 
OLS performs poorly. 
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S-plus code was written to compute the 
ratio of the variance of the OLS estimated 
variance to that of GLS in (7) using the OLS and 
four GLS estimators. 

 
Results 

 
The simulation results based on the variances of 
OLS and GLS estimated variance of each of the 
regression coefficients using four GLS and OLS 
estimates are now discussed. 
 Tables (1) and (2) show the simulation 
results of the variances of OLS and four GLS 

estimated variance, ( )0Var Varβ and

( )1Var Varβ  in (6), when the serially correlated 

disturbance is AR(2) process, under 
parameterized AR(1), and over parameterized 
AR(4) for linear design with all selected AR(2) 
coefficients and all sample sizes. 

First, regardless of sample size, the 
selected autoregressive coefficients for all non- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-stochastic designs, OLS was more efficient than 
EIGLS-AR(1) in estimating both 0β  and 1β . 

This is shown in Table (1), when Φ = (.8,-.9) for 

a linear design with T=100, [ ]0 03V ,V = 

[7.9340E-04, 5.8309E-03] and [ ]1 13V ,V  = 

[8.0950E-04, 5.5626E-03]. For all cases EIGLS-
AR(1) was the least efficient estimator. For 
example, when Φ = (.2,-.9) with T=200, 03V  = 

1.0822E-04 and 13V  = 1.0868E-04.  

Second, regardless of sample size and 
selected non-stochastic design, OLS was more 

efficient than GLS in estimating ( )0 1,β β with Φ 

= (.2,-.1). For example, as shown in Table (2), 

with T=50, [ ]0 01V ,V  = [1.9062E-05, 2.5782E-

05] and [ ]1 11V ,V = [1.9848E-05, 2.6844E-05]. 

Otherwise, the OLS estimator performed less 
efficiently than the GLS estimator. Furthermore, 
if Φ = (.2,-.1), OLS was more efficient than GLS 
estimates; EGLS- AR(2), and EIGLS-AR(4), for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Panel (A) - Variances of OLS and GLS Estimators for Linear Design 

  
Size 

  
Estimator 

(Φ1 , Φ 2) = (.2, -.9) (Φ1 , Φ 2) = (.8, -.9) 

V0 V1 V0 V1 

50 VOLS 3.8994E-03 4.0602E-03 6.0748E-03 6.3253E-03 

 VGLS AR(2) 1.9922E-06 2.4186E-06 1.3186E-05 1.5923E-05 

 VEGLS AR(2) 2.9702E-06 3.5411E-06 2.0197E-05 2.3851E-05 

 VEIGLS AR(1) 7.5176E-03 7.5862E-03 5.3587E-02 4.8020E-02 

 VEIGLS AR(4) 2.1458E-05 1.9951E-05 1.2105E-04 1.1500E-04 

100 VOLS 5.0757E-04 5.1788E-04 7.9340E-04 8.0950E-04 

 VGLS AR(2) 2.3634E-07 2.6019E-07 1.5304E-06 1.6804E-06 

 VEGLS AR(2) 3.0145E-07 3.2972E-07 2.2467E-06 2.4441E-06 

 VEIGLS AR(1) 8.6461E-04 8.7130E-04 5.8309E-03 5.5626E-03 

 VEIGLS AR(4) 1.6742E-06 1.7054E-06 9.0592E-06 9.2609E-06 

200 VOLS 6.5781E-05 6.6444E-05 9.7015E-05 9.7993E-05 

 VGLS AR(2) 3.2956E-08 3.4571E-08 1.5183E-07 1.5907E-07 

 VEGLS AR(2) 4.0323E-08 4.2192E-08 2.3086E-07 2.4091E-07 

 VEIGLS AR(1) 1.0822E-04 1.0868E-04 6.6333E-04 6.4879E-04 

 VEIGLS AR(4) 1.7871E-07 1.8186E-07 1.0469E-06 1.0632E-06 
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all sample sizes for all design vectors. This is 
shown in Table (2). For a linear design with 
sample size T=100; the variances of the 

estimated variance of ( )0 1,β β  using OLS, 

EGLS-AR(2) and EIGLS-AR(4) were 

[ ]0 02 04V ,V ,V  = [2.4432E-06, 1.9476E-05, 

4.2741E-05] and [ ]1 12 14V ,V ,V  = [2.4928E-06, 

1.8614E-05, 3.6817E-05], respectively. 
Otherwise, GLS estimates were more efficient 
than OLS. The results for the other non-
stochastic designs mimic the same behavior of 
the linear designs. 

Table (3) shows the simulation results of 
the variances of OLS and GLS estimated 
variance for standardized normal stochastic 
design. OLS was more efficient than GLS 
estimators in estimating 0β  for all sample sizes 

with Φ = (.2,-.1). For example, when T=50, 

[ ]0 01 02 04V ,V ,V ,V = [2.0509E-05, 2.6708E-05, 

2.2857E-04, 1.1503E-03]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For estimating the slope, 1β , OLS was 

nearly as efficient as GLS-AR(2), EGLS-AR(2), 
and EIGLS-AR(4) estimators for all sample 
sizes with AR(2) parametrization Φ  = (.2,-.1). 

For example, when T=50, [ ]1 11 12 14V ,V ,V ,V = 

[4.5526E-05, 3.9870E-05, 3.8240E-05, 3.6470E-
05]. Otherwise, OLS performed poorly. Second, 
the efficiency of OLS in estimating 0β  was 

more efficient than EIGLS-AR(1). For example, 
with AR(2) parametrization Φ = (.2,-.1) for 

T=50, [ ]0 03V ,V = [2.0509E-05,1.6262E-04]. 

However, the efficiency of OLS in estimating 

1β  was nearly as efficient as EIGLS-AR(1), for 

example, with Φ = (.2,-.1) for T=50, [ ]1 13V ,V = 

[4.5526E-05, 4.0393E-05].  
The simulation results based on the ratio 

of the variance of the estimated variance of OLS 
to that of GLS of each of the regression 
coefficients, Rβ in (7) are now discussed. Tables 

(4) and (5) are presented for the linear design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Panel (B) - Variances of OLS and GLS Estimators for Linear Design 

 
Size 

 
Estimator 

(Φ1 , Φ 2) = (.2, -.7) (Φ1 , Φ 2) = (.2,-.1) 

V0 V1 V0 V1 

50 VOLS 1.7765E-04 1.8498E-04 1.9062E-05 1.9848E-05 

 VGLS AR(2) 3.5205E-06 4.1751E-06 2.5782E-05 2.6844E-05 

 VEGLS AR(2) 7.5677E-06 8.6003E-06 2.0664E-04 1.7487E-04 

 VEIGLS AR(1) 4.2082E-04 4.1699E-04 1.5224E-04 1.3856E-04 

 VEIGLS AR(4) 6.0168E-05 4.8976E-05 8.1543E-04 3.8291E-04 

100 VOLS 2.4082E-05 2.4571E-05 2.4432E-06 2.4928E-06 

 VGLS AR(2) 4.2622E-07 4.6385E-07 3.2092E-06 3.2743E-06 

 VEGLS AR(2) 8.0958E-07 8.6773E-07 1.9476E-05 1.8614E-05 

 VEIGLS AR(1) 5.1302E-05 5.1260E-05 1.9368E-05 1.8558E-05 

 VEIGLS AR(4) 3.1549E-06 3.1480E-06 4.2741E-05 3.6817E-05 

200 VOLS 2.8555E-06 2.8843E-06 3.0692E-07 3.1001E-07 

 VGLS AR(2) 5.3668E-08 5.5979E-08 3.9671E-07 4.0070E-07 

 VEGLS AR(2) 1.0279E-07 1.0652E-07 2.1704E-06 2.1293E-06 

 VEIGLS AR(1) 5.7967E-06 5.7999E-06 2.2070E-06 2.1659E-06 

 VEIGLS AR(4) 3.5784E-07 3.6114E-07 3.9794E-06 3.7836E-06 
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First, when the disturbance term is under 
parameterization, regardless of the sample size, 
the selected autoregressive coefficients, and for 
all the non-stochastic designs, OLS is more 
efficient than EIGLS-AR(1) in estimating both 

0β  and 1β . For example, as shown in Table (4), 

when Φ = (.8,-.9) for the linear design with 
T=100, the ratio between 0V  and 03V  for 

estimating the intercept, 
0

Rβ is about 0.1361, 

and the ratio between 1V  and 13V for estimating 

the slope, 
1

Rβ is about 0.1455. This result 

indicates that the variance of the OLS estimated 
variance would be around 0.1361 and 0.1455 
times that of EIGLS-AR(1) for estimating the 
intercept and slope, respectively. This result 
shows that the variance estimation of EIGLS-
AR(1) is at least more than six times higher than 
the OLS estimator. Moreover, for all cases 
EIGLS-AR(1) was the least efficient estimator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Regardless of the example, shown in 
Table (5) with T=50, the ratio between 0V  and 

01V , 
0

Rβ = 0.7393 and the ratio between 1V  and 

11V , 
1

Rβ = 0.7394. Otherwise, the OLS 

estimator performed less efficiently than the 
GLS estimator. 

When Φ = (.2,-.1), OLS was more 
efficient than GLS estimates; EGLS-AR(2), and 
EIGLS-AR(4), for all sample sizes for all design 
vectors. For example, as shown in Table (5), for 
the linear design with sample size T=100, the 
ratios between the estimated variance of 

( )0 1,β β  using OLS, EGLS-AR(2) and EIGLS-

AR(4) were (0.1254,0.0572) and 
(0.1339,0.0677), respectively. Otherwise, OLS 
was less efficient than GLS estimates. The 
results for the other non-stochastic designs 
mimic the same behavior of the linear design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Panel (A) - Ratios of OLS and GLS Estimators for Linear Design 

Size Estimator 

(Φ1 , Φ 2) = (.2, -.9) (Φ1 , Φ 2) = (.8,-.9) 

V0 V1 V0 V1 

50 VOLS/VGLS2 1957.3616 1678.7466 460.7095 397.2509 

 VOLS/VEGLS2 1312.8309 1146.5926 300.7824 265.2020 

 VOLS/VEIGLS1 0.5187 0.5352 0.1134 0.1317 

 VOLS/VEIGLS4 181.7205 203.5053 50.1835 55.0002 

100 VOLS/VGLS2 2147.5934 1990.3878 518.4137 481.7247 

 VOLS/VEGLS2 1683.7773 1570.6721 353.1306 331.2065 

 VOLS/VEIGLS1 0.5871 0.5944 0.1361 0.1455 

 VOLS/VEIGLS4 303.1820 303.6701 87.5786 87.4111 

200 VOLS/VGLS2 1996.0370 1921.9448 638.9684 616.0478 

 VOLS/VEGLS2 1631.3452 1574.7931 420.2377 406.7638 

 VOLS/VEIGLS1 0.6079 0.6114 0.1463 0.1510 

 VOLS/VEIGLS4 368.0923 365.3556 92.6731 92.1673 
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Table (6) shows the ratio between the 
variance of OLS estimated variance and the 
variance of GLS estimates for all sample sizes 
for the standardized normal design.  

First, with Φ = (.2,-.1) and all sample 
sizes, the ratio between the variance of OLS 
estimated variance and the variance of GLS 
estimates; GLS-AR(2), EGLS-AR(2), and 
EIGLS-AR(4) were significantly smaller than 
one for estimating an intercept. For example, 
when T=50, 

0
Rβ = (0.7679, 0.0897, 0.0178). 

(See Table 6.) However, that ratio was slightly 
larger than the one for estimating the slope. For 
example, when T=50, 

1
Rβ = (1.1419, 1.1905, 

1.2483). 
Second, regardless of sample size and 

AR(2) parametrization, the ratio between the 
variance of OLS estimated variance and the 
variance of EIGLS-AR(1) was significantly 
smaller than one for estimating an intercept. For 
example, with Φ = (.2,-.1) and T=50, 

0
Rβ = 

0.1261. However, the efficiency of OLS in 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
estimating 1β  was nearly as efficient as EIGLS-

AR(1). For example, with Φ = (.2,-.1) and T = 
50, 

1
Rβ =1.1271. 

 
Conclusion 

 
This study investigated the impact that variance 
estimators may have on inference based on the 
OLS estimator. The variance estimation is 
important because estimates of the variance 
enter into the usual inferential procedures such 
as confidence intervals, hypotheses testing, and 
spectrum estimation, as well as in expressions 
for the estimated standard error of prediction. 
The major finding is that, OLS (order zero) 
estimates outperform first order estimated 
generalized least squares, EIGLS-AR(1). In 
particular, the ratio of the variance estimation of 
the regression coefficients when the disturbance 
term is under parametrized, i.e. EIGLS-AR(1) 
has the highest ratio estimation among the other 
estimators. This indicates that EIGLS-AR(1) can 
be much less efficient than OLS. 
 
 
 
 
 

Table 5: Panel (B) - Ratios of OLS and GLS Estimators for Linear Design 

Size Estimator 

(Φ1 , Φ 2) = (.2, -.7) (Φ1 , Φ 2) = (.2,-.1) 

V0 V1 V0 V1 

50 VOLS/VGLS2 50.4616 44.3050 0.7393 0.7394 

 VOLS/VEGLS2 23.4750 21.5081 0.0922 0.1135 

 VOLS/VEIGLS1 0.4222 0.4436 0.1252 0.1432 

 VOLS/VEIGLS4 2.9526 3.7769 0.0234 0.0518 

100 VOLS/VGLS2 56.5013 52.9710 0.7613 0.7613 

 VOLS/VEGLS2 29.7460 28.3162 0.1254 0.1339 

 VOLS/VEIGLS1 0.4694 0.4793 0.1261 0.1343 

 VOLS/VEIGLS4 7.6332 7.8053 0.0572 0.0677 

200 VOLS/VGLS2 53.2076 51.5253 0.7737 0.7737 

 VOLS/VEGLS2 27.7797 27.0774 0.1414 0.1456 

 VOLS/VEIGLS1 0.4926 0.4973 0.1391 0.1431 

 VOLS/VEIGLS4 7.9800 7.9868 0.0771 0.0819 
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Table 6: Ratios of OLS and GLS Estimators for Standardized Normal Design 

Size Estimator 

(Φ1 , Φ 2) = (.2, -.7) (Φ1 , Φ 2) = (.2,-.1) 

V0 V1 V0 V1 

50 VOLS/VGLS2 47.1201 12.0362 0.7679 1.1419 

 VOLS/VEGLS2 27.7268 11.5177 0.0897 1.1905 

 VOLS/VEIGLS1 0.5036 1.0508 0.1261 1.1271 

 VOLS/VEIGLS4 6.1101 11.4395 0.0178 1.2483 

100 VOLS/VGLS2 55.4232 13.1856 0.8045 1.1970 

 VOLS/VEGLS2 31.4673 12.1070 0.1326 1.1990 

 VOLS/VEIGLS1 0.5251 1.0636 0.1252 1.1595 

 VOLS/VEIGLS4 8.9087 11.5746 0.0609 1.2367 

200 VOLS/VGLS2 55.1432 13.6790 0.7756 1.1285 

 VOLS/VEGLS2 31.4317 12.7201 0.1590 1.0819 

 VOLS/VEIGLS1 0.5338 1.0553 0.1524 1.0836 

 VOLS/VEIGLS4 10.0527 11.8398 0.0756 1.1029 
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