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Least Squares Percentage Regression 
  

Chris Tofallis 
University of Hertfordshire 
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In prediction, the percentage error is often felt to be more meaningful than the absolute error. We 
therefore extend the method of least squares to deal with percentage errors, for both simple and multiple 
regression. Exact expressions are derived for the coefficients, and we show how such models can be 
estimated using standard software. When the relative error is normally distributed, least squares 
percentage regression is shown to provide maximum likelihood estimates. The multiplicative error model 
is linked to least squares percentage regression in the same way that the standard additive error model is 
linked to ordinary least squares regression. 
 
Key words: Regression, error measures, relative error, percentage regression, weighted least squares, 
multiplicative error, heteroscedasticity. 
 
 

Introduction 
 
When a regression model is used for prediction 
the size of the error is of interest. The magnitude 
of an error is not meaningful in isolation – it 
needs to be viewed in relation to the size of the 
observed or actual value. Percentage errors are 
often used for this purpose. Our definition of 
percentage error is 100 × (observed value − 
predicted value)/(observed value), as used in the 
fields of forecasting and time series analysis. In 
traditional least squares regression, an error of 
one unit is treated equally whether the dependent 
variable has a value of ten or a hundred, even 
though in percentage terms an error of one in ten 
would usually be considered more serious than 
an error of one in a hundred. In this article the 
method of least squares regression will be 
adapted to deal with percentage errors. There is 
a separate body of literature dealing with 
minimizing the mean absolute percentage error 
(MAPE), e.g. Narula & Wellington, 1977. This 
suffers from at least two deficiencies: (1) there is 
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no formula for the coefficients (one must solve a 
linear programming problem to find them), and 
(2) the resulting parameter estimates may not be 
unique. The method presented in this article 
does not have these drawbacks. 

It is important to highlight a difference 
between the above definition of relative error vs. 
(observed value − predicted value)/(predicted 
value). The latter was used by Book and Lao 
(1999) and Goldberg and Touw (2003). The 
question is: Should we compare the error with 
the actual observed value or with the value 
predicted from the model? The following may 
be one way of choosing. When dealing with a 
controlled scientific situation where the 
functional form of the underlying theoretical 
model is known, then any departures from the 
predictions may be due to measurement error; in 
this case, it may make sense to consider the error 
relative to the predicted value. If however, the 
‘true’ underlying model or all its constituent 
variables are unknown then the ‘true’ value is 
also unknown and we recommend the approach 
taken here. 

This is the usual situation in finance, 
economics, psychology and the other social 
sciences. For example, when forecasting the 
value of investments traded on the stock market 
it makes sense to relate prediction errors to the 
observed values. The same argument usually 
applies in the area of cost estimation. The people 
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paying the costs will find it more meaningful to 
assess the predictive ability of a cost-estimating 
relation (CER) using the error relative to what 
they actually paid, not relative to what the model 
predicted. Similarly, a prediction that a salary 
bonus would be $10k, but which actually turned 
out to be $5k corresponds to an error of 100% 
by the definition used in this article, whereas the 
other definition would rate this as only a 50% 
error in prediction. 

The definition of relative error used here 
also has computational advantages over the 
other form. The minimization of the sum of 
squares of the other form cannot be solved 
exactly because the normal equations are a 
nonlinear system. Book and Lao (1999) noted 
numerical optimization techniques are usually 
necessary to find the coefficients; they pointed 
out that due to multiple local minima 
unreasonable solutions must be excluded, and 
that the is most plausible solution physically 
selected. Moreover, the resulting estimators are 
inconsistent. Goldberg and Touw (2003) 
explained the reason for this: “simply inflating 
the predictions in the denominator [of the 
relative error] will tend to deflate the percentage 
errors, at the expense of worsening the fit” (p. 
62). This problem does not arise if the standard 
definition of relative error is used. 

Before deriving the necessary equations 
for the coefficients, alternative approaches will 
be considered. Consider the simple case where a 
scatter plot of the data indicates that fitting a 
straight line (y = a + bx) is appropriate. One 
suggestion might be to use logarithms in the 
following way: regress ln(y) against x. The 
trouble with this is that the resulting model 
would not be a linear relationship between y and 
x, instead it would have ln(y) linearly related to 
x, and so y would be exponentially related to x. 
Although this does correspond to a straight line 
when the exponent is zero, the slope of the line 
is forced to be zero. 

It is in fact a common misconception 
that regressing ln(y) is equivalent to minimizing 
the squared relative errors; it is approximately 
true only if all the errors are small, as then 
ln(ŷ/y) ≈ (ŷ/y) −1. The difference in these 
regression models will be illustrated with a 
numerical example below. 

Regressing ln(y) on ln(x), the fitted 
model is: 
 

ln(y) = A + B ln(x), 
hence, 
 

y = exp[A + B ln (x)] = exp(A) xB, 
 

which is a power law. For the case B = 1 this 
does correspond to a line, but it is forced to have 
a zero intercept and so passes through the origin. 

Thus, both of these approaches 
involving log transformations are inadequate 
because they depart from a linear model in the 
original variables, which is our assumed starting 
point. Another suggestion might be to regress ln 
(y) on ln (a + bx). This is a non-linear problem 
requiring iterative computational procedures. By 
contrast, in the proposed approach exact 
expressions for the coefficients are available. 

 
Derivation of Formulae for the Coefficients 

An exact expression is now derived for 
the coefficients for percentage least squares 
regression. Let X be a matrix in which each 
column contains the data for one of the 
explanatory variables, and the first column 
contains the value 1 in each position. The aim is 
to obtain a coefficient bi for each column 
variable, and the coefficient associated with the 
first column will be the constant.  

The values of the dependent variable are 
contained in a column vector y, which is 
assumed strictly positive. The data in the ith row 
of the matrix is associated with the ith element of 
the y vector. 

Traditionally, the sum of squared errors 
would be minimized, eTe , where e denotes the 
vector of errors, y − Xb. (Superscript T denotes 
the transpose.) However, the primary interest is 
in the relative errors r (percentage error = 100 
times relative error), so each error ei needs to be 
divided by yi , so ri = ei /yi. Carrying out this 
division on the form y −Xb requires that the ith 
row of X be divided by yi. This is achieved 
using the form r = Dy − DXb, where D is an n 
by n diagonal division matrix containing the 
value 1/yi in the ith diagonal position and zeros 
elsewhere. D can be viewed as a matrix of 
weights. 
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 Minimizing the sum of squares of 
relative errors ri

2
, which, in vector notation, 

becomes 
 
         rTr = (Dy − DXb)T (Dy − DXb) 
               = (Dy)T Dy  − (Dy)T DXb  

       − (DXb)T Dy + bT XT D2Xb 

 
To find the minimum, differentiate this with 
respect to b and equate to zero: 
 

−(Dy)T Dx + XT D2Xb = 0 
 
This is the matrix equivalent of the normal 
equations of ordinary least squares regression. 
Notice that these equations have the great 
convenience of being linear in b and so can be 
easily solved.  

Rearranging the previous equation:   
XT D2Xb = (DX)T Dy, 

and thus 
                   b = (XT D2X)−1 (DX)T Dy  
                      = (XT D2X)−1 XT D2 y        (1) 
  
It seems that this formula for the coefficients has 
not previously appeared as a solution for relative 
least squares. 

If a spreadsheet is used for the 
calculations, the vector b can be computed 
directly using the matrix functions MINVERSE, 
MMULT (to multiply) and TRANSPOSE.  

To satisfy the second order condition for 
a minimum, the second derivative of rTr with 
respect to b must be positive definite. This 
derivative equals XT D2X or (DX)T DX. This 
square matrix will be positive definite if the 
columns of DX are linearly independent. Thus, 
the required unique minimum is obtained 
provided that no column of DX is expressible as 
a linear combination of the remaining columns.  

If (1) is compared with the expression 
for ordinary least squares coefficients: 
(XTX)−1XTy, observe that X has been replaced 
by DX, and y has been replaced by the vector 
Dy. Thus, D acts as a matrix of weights, as 
discussed further below. 

In Ferreira et al. (2000)’s important 
article on relative least squares regression, 
expressions are derived for the coefficients, and 
also for their variance. They pointed out the 

connection between weighted least squares and 
relative least squares. Their formulae for the 
coefficients are in terms of ratios of 
determinants. These are less compact and less 
computationally convenient than the above 
formula (1), because a separate matrix has to be 
set up for each coefficient. A more practical 
computational method will be shown that can be 
applied using any standard software regression 
routine. 

The consistency properties of relative 
least squares coefficients have been studied by 
Khoshgoftaar, et al. (1992). Using mild non-
distributional assumptions such as independent 
error terms, a finite value for the expected 
measure of goodness of fit, and compact 
coefficient space, they prove that the coefficients 
are strongly consistent. That is, apart from a set 
of probability-measure zero, the coefficients will 
converge to the true values as the sample size 
increases. 

Park and Stefanski (1998) also studied 
the best mean squared relative error prediction 
of y given x. Rather than provide formulae for 
coefficients, they assumed that some underlying 
distribution for y is given, and derive an 
expression for the predictor in terms of 
conditional inverse moments: 
 

ŷ = E[y−1⏐x] / E[y−2⏐x]. 
 
They applied this using the lognormal and 
gamma distributions. They also showed that the 
mean squared relative prediction error is 
 

var (y−1⏐x) / E[y −2⏐x]. 
 

Observe that in their experience 
“engineers often think in terms of relative error” 
(p. 227), and that they were motivated to explore 
relative least squares by a consulting problem 
with environmental engineers, who “citing 
engineering and political reasons, were steadfast 
in their dissatisfaction with the usual prediction 
methods, that too frequently resulted in 
unacceptably large relative errors. They wanted 
a “simple, easily implemented, and generally 
applicable approach to predicting” (p. 228). Park 
and Shin (2005) applied this to stationary 
ARMA time series. 
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Returning to (1) for b and focusing on 
the simple straight-line case, it follows from the 
above that the slope for percentage regression is 
given by 
 

                b = 
2
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(Note: all summations are from 1 to n, where n 
is the number of data points.) The intercept is 
given by 
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The normal equation arising from differentiating 
rTr with respect to the intercept can be written in 
the form 
 

                           02 =Σ
y
e

     .                        (4) 

 
This expression informs that the mean weighted 
error is zero if the weights are 1/y2. In vector 
terms this corresponds to E[D2 e] = 0. From (3) 
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it follows that there is a point through which the 
line will always pass (this would be the centroid 
of the data when using the ordinary least squares 
line). This is the point with coordinates given by 
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Easy Computation by Transforming the Model 
Equation 

Consider the model equation yi = a + 
bxi + ei and divide through by yi , this yields 

                    1 = .i i

i i i

x ea b
y y y

+ +                      (5) 

 
If ordinary least squares is used to regress the 
constant left hand side on the first two terms on 
the right, (notice there is now no constant term), 
then once again we are minimizing the sum of 
squared relative errors Σ(ei/yi)

2.  Therefore, the 
same coefficients are derived, and the residuals 
will be the relative errors. This is a more 
convenient method of estimation, as even the 
Excel spreadsheet regression tool (part of the 
Analysis Toolpack) has the option to hold the 
constant to zero. Naturally, the above estimation 
approach carries over to the case of multiple 
explanatory variables. 

The regression represented by (5) can be 
viewed as a novel form of weighted least 
squares with weights 1/y. Weighted least squares 
is a standard way of dealing with unequal 
variances (heteroscedasticity). In econometrics, 
for example, the heteroscedasticity problem has 
been dealt with by using weights which are a 
function of one of the explanatory variables and 
so some element of trial and error has been 
required to select this variable. (See, for example 
Greene, 2003, section 11.5). However, in this 
treatment it is not necessary to be concerned 
with choosing from the explanatory variables for 
the transformation, because the single dependent 
variable is used instead.  

Saez and Rittmann (1992) carried out 
Monte Carlo investigations of relative least 
squares regression where the y-data does not 
have constant variance but does have constant 
relative variance. By using generated data they 
could compare estimated parameters with the 
known values from the generating model. They 
found that the 90% confidence regions for the 
coefficients were approximately centered on the 
true values, whereas this was not the case for 
ordinary least squares. The OLS confidence 
regions did not even always include the true 
values. The relative least squares confidence 
regions were also much smaller than those for 
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OLS. They concluded that relative least squares 
is superior to OLS for such heteroscedastic data.  
  
Analysis of Relative Variance and Goodness of 
Fit 

In ordinary least squares the disturbance 
term is orthogonal to each of the explanatory 
variables. From (5) the equivalent orthogonal 
relations for our weighted regression are:  

2
i

i

y
eΣ = 0   and   

2
i

ii

y
xeΣ = 0 

The disturbance term is also orthogonal to the 
predicted dependent variable, which in this case 
corresponds to ŷi/yi .  Therefore  

        
2
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Define the relative variance as: 
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Ignoring the 1/n , this can be written as 
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The final term in the previous expression is zero 
as a consequence of the normal equations above. 
 
Total relative variation =  
Explained relative variation + Unexplained 
relative variation,  
 
which is a decomposition of the relative 
variance.  

A statistic can now be defined to 
measure the goodness of fit of our model, akin 
to r2. The coefficient of relative determination is 
the ratio 

 

 variationrelativeTotal

 variationrelative Explained

 
 
This ratio gives the proportion of the relative 
variation that is explained by the model. It will 
have a value in the range zero to one. 
 
A Note on Measurement Scale 

If all values of the dependent variable 
are re-scaled by multiplying by a positive 
constant, then the percentage errors remain 
unchanged. Consequently the resulting 
percentage least squares model will be 
equivalent to the original model, and it will 
provide equivalent predictions. For example if 
the y-variable is multiplied by 10 (e.g. due to 
conversion from centimeters to millimeters), 
then all coefficients in the fitted model equation 
will also be multiplied by 10.  

If however, a constant is added to each 
value of the dependent variable then the 
percentage errors will not be the same as before. 
In this case the model fitted using percentage 
least squares will not be equivalent to the 
previously estimated model. The situation is 
exemplified when speaking of percentage 
changes in Fahrenheit temperature and 
percentage changes measured on the Celsius 
scale. The two are not the same because these 
scales do not share a common zero point. The 
dependent variable needs to be measured on a 
ratio scale when using percentage regression. 
This is because a percentage is not meaningful if 
one is permitted to shift the zero of the scale.  
 
Maximum Likelihood 

Is there a distribution for which the 
above estimators are maximum likelihood 
estimators? Consider the following 
multiplicative representation 
 
                           y = Xβu   (7) 
 
where u is multiplicative error factor, as opposed 
to an additive error term. Obviously, the 
expected value of u is desired to be unity, and 
thus the choice of the symbol u. E[y] = Xβ is 
desirable, so assume that the error factor is 
independent of the explanatory variables so that  
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E[y] = E[Xβ] E[u] = E[Xβ] = y 
 
so that the estimate of the mean response will be 
unbiased. 
 
Define vi   = 1/ ui. Once there is an estimator b 
then the conditional estimate of the mean of y is 
ŷ = Xb ,  then 
 

vi = E[yi]/yi                   (8) 
 
An error is indicated by this accuracy ratio 
differing from unity. Notice that 1− vi = ri  , 
which is the relative error. Assume that the 
relative error is normally distributed with mean 
zero and constant variance (σ2). This implies that 
v is normally distributed with mean value unity 
and constant variance (σ2). [See the Appendix 
for the implications regarding the conditional 
distribution of y.] From (8), for any given xi 
there is a one to one relationship between y and 
v. For a given data sample the likelihood 
function in terms of v is given by 
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and in terms of y, the negative of the log 
likelihood becomes 
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         (9) 

 
The summand is the square of the 

relative error, so it is now apparent that if the 
coefficient values are chosen to maximize the 
log likelihood, the same estimates for the 
coefficients as in (1) are obtained. The result is 
that when the relative error is normally 
distributed N(1,σ2) then the least squares 
percentage regression estimators are maximum 
likelihood estimators. 

It is also possible to estimate σ2 in the 
same way by differentiating the log likelihood 

with respect to σ2 and setting the derivative to 
zero: 
 

0
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If the estimators are substituted for β, the 
following is obtained as the estimator for σ2 

 

s2 = 
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−
n

i iy
Xb

n 1
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From (9) the log likelihood contains the 

sum of squared relative errors. If these are 
independent and identically distributed then for 
large n, the central limit theorem can be applied. 
This can be used to deduce a confidence interval 
for the coefficients. 
 
Unbiasedness. 

The estimator for β can be shown to be 
unbiased as follows. From (1) 
 

E[b] = E[(XT D2X)−1 XT D2 y] 
                = E[(XT D2X)−1 XT D2 X βu] 
                     = E[βu] . 
 
Assuming that the error factor is independent of 
β, we have: E[b] = E[β] E[u] = E[β] = β. Hence 
b is an unbiased estimator of β. 
 
Example. The following table gives the sales 
figures from 18 different US industries, as well 
as the expenditure on research and development 
(millions of dollars). The sales variable has a 
wide range, and so it is likely that observations 
near the upper end will dominate over those at 
the lower end in positioning the regression line; 
this is because residuals for high sales are likely 
to be much larger. The correlation between the 
variables is 0.69 and a scatter plot shows 
evidence of heteroscedasticity.  
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Table 1. Sales and research & development 
expenditure in millions of dollars for 18 US 
industries. 
 

Sales R & D Expenses 
6375 62.5 

11626 92.9 
14655 178.3 
21869 258.4 
26408 494.7 
32406 1083 
35108 1620.6 
40295 421.7 
70762 509.2 
80553 6620.1 
95294 3918.6 
101314 1595.3 

116141 6107.5 
122316 4454.1 
141650 3163.8 
175026 13210.7 
230614 1703.8 
293543 9528.2 

 
Source: Gujarati, 2003, page 424. Originally 
published in Business Week 1989. 
 
 

If ordinary least squares is applied with 
sales as the dependent variable, the following 
model is obtained:  

 
Sales = 43942 + 15.00 R&D, 

 
with p-values of 0.03 and 0.0015 for the 
intercept and slope respectively. 
 Consider the absolute percentage error 
(APE), defined as the residual expressed as a 
percentage of the observed value. The above 
model has a mean absolute percentage error 
(MAPE) of 105%, which is very poor. In fact 
three of the 18 industries have APEs exceeding 
200%. The largest APEs occur for those 
industries which have low sales.  

Some analysts advise taking logs of the 
dependent variable if one is interested in 
reducing percentage errors. If ordinary least 
squares is conducted, the following model is 
obtained:  

Ln(Sales) = 10.341 + 0.000198 R&D 
 
with p-values of 0.002 for the slope and 
essentially zero for the intercept. If the 
exponential is taken, it is possible to predict 
sales and calculate percentage errors.  The 
MAPE is then 76%, which is an improvement. 
However, there are four industries with an APE 
exceeding 100%, three of these are at the lower 
end of the sales range.  

Finally, consider our approach of 
minimizing the squared percentage residuals. 
The resulting model is found to be: 
 

Sales = 8817 + 17.88 R&D 
 

with p-values of 0.002 and 5×10-5  for the slope 
and intercept respectively. 

The MAPE is now 38.5%. This is a 
large improvement as it is actually half of the 
percentage error from the log model. No 
residuals exceeded 100%, in fact the largest 
residual was 83%. The differences with the log 
model are worth emphasizing because it is a 
common misconception among statisticians that 
taking logs is equivalent to minimizing 
percentage errors. As mentioned in the 
introduction, this is true only in the limit as the 
residuals tend to zero.  
 

Conclusion 
 
Percentage error (relative to the observed value) 
is often felt to be more meaningful than the 
absolute error in isolation. The mean absolute 
percentage error (MAPE) is widely used in 
forecasting as a basis of model comparison, and 
regression models can be fitted which minimize 
this criterion. Unfortunately, no formula exists 
for the MAPE coefficients, and models for a 
given data set may not be unique. I have instead 
explored least squares regression based on the 
percentage error. I was able to derive exact 
expressions for the regression coefficients when 
the model is linear in these coefficients. Another 
advantage over MAPE is that this solution is 
unique.  

The percentage errors are defined 
relative to the observed values. This is the 
standard definition of percentage error used in 
forecasting. When making predictions it usually 



CHRIS TOFALLIS 
 

533 
 

makes more sense to relate the size of the error 
to the actual observation to measure its relative 
size. This is a departure from some of the 
existing literature on relative error least squares 
regression (e. g., Book & Lao (1999), & 
Goldberg & Touw, 2003), where the error 
relative to the predicted value has been used. 
The latter approach suffers on two counts. First, 
because the predicted values appear in the 
denominator of the fitting criterion, the latter 
value can be improved by inflating the predicted 
values, despite the fact that this worsens the fit 
(i.e., it gives biased estimates). Second, even for 
a linear model, estimation requires iteratively re-
weighted least squares, which is computationally 
more demanding. 

It has been shown that the proposed 
method is equivalent to a form of weighted least 
squares where, unusually, the weights depend on 
the dependent variable. This connection allowed 
us to develop a form which has great ease of 
computation. Indeed the models are attractive to 
the practitioner because they can easily be fitted 
using standard spreadsheet software. In 
comparing ordinary least squares with 
percentage least squares, the key difference is 
that the former ignores how large the residual is 
relative to the quantity being predicted, whereas 
the latter takes this into account. I believe that 
this method will be of use when the dependent 
variable has a wide range, as then the residuals 
at the upper end would dominate if ordinary 
least squares were used, unless the error 
variance is constant, which is often not the case 
in such situations. 
 It has also been shown that for a 
normally distributed multiplicative error model 
the least squares percentage estimators are 
maximum likelihood estimators. In short, the 
multiplicative error model is linked to least 
squares percentage regression in the same way 
that the standard additive error model is linked 
to ordinary least squares regression. 
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Appendix: The distribution of y when the relative error is normally distributed 
 
In deducing the maximum likelihood estimates, assume for a given x-value that the relative error (ri =1 − μy/yi ) 
is normally distributed, N(0, σ2). Consider the implication for the conditional distribution of y; from (8) ri =1−vi 
= 1 − μy/yi and vi ~N(1, σ2). The conditional value of y should therefore follow the reciprocal normal 
distribution (not to be confused with the inverse normal). Specifically, use the change of variable rule to deduce 
the distribution of yi for a given xi (Greene, 2003, Appendix B6). This gives the following distributional form: 
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where σ is the standard deviation of the relative error, here assumed to have mean value unity. Figure 1 charts 
this density function for two values of σ. 
 
 

 
Figure 1. Probability density of y when the relative error is normally distributed with mean unity and σ = 20% 
(taller curve) and σ = 40% (shorter curve) . 
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