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Bootstrap Confidence Intervals and Coverage Probabilities of Regression 
Parameter Estimates Using Trimmed Elemental Estimation 

 
   Matthew Hall      Matthew S. Mayo 

  Child Health Corporation                   University of Kansas  
 of America                                  Medical Center 

 
 
Mayo and Gray introduced the leverage residual-weighted elemental (LRWE) classification of regression 
estimators and a new method of estimation called trimmed elemental estimation (TEE), showing the 
efficiency and robustness of TEE point estimates. Using bootstrap methods, properties of various trimmed 
elemental estimator interval estimates to allow for inference are examined and estimates with ordinary 
least squares (OLS) and least sum of absolute values (LAV) are compared. Confidence intervals and 
coverage probabilities for the estimators using a variety of error distributions, sample sizes, and number 
of parameters are examined. To reduce computational intensity, randomly selecting elemental subsets to 
calculate the parameter estimates were investigated. For the distributions considered, randomly selecting 
50% of the elemental regressions led to highly accurate estimates. 
 
Key words: Elemental subsets, elemental regression, robust regression, coverage probabilities. 
 
 

Introduction 
 
A popular method of finding a solution to the 
multiple linear regression model 
 

Y = Xβ + ε         (1.1) 
 
is to make use of the ordinary least squares 
(OLS) solution: 
 

=OLSβ̂ (XtX)-1 Xt Y. 
 

In this nomenclature, Y is a 1×n vector 
of random observations, X is a n × p matrix of 
known constants, β is a p × 1 vector of unknown 
parameters, and ε is a n × 1 vector of random 
errors with E(ε) = 0 and Var(ε) = σ2I. The OLS 
solution purposefully minimizes the sum of 
squared residuals 
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=)ˆ(βSSE (Y - X β̂ )t (Y - X β̂ ). 
 
There are many reasons why this solution is 
desirable, such as ease of calculation and the 
well developed theory that supports it. However, 
the OLS solution is also known to be sensitive to 
outliers and/or violations of model assumptions. 

Several attempts to develop solutions 
that are less sensitive to outliers have been 
developed. These include least absolute values 
(LAV) regression, which minimizes the sum of 
the absolute residuals, and pL -norm regression, 

which minimizes the sum of the pth powers of 
the absolute residuals. This article furthers the 
work of another method called the trimmed 
elemental estimator (TEE), first proposed by 
Mayo and Gray (1), that makes use of elemental 
subsets. 
 
Elemental Subsets 
 In most cases when using model (1.1), n 
(the sample size) is much greater then p (the 
number of unknown parameters), and the system 
of equations becomes over-determined. 
However, in order to estimate 
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pββββ ,,,, 210  , only k = p+1 observations 

are mathematically required. Thus, when solving 
the over-determined system, a choice must be 
made from infinitely many possible solutions in 
order to settle on a single regression line. One 
way to deal with this issue is to ignore the fact 
that only k observations are needed and to pool 
all n observations into a single system of k 
equations to solve: this is what OLS does. 
Alternatively, subsets of the data could be 
formed with exactly k observations, their 
corresponding fits found, and the best one taken: 
this is what LAV does. An even better method 
might be to take several of the fits in this scheme 
and use their combined information to settle on 
estimates. Mayo and Gray (1997) developed 
TEE for this purpose. Using either of these last 
two approaches makes use of elemental subsets 
and elemental regression. 
 An elemental subset of a data set is 
simply a subvector of the data. In the setting of 
model (1.1), a subvector h = {i1, i2,…, ip} may 
be considered as a set of distinct indices from a 
set of n indices. Xh may be defined as the p × p 
submatrix of X containing the rows of X 
indexed by the subset h. Furthermore, Yh can be 
defined as the corresponding p × 1 subvector of 
Y. The solution to the elemental regression 
equation is given by: 
 

hβ̂  = ( ) hhh
t
hh

t
h YXYXXX 11 −−

= . 

 
With the advent of high speed 

computers, elemental regression has been 
revived from its forgotten past nearly 250 years 
ago. It was, in fact, a predecessor to least 
squares, introduced in 1755 by Boscovich. 
However, due to its computational intensity and 
the introduction of least squares, it fell out of 
favor with data analysts. The need for 
computational power is evident when 
considering even a small data set. For example, 
assume a sample size of 50 and the need to 
estimate three parameters. There are 50C3 = 
19,600 elemental subsets of the data that must be 
fit. This is clearly beyond human capability. 

Renewed interest in elementals has 
occurred on many fronts. Going back to the 
early days of modern computers, Theil (1950) 
and Sen (1968) used elementals to develop 

simple linear regression estimators. On the 
diagnostics front, Rubin (1980), Hawkins 
(1993), and Welsch (1986) used elementals to 
detect outliers and perform other regression 
diagnostics. Rousseeuw and Bassett (1991) and 
Hawkins (1993) considered searching through 
the set of elemental regressions and selecting the 
optimal parameter estimates based on specified 
criteria. Hawkins further defined, for a specified 
fitting criterion, the best elemental estimator 
(BEE) as the optimal estimate over all elemental 
fits. Recently, Hawkins and Olive (2002) 
introduced the X-cluster algorithm as a form of 
elemental regression for large multiple 
regression datasets. 
 Mayo and Gray’s (1997) contribution 
introduced regression estimators based on OLS 
in terms of elemental regression. Sheynin (1973) 
reported that Jacobi was the first to show that 
OLS can be viewed as a weighted average of 
elemental regressions: 
 

=OLSβ̂ 


=

h
ht

h
t
h

h
h

t
h

h
h

h
t
h

β

β
ˆ

XX

XX

XX

ˆXX

   (1.2) 

 
where h is the set of all possible elemental 
subsets and the single bars indicate determinates. 
Furthermore, the weights are defined as: 
 

XX

XX

t

h
t
h

hw = . 

 
Because these weights are between zero and one 
and must sum to one, OLS is a weighted average 

of the elemental regressions hβ̂ . 

Mayo and Gray (1997) took this version 
of OLS and generalized it to a class of 
estimators which they called leverage-residual 
weighted elemental (LRWE) estimators of the 
form: 

ˆ[ ( ), ( )]
ˆ( , )

[ ( ), ( )]

h
h

h

w h h

w h h

λ ρ β
β λ ρ

λ ρ
=



   (1.3) 

In this formulation, λ(h) is a factor based on the 
leverage information for Xh , and ρ(h) is a factor 
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based on the degree of fit for the elemental 
regression h. The OLS version is observed (1.2) 
in this form where 
 

λ(h) = h
t
h XX , ρ(h) = 1 for all h,   (1.4) 

 
and 

w[λ(h), ρ(h)] = λ(h)ρ(h). 
 
OLS does not make use of the weight factor 
based on the degree of fit, ρ(h). For this reason, 
in OLS, elemental regressions with extreme data 
points are weighted the same as those that 
behave normally. Thus, OLS can be easily 
influenced by the presence of outliers. 
 
Trimmed Elemental Estimators 
 Instead of ignoring the goodness of fit of 
a regression to a set of elementals, ρ(h) could be 
altered in the OLS formulation of (1.4). Mayo 
and Gray (1997) created what they called the 
trimmed elemental estimator (TEE) to trim out 
the elemental regressions that poorly fit the data 
or have extreme leverage. The benefit of such a 
strategy is to remove from consideration 
elemental regressions that are computed from 
outlying data, thus achieving a more robust 
regression. Using the same λ(h) and w[λ(h), 
ρ(h)] as in (1.4), they altered ρ(h) to be the 
indicator function: 
 
ρ(h) = 














−≤ 

= =

n

i

n

i
hipn

th
phi eCe

1 1

valuestheofpercentile100)1(I α  

 
Here, α p is a trimming constant between zero 

and one and 
=

n

i
hie

1

is the sum of absolute 

residuals (SAE) resulting from the elemental 

estimate hβ̂ . Depending on the proportion of 
regressions one would like to remove from 
consideration as determined by their goodness of 
fit, α p can be adjusted accordingly. Thus, many 
trimmed elemental regression estimators can be 
found and denoted by TEE(α p). 

Mayo and Gray (2001) used simulation 
results to show the robustness and efficiency 
properties of TEE(α p) point estimates to normal 

and symmetric non-normal error distributions, a 
feature which OLS does not enjoy. Results 
showed that the TEE(α p) offers high efficiency 
under normality and is very robust to non-
normality. This article furthers their work by 
examining some bootstrap confidence intervals 
of the trimmed elemental estimator and their 
properties and reducing computational intensity 
through random selection of elemental 
regressions. 
 

Methodology 
 
Simulation Design 
 Simulations were aimed at gaining a 
better understanding of the TEE(α p) for 
inference by creating confidence intervals for 
the parameters and coverage probabilities under 
various scenarios. The objective was to compare 
these using the following methods: least 
absolute values (LAV), TEE(0.25), TEE(0.50), 
TEE(0.75), and OLS. Furthermore, a variety of 
error term distributions were assumed including: 
Normal, Laplace, Cauchy, 10% Contaminated 
Normal, and Student’s t. These distributions 
were selected to provide a variety of weight in 
the tails of the distribution. In the simulations, 
Normal, Laplace, and t distribution parameter 
values had an error variance (σ2 ) of 3.0. For the 
Normal distribution, standard normal variates 
were generated and multiplied by σ. 

For Laplace, random variates from an 
exponential distribution were generated (mean = 
1.0), randomly assigned a sign, and multiplied 
by σ/2. The Cauchy was the standard Cauchy 
distribution. For the 10% Contaminated Normal 
errors, standard normal variates were generated 
and-based on the value of a uniform random 

variate-were multiplied by either σ5  (with 
probability 0.1) or σ (with probability 0.9). 
Finally, for the Student’s t error distribution, 
three degrees of freedom were used in order for 
σ2 = 3. The independent variable X was 
generated from a N(3,3) distribution. 

In order to achieve the research goals, 
various quantities of 95% bias-corrected and 
accelerated (BCa) bootstrap confidence intervals 
for OLS, LAV were calculated, and various 
trimmed elemental estimators and determined 
the number of times the true value of the 
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parameter was in the intervals. Figure 1 shows 
the flowchart for the simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The bootstrap is a well-developed 
approach to calculating approximate confidence 
intervals for parameter estimates when exact 
confidence intervals do not exist by repeatedly 
resampling the data with replacement. The BCa 
method was introduced by Efron (1987) as an 
improvement to the bias-corrected (BC) method 
of Efron (1982) in order to provide confidence 
intervals for a wider class of problems. It 
constitutes a method for setting approximate 
confidence intervals for a parameter based on 
the percentiles of the bootstrap histogram, a bias 
correction, and an acceleration constant which 
measures how rapidly the standard error is 
changing on the normalized scale. For a 
complete review of various bootstrap confidence 
intervals including BCa, see DiCiccio and Efron 
(1996). As a way of summarizing the BCa 
confidence intervals, an overall 95% interval 
was calculated for each parameter. For this 
interval, the lower limit represents the value for 

which 2.5% of the lower boundaries of the BCa 
confidence intervals are less than this value. 
Similarly, the upper limit represents the value 
for which 2.5% of the upper boundaries of the 
BCa confidence intervals are greater than this 
value. All simulations were performed on a Dell 
1.6GHz Pentium 4 computer with 1.0 GB of 
RAM using Digital FORTRAN 90. 

In order to verify that the program was 
performing properly, the performance was tested 
using the two extreme methods under 
consideration: LAV, which takes only a single 
elemental regression, and OLS, which uses all of 
the elemental regressions. Comparing the 
parameter estimates (p = 2, n = 25) provided by 
the program for the three error distributions to 
the estimates provided by SAS© version 8e, 
agreement to five significant digits was 
obtained. 
 

Results 
 
In order to understand how the TEE(α p) 
estimators would act under different situations, 
the following simulation scenarios were chosen: 
 

a) a small sample size of 10 with two 
parameters;  

b) a moderate sample size of 25 with three 
parameters; 

c) a moderate sample size of 25 with two 
parameters; and 

d) a large sample size of 100 with five 
parameters. 

 
Sample sizes and number of parameters were 
chosen to limit computing time while allowing 
properties of the confidence intervals across a 
variety of scenarios to be ascertained. The 
results of simulations (c) and (d) are not 
presented here, they were performed to verify 
that the results did not change dramatically when 
the sample size and number of parameters was 
altered. The results of these simulations were 
very similar to the results discussed in greater 
detail below. Any exceptions are noted. 
 For these simulations, there were 10C2 = 
45, 25C3 = 2,300, 25C2 = 300, and, 100C5 = 
75,287,520 elemental subsets that had to be fit 
for each bootstrap sample, respectfully. For 
simulation (a), Table 1 shows the summary 95% 

Figure 1: Simulations flowchart. 

Generate a 
random sample 

Sample the data 
with 

replacement 

Estimate the 
parameters 

Construct the 
95% BCa CI 

Determine if the 
true parameters 

are in the CI 

Construct a 
summary CI for 

Table 1 

1,000 
times 

100, 
500, 

or 
1,000 
times 
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intervals for the BCa confidence intervals for β1 
using the method previously described. The 
smallest confidence interval in each scenario is 
highlighted. Figure 2 shows the coverage 
probabilities for the 1,000 BCa confidence 
interval created by the bootstrap (100, 500, or 
1,000 samples) for β1 from simulation (a). 
Similarly, Figure 3 shows the coverage 
probabilities for β1 and β2 from simulation (b). 
 From Table 1, it is evident that the 
summary intervals tend to tighten around the 
true values of the parameters as the number of 
bootstrap samples increase. As long as the error 
term is Normal or 10% Contaminated Normal, 
OLS does quite well. Furthermore, regarding the 
1,000 bootstraps, it is apparent that OLS is 
difficult to distinguish from TEE(0.25) when the 
error is Normal, 10% Contaminated Normal, or 
Student’s t. However, as expected, when the 
error term is either Cauchy or Laplace, OLS is 
clearly not the best choice. With a Cauchy error 
term, it appears that TEE(0.75) performs best for 
the slope regardless of sample size or the 
number of parameters (simulations (b) , (c), and 
(d) also showed TEE(0.75) to be superior). 
When the error follows the Laplace distribution, 
TEE(0.50) or TEE(0.25) seem to be the best 
(simulations (b), (c), and (d) showed TEE(0.50) 
to be slightly better than TEE(0.25)). In sum, it 
appears that TEE(0.50) performs very well for 
all of the error distributions considered. 
Although not shown, the results were very 
similar for the intercept in all four simulations 
with only slightly wider intervals. The parameter 
β2 in simulation (b) had very similar results to 
those discussed above for β1. 
 Figures 2 and 3 show how the different 
methods performed at covering the true values 
of the parameters with their 95% BCa 
confidence intervals for simulations (a) and (b), 
respectively. Although not shown in either 
figure, the confidence intervals for the intercept 
fail to include the true parameter more 
frequently than the slope confidence intervals. 
Nonetheless, the coverage probabilities for the 
intercept ranged from 0.90 to 0.97 for all 
simulations. Considering the 1,000 bootstrap 
samples (dashed lines) in the figures, the 
coverage probabilities for the error distributions 
studied ranges from 0.90 to 0.98. Thus, all of the 
methods captured the true values of the 

parameters quite well. However, regardless of 
the error distribution considered, TEE(0.50) 
appears to perform very consistently. 
 Furthermore, it is observed that either 
LAV or TEE(0.75) has the highest coverage 
probabilities, while OLS has the lowest for the 
error distributions under consideration. In fact, 
since the coverage probabilities were expected 
to be at 0.95, it is generally the case that LAV 
and TEE(0.75) performed above this level, 
TEE(0.50) and TEE(0.25) performed at this 
level, and OLS performed below this level. 
Hence, the coverage probability decreases as the 
trimming constant (α p) decreases. The data from 
the other simulations were very similar and are 
not presented here. Once again, the coverage 
probabilities for β2 in simulation (b) were similar 
to the probabilities for β1 described above. 
 An objective in this article was to reduce 
the amount of necessary computations to 
achieve an acceptable estimate for the 
parameters using TEE(α p). How this might be 
accomplished through random selection of 
elemental subsets as suggested by Hawkins 
(1993) for the BEE was investigated.  

For simulation purposes, all of the 
elementals were first used to construct all of the 

elemental regressions hβ̂ . Specified proportions 

(30%, 50%, 70% or 90%) of these were then 
randomly selected in order to calculate 
parameter estimates through equation (1.3). This 
was performed with 10,000 data sets, and the 
median estimate was calculated for each error 
distribution at each percentage. The median was 
selected since it is a more robust measure of 
central tendency when compared to the mean. 
For β1 when n=10 and p=2, the medians are 
displayed in Figure 4. 

Using 50%, 70%, or 90% of the 
elemental regressions seems to provide accurate 
estimates for β1 as long as the error distribution 
is one of those under consideration here. By 
selecting only 30% of the elemental regressions, 
the median estimates diverged further from the 
true value when compared to the other 
proportions, especially for the Normal, 10% 
Contaminated Normal, and the Student’s. 
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Table 1: Summary intervals of 1,000 BCa confidence intervals for β1 

when N=10, p=2. The true value is one. 

100 Bootstraps 500 Bootstraps 1000 Bootstraps 

Normal 
LAV (-2.645, 3.880) (-2.023, 3.900) (-1.930, 4.029) 
TEE (0.75) (-2.385, 3.537) (-1.948, 3.706) (-1.913, 3.952) 
TEE (0.50) (-2.032, 3.232) (-1.620, 3.338) (-1.525, 3.433) 
TEE (0.25) (-1.692, 2.950) (-1.254, 3.065) (-1.192, 3.111) 
OLS (-1.530, 2.838) (-1.200, 2.994) (-1.117, 3.106) 

Cauchy 
LAV (-29.597, 18.777) (-31.469, 26.944) (-25.958, 18.943) 
TEE (0.75) (-29.036, 16.883) (-30.733, 26.192) (-24.885, 18.313) 
TEE (0.50) (-31.722, 16.812) (-28.499, 31.962) (-29.893, 19.275) 
TEE (0.25) (-40.439, 27.037) (-30.955, 31.913) (-40.622, 24.040) 
OLS (-39.576, 31.148) (-38.294, 38.800) (-42.077, 22.391) 

Laplace 
LAV (-8.493, 7.962) (-7.793, 8.521) (-5.495, 7.960) 
TEE (0.75) (-8.335, 7.699) (-7.340, 8.414) (-5.157, 7.954) 
TEE (0.50) (-6.852, 6.901) (-6.003, 7.533) (-4.579, 6.931) 
TEE (0.25) (-6.895, 6.515) (-5.709, 6.907) (-4.794, 7.096) 
OLS (-7.371, 6.715) (-5.719, 6.921) (-4.974, 7.488) 

Contam 
LAV (-3.005, 4.390) (-2.730, 4.278) (-2.558, 4.666) 
TEE (0.75) (-2.876, 4.170) (-2.685, 4.190) (-2.528, 4.507) 
TEE (0.50) (-2.680, 3.965) (-2.302, 6.644) (-2.093, 4.187) 
TEE (0.25) (-2.517, 3.591) (-1.948, 3.525) (-1.635, 3.935) 
OLS (-2.470, 3.531) (-1.807, 3.473) (-1.672, 3.800) 

T-distribution 
LAV (-2.477, 3.895) (-2.249, 3.555) (-1.794, 4.330) 
TEE (0.75) (-2.554, 3.870) (-2.161, 3.490) (-1.842, 4.219) 
TEE (0.50) (-2.180, 3.537) (-1.738, 3.164) (-1.518, 3.894) 
TEE (0.25) (-1.808, 3.281) (-1.482, 3.077) (-1.288, 3.733) 
OLS (-1.746, 3.297) (-1.447, 3.016) (-1.280, 3.751) 
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Figure 2: Coverage probabilities of the 1,000 BCa confidence intervals for β1 
when N=10 and p=2. 
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Figure 3: Coverage probabilities of the 1,000 BCa confidence intervals for β1 (column 1) and β2 
(column 2) when N=25 and p=3. 
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Figure 4: Median estimates for β1 of 10,000 simulated data sets (N=10, p=2) using 
random selection of elemental regressions. The true value is one. 
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Thus, it appears that randomly selecting 
at least 50% of the elemental regressions is 
sufficient for producing accurate estimates. 
These results are similar for the intercept (data 
not shown) with the exception of using 50% of 
the elemental regressions with Laplace errors. In 
this situation, TEE(0.25) and OLS overestimated 
the intercept considerably. However, at 70%, the 
estimates behaved much more like those seen in 
Figure 4. 

Figure 5 shows the coverage 
probabilities for the 95% BCa confidence 
intervals using various quantities of bootstrap 
samples when n = 10, p = 2, and 50% of the 
elemental regressions are randomly selected. 
When similar simulations (n = 10, p = 2) are 
compared between Figure 5 (coverage 
probabilities when 50% of the elemental 
regressions are randomly selected) and Figure 2 
(coverage probabilities without random 
selection), it is observed that results are quite 
similar. That is, while the coverage probabilities 
in Figure 5 are slightly higher than those in 
Figure 2, the trends seem similar. As was the 
case in Figure 2, generally speaking, LAV and 
TEE(0.75) over perform at the 95% level, 
TEE(0.50) and TEE(0.25) performed 
consistently at the 95% level, and OLS 
performed below the 95% level. Coverage 
probabilities from randomly selecting 70% and 
90% of the elemental regressions produced 
similar results with the lines generally moving 
closer (as the percentage increased) to those 
observed in Figure 2. 
 

Conclusion 
 
The construction of BCa confidence intervals for 
the trimmed elemental estimators have been 
demonstrated and their coverage probabilities 
have been. These are necessary extensions to 
Mayo and Grays original work and are additions 
to the development of TEE for inference 
purposes. In agreement with Mayo and Gray, 
this article showed that the trimmed elemental 
estimators are desirable in many situations. In 
fact, among those considered, they seem to be 
the clear choice when the error distribution is 
Cauchy or Laplace. Furthermore, for the 
Normal, 10% Contaminated Normal, or 
Student’s t error distributions, trimmed 

elemental estimators were found to be almost 
indistinguishable from OLS. In addition, 
TEE(0.50) performed consistently well in terms 
of estimation and coverage probabilities for all 
of the error distributions under consideration. It 
appears that a researcher could be fairly 
comfortable in choosing TEE(0.50), however 
knowledge of the process should guide this and 
utilization of traditional graphical procedures, 
such as residual and fitted value plots, might aid 
in determining the trimming constant. The TEE 
requires a large number of calculations as 
compared with OLS, therefore, it is desirable to 
use OLS when it is known that the assumptions 
for OLS are not violated and that there are no 
outliers present. 

When data sets become larger and the 
number of parameters increases, increasing 
computational difficulties for LRWE estimators 
are present. Since there are nCp elemental subsets 
that must be fit, ways must be found to decrease 
the number of computations. Hawkins (1993) 
suggested that using a random subsample of the 
elemental subsets would produce a good 
estimate for the best elemental estimator. This 
article examined such random subsamples to 
determine if this method is appropriate for 
reducing the number of calculations required for 
the trimmed elemental estimator. It was found 
that utilizing at least 50% of the elemental 
regressions generally provides good results as 
long as the error distribution is Normal, Cauchy, 
Laplace, 10% Contaminated Normal, or 
Student’s t. It was also observed that estimates 
tend to drift from the true value when random 
sampling falls to 30%. 
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Figure 5: Coverage probabilities of the 1,000 BCa confidence intervals for β1 (N=10 and p=2) 
when randomly selecting 50% of the elemental regressions. 

Normal Errors

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LAV TEE (0.75) TEE (0.50) TEE (0.25) OLS

100 BS (50%)
500 BS (50%)
1000 BS (50%)

Cauchy Errors

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LAV TEE (0.75) TEE (0.50) TEE (0.25) OLS

100 BS (50%)
500 BS (50%)
1000 BS (50%)

Laplace Errors

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LAV TEE (0.75) TEE (0.50) TEE (0.25) OLS

100 BS (50%)
500 BS (50%)
1000 BS (50%)

Contam Normal Errors

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LAV TEE (0.75) TEE (0.50) TEE (0.25) OLS

100 BS (50%)
500 BS (50%)
1000 BS (50%)

T-Dist Errors

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LAV TEE (0.75) TEE (0.50) TEE (0.25) OLS

100 BS (50%)
500 BS (50%)
1000 BS (50%)

 



HALL & MAYO 
 

525 
 

 
 

Efron, B., & Tibshirani, R. (1993).  An 
introduction to the bootstrap. NY: Chapman and 
Hall. 

Hawkins, D. (1993). The accuracy of 
elemental set approximations for regression. 
Journal of American Statistical Association, 88, 
580-589. 

Hawkins, D., & Olive, D. (2002). 
Inconsistency of resampling algorithms for high-
breakdown regression estimators and a new 
algorithm. Journal of the American Statistical 
Association, 97, 136-148. 

Mayo, M., & Gray, B. (1997). 
Elemental subsets: the building blocks of 
regression. The American Statistician, 51, 122-
129. 

Mayo, M., & Gray, B. (2001). The 
robustness and efficiency of trimmed elemental 
estimation in regression analysis: a Monte Carlo 
simulation study. Probabilistic Engineering 
Mechanics, 16, 323-330. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Rousseeuw, P., & Bassett, G. (1991). 

Robustness of the p-subset algorithm for 
regression with higher breakdown points. In W. 
Stahel (Ed.), Robustness, Diagnostics, 
Computing and Graphics in Statistics. NY: 
Springer. 

Rubin, D. (1980). Composite points in 
weighted least squares regression. 
Technometrics, 22, 343-348. 

Sen, P. K. (1968). Estimates of the 
regression coefficient based on Kendall’s tau. 
Journal of the American Statistical Association, 
63, 1379-1389. 

Sheynin, O.B. R.J. (1973). Boscovich’s 
work on probability. Archive for History of 
Exact Sciences, 9, 306-324. 

Theil, H. (1950). A rank invariant 
method of linear and polynomial regression 
analysis III. Proceedings of the Royal Society A, 
53, 1397-1412. 

Welsch, R. (1986). Comment. Statistical 
Science, 1, 403-405. 
 


	Journal of Modern Applied Statistical Methods
	11-1-2008

	Bootstrap Confidence Intervals and Coverage Probabilities of Regression Parameter Estimates Using Trimmed Elemental Estimation
	Matthew Hall
	Matthew S. Mayo
	Recommended Citation


	Microsoft Word - toc_vol7_no2

