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Robust Predictive Inference for Multivariate Linear Models with Elliptically 
Contoured Distribution Using Bayesian, Classical and Structural Approaches 

 
B. M. Golam Kibria 

Florida International University 
 

 
Predictive distributions of future response and future regression matrices under multivariate elliptically  
contoured distributions are discussed. Under the elliptically contoured response assumptions, these are 
identical to those obtained under matric normal or matric- t  errors using structural, Bayesian with 
improper prior, or classical approaches. This gives inference robustness with respect to departure from the 
reference case of independent sampling from the matric normal or matric t  to multivariate elliptically 
contoured distributions. The importance of the predictive distribution for skewed elliptical models is 
indicated; the elliptically contoured distribution, as well as matric t  distribution, have significant 
applications in statistical practices. 
 
Key words: Bayesian; Classical; Elliptically Contoured Distribution; Matric Normal; Matric- t ; 
Multivariate Linear Model; Predictive Distribution; Robustness; Structural. 
 
 

Introduction 
 
The predictive inference for multivariate 
regression models has been researched 
extensively. For example, Guttman & Hougarrd 
(1985) considered the classical approach, 
Geisser (1965) and Zellner & Chetty (1965), 
Kowalski, et al. (1999), Thabane (2000), 
Thabane and Haq (2003), and Kibria, et al. 
(2002) considered the Bayesian method, Fraser 
and Haq (1969) considered the structural 
approach and Haq (1982) considered the 
structural relation of the model approach. The 
predictive distributions have been derived under 
assumptions of multivariate normal errors, but 
the assumption of normality and independency 
for error  variables may  not be appropriate in  
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many practical situations, especially when the 
underlying distributions have heavier tails. For 
such cases, multivariate t -errors with liner 
models have been considered by several 
researchers, for example: Zellner (1976), 
Gnanadesikan (1977), Sutradhar and Ali (1989) 
and Kibria and Haq (1998, 1999a). In the case of 
the multivariate linear model, matric- t  error has 
been considered by Kibria and Haq (2002) and 
Kibria (2006). 

Using the structural relation of the 
model, Haq (1982) derived the predictive 
distribution for future responses under the matric 
normal distribution. He obtained the predictive 
distributions as matric- t  with appropriate 
degrees of freedom. Kibria and Haq (2000) 
considered the predictive inference for future 
responses under the matric- t  errors and obtained 
the predictive distribution as a matric- t  with 
appropriate degrees of freedoms. Therefore, the 
distribution of a future response matrix is not 
affected by a change in the error distribution 
from matric normal to matric- t . The invariance 
of the predictive distribution for the future 
response matrix suggests that the predictive 
distribution would be invariant to a wide class of 
error distributions. A broader assumption is 
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considered here: that error terms have a 
multivariate elliptically contoured distribution. 
The elliptically contoured distribution includes 
various distributions: the multivariate normal, 
matric- t , multivariate Student’s t, and 
multivariate Cauchy (see Ng 2000). The class of 
of normal distribution mixtures is a subclass of 
the elliptical distributions as well as the class of 
spherically symmetric distributions (Fang, et al., 
1990). 

Elliptically contoured distributions have 
been discussed extensively for traditional 
multivariate regression models by Anderson and 
Fang (1990), Fang and Li (1999), Kubokawa 
and Srivastava (2001), and Arellano-Valle, et al. 
(2006). This distribution has also been 
considered by Chib, et al. (1988), Kibria and 
Haq (1999b),  Kibria (2003), and Kibria and 
Nadarajah (2006) in the context of predictive 
inference for linear regression models. Ng 
(2000) considered the model under the 
multivariate elliptically error contoured 
distribution using both Bayesian and classical 
approaches: he obtained the same predictive 
distribution with both approaches.  

This article reviews predictive 
distributions for future response and future 
regression matrices under multivariate 
elliptically contoured error distributions. When 
the errors of model 1 are assumed to have an 
elliptically contoured distribution, the prediction 
distribution of future response and regression 
matrices are also obtained as matric- t  
distributions under structural relation, Bayesian, 
and classical approaches. The assumptions of 
normality and matric- t  are robust to deviations 
in the direction of elliptical distributions as far 
as inferences about the future regression matrix 
and prediction is concerned. The distribution is 
said to be robust if it remains the same under 
violations of the normality assumption.  
 

Methodology 
 
Consider a set of n  responses from the 
following multivariate linear model: 
 

,= EXY Γ+β                     (1) 
 

where Y  is an nm×  matrix of observed 
responses, β  is an pm×  matrix of regression 

parameters, X is a np×  )( pn ≥  known design 

matrix, Γ  is an mm×  matrix of scale 
parameter with ΣΓ′Γ = , where 0|>| Γ  and E  

is an nm×  random error matrix. If it is assumed 
that E  has a spherically contoured distribution 
with the probability density function: 
 

)},({)( EEtrgEf ′∝               (2) 
 
(Anderson & Fang, 1990), where {.}g  is a non-

negative function over mm×  positive definite 
matrices such that )(Ef  is a density function, 
then the response variable Y has an elliptically 
contoured distribution. Here E′  denotes the 
transpose of the matrix E , and )(Mtr  denotes 

the trace of the matrix M . To derive the 
prediction distribution,  
 

1= ( )EB EX XX −′                  (3) 

and 
= ( )( )E E ES E B X E B X ′− −  

 
are defined as the regression matrix of E  on X  
and the sum of squares and product (SSP) matrix 

respectively. Consider EC  to be a non-singular 

matrix such that the error SSP matrix, ES  can be 

expressed as ,=' EEE SCC and the standardized 
residual matrix is: 
 

).(= 1 XBECW EEE −−                 (4) 
 
It follows from (4) that 
 

= ,E E EE B X C W+                   (5) 

 
and, because mEE IWW =' : 

 

.'= EEEE CCBXXBEE ′+′′            (6) 
 
Considering a set of fn  future responses from 

the multivariate linear model defined in (1) as 
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,= fff EXY Γ+β                    (7) 

 
where fY  and fE  are the fnm×  matrices of 

future responses and errors respectively, and 

fX  is an fnp× pn f ≥( ) future design matrix.  

Assuming that fE  has the same distribution as 

E , then the joint distribution of E  and fE  can 

be written as 
 

)}.'({),( fff EEEEtrgEEf +′∝      (8) 

 
Defining the quantities in (3) to (6) in terms of 
future errors as follows: 
 

1= ( ' )E f f f ff
B E X X X −            (9) 

 
and 
 

= ( )( )E f E f f E ff f f
S E B X E B X ′− −  

 
as the regression matrix of fE  on fX  and the 

sum of squares and product (SSP) matrix 
respectively. The standardized residual matrix 
and the future error matrix are respectively 
 

),(1= ffEffEfE XBECW −−         (10) 

 
and 
 

.'=
fEfEffEf WCXBE +         (11) 

 
If mfEfE IWW =' , then 

 
,''=

fEfEfEfffEff CCBXXBEE +′′
  (12)

 

 
where '=

fEfE CS  are the SSP matrix for 

future error variables. 
 
Derivation of Predictive Distributions:  
The Structural Relation Approach 

Following Fraser and Ng (1980), the 

joint density function of error statistics EB , ES , 

and fE  for given data ( D ) is obtained as 

 

( ){ }
1

2

( , , | )

| | ' ' .

E E f

n m p

E E E E f f

p B S E D

S g tr B XX B S E E
− − −

∝

′ + +
 

(13)

 

 
To obtain the desired predictive distribution, the 
following transformation is made: 
 

.=

=

}(= 2

1

VV
BU

XBESR

E

fEfE −
−

        (14) 

 
If the Jacobian of the transformation 

]},,[],,{[ VURSBEJ EEf →  is equal to 

2||

fn

V , then the joint density of R , U , and V  
is 
 

( ){ }

1 1 1

2 2 2

*

( , , | )

1

2| | 2 '

1

2| | ( ) ( ) ,

n n f

f

n n f

m

p R U V D
m p

V g tr UAU V RX U V V RR V

m p

V g tr tr A tr I RHR V

+

+

− − −
   ′ ′ ′∝ + + +  
   

− − −

′∝ + +

 

 
(15)  

where 
1 1

* 1 12 2= ( ' ) ( ' ) ,f fA U V RX A A U V RX A− − ′+ +  
1= ( ' ),f f fH I X A X−− and ff XXXXA '= +′  

is a symmetric matrix.  
Following Ng (2000) in assuming that 
RRHIm ′+  is positive definite and Q is a non-

singular matrix such that RRHIQQ m ′+′ = . 

The following transformation may be made: 
 

,'=

=

12

1
−+

′

ARXVUZ

QQVY

f

     (16) 
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the Jacobian of transformation is 1)(|| +− mQ , then 

the joint density function of R , Y  and Z  is as 
follows: 
 

{ }

( , , | )

1

2 2| | | | ( ) (

n n n nf f

m

p R Y Z D
m m p

I RHR Y g tr Y tr ZAZ

+ +
−

∝
− − − −

′ ′+ +

 

(17) 
 
Integrating (17) with respect to Y and Z yields 
the density function of R  as: 
 

.2||                 

)|,,()|(

p

RHRI

dYdZDZYRpDRp

fnn

m

−

+∝

∝
+

−


(18) 

 
It may then be shown that: 
 

1

2

1

2

= ( }

= ( },

E f E f

Y Y Y f

R S E B X

S E B X

−

−

−

−
             (19) 

 

where YB  is the regression matrix of Y  on X  

and ))((= ′−− YYY BYBYS  is the Wishart 

matrix. Thus, the prediction distribution of fY  

can be obtained from (18) and (19) as follows: 
 

1 1

( | )

2| ( )( ' )( ) | ,

f

n n f

m Y f Y f n f f f Y ff

p Y D
m

I S Y B X I X A X Y B X

+

− −

∝
−

′+ − − −

 
(20) 

 
which is a Matric- t  density. The predictive 
distribution of the future responses for given 
data is an fnm×  dimensional matric- t  

distribution with 1)( +−− mpn  degrees of 
freedom. The location parameter in the 
predictive density of fY  is fY XB  and the scale 

parameter matrix is fffn XAXI 1' −− . This 

result coincides with that of Haq (1982), where 
he considered matric normal, and that of Kibria 

and Haq (2000) who considered the matric T  
error distribution. Thus, the predictive 
distribution of future responses are unaffected 
by departures from normality or dependent but 
uncorrelated assumptions to an elliptically 
contoured distribution. The shape parameter of 
the predictive distribution does not depend on 
the unknown parameter, instead, it depends on 
the sample observation and the dimension of the 
regression matrix. 
 
Derivation of Predictive Distributions: 
 
The Bayesian Approach 

The density of Σ|Y  is given as 

)},))((({||)|( 12 ′−−ΣΣ∝Σ −−
BXYBXYtrgYf

n

 (21) 
 
Following Ng (2000), the Bayesian predictive 
distribution for future responses is obtained as 
follows. Suppose fY  is an unobserved fnm×  

of future observations, then the density function 
of ),( fYY  is given by: 

 

1

( , | , )

2| | { ( [( )( ) )
( )( ) )]}.

f
n n f

f f f f

f Y Y B

g tr Y BX Y BX
Y BX Y BX

+
−

−

Σ ∝

Σ Σ − − ′
+ − − ′

   (22) 

 
The Bayesian predictive density of fY  for given 

Y  is defined as: 
 

,),(),|,()|( 11 −− ΣΣΣ∝  dBdBpBYYfYYf ff

 (23) 
 

where ),( 1−ΣBp  is the non-informative prior 

density function of ),( 1−ΣB  and is, 
 

.||),( 2

1
11

+−−− Σ∝Σ
m

Bp             (24) 
 
The predictive density is obtained as 
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1

1

1

2( | ) | |

{ ( [( )( ) )

( )( ) )]} .

n n f

f

f f f f

m

f Y Y

g tr Y BX Y BX

Y BX Y BX dBd

+
−

−

−

− −

∝ Σ

′× Σ − −

′+ − − Σ


 (25) 

And the matrix expression in (25) can be 
rewritten as: 
 

* *

( )( ) )( )( ) =

ˆ ˆ( ) ( )

( ) ( )

f f f f

Y f f f f

Y BX Y BX Y BX Y BX

S Y BX H Y BX

B B A B B

′ ′− − − −

′+ − −

′+ − −

(26) 

 

where 1* )(= −+′ AXYXYB ff . The matrices A  

and H  are defined under equation (15). From 
the following transformation, 
 

KKG
BBD

′Σ
−Σ

−

−

1

*2

1

=

)(=              (27) 

 

where )ˆ)(ˆ(= ′−−+′ ffffY XBYXBYSKK  

and the Jacobian of the transformation 

),(),[( 1 GDBJ →Σ−  is equal to 

2

1

2 ||||
+−−−

′
pmp

KKG , then (25) becomes 
 

.2|))(')((|

})()({2

1

||

2|)ˆ()ˆ(|)|(

11

m

XBYXAXIXBYSI

dDdGDDAtrGtrg

pm

G

k

XBYHXBYSYYf

fnn

fYffffnfYfYm

fnn

fnn

ffffYf

−

′−−−+∝

+′+

−−−

−

′−−+∝

+

−−

+
−

+
−



(28) 
 
Hence fY  has a matric- t  distribution with 

1+−− pmnf  degrees of freedom. Thus, the 

predictive distribution under the structural 
relation and the Bayesian approaches are the 
same. 
 
Derivation of Predictive Distributions: 
The Classical Approach 

To obtain the predictive density of fY , 

it follows from Ng (2000) that 

)ˆ(= 2

1

ffY XBYSR −
−

 is the studentized 

variable, and 2

1−

YS  is the symmetric square root 

of 1−
YS . Since R  is invariant under the 

transformations CYBXY +→ , 

fff CYBXY +→ , for any non-singular square 

matrix C , it can be assumed, without loss of 
generality, that 0=B  and mI=Σ  to derive the 

predictive distribution of fY . With this 

assumption, the joint density function of ),( fYY  

becomes 
 

)}'({),( fff YYYYtrgYYf +′∝   (29) 

 

Because 'ˆˆ= BXXBSYY Y ′+′  and, using the 
invariant differential in Fraser and Ng (1980), 

the joint density function of YB̂ , YS  and fY  is 

obtained from (29) as:  
 

)}''ˆˆ({||),,ˆ( 2

1

ffYYY

kpn

YfYY YYBXXBStrgSYSBf +′+∝
−−−

−

(30) 
 
Making the transformation 

)ˆ(= 2

1

fYfY XBYSR −
−

, followed by the 

Jacobian of the transformation is 2||

fn

YS , the 

joint density of YB̂ , YS , R  is: 
 

1 1
2 2

ˆ( , , )

2 ˆ ˆ| | { ( '

ˆ ˆ( )( ) )}

Y Y

n n f

yY Y Y

Y Y Y Yf f

f B S R
p k

S g tr S B XX B

S R B X S R B X

+
−

∝
− −

+ ′

+ + + ′

    (31) 

 
The matrix expression in (31) can be rewritten 
as: 

1 1

2 2

1 1
1 12 2

ˆ ˆ

ˆ ˆ( )( ) =

( )

ˆ ˆ( ' ) ( ' ) .

Y Y Y

Y Y f Y Y f

m Y

Y Y f Y Y f

S B XX B

S R B X S R B X
I RHR S

tr B S RX A A B S RX A− −

′+

′+ + +
′+

′+ + +

(32) 
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Making the following transformation 
 

,'=

=

12

1
−+

′

AWXVUZ

QQVY

f

       (33) 

 
and following procedures similar to the 
Bayesian Approach, the the joint density 
function of R , Y  and Z  is obtained as follows: 
 

{ }

( , , | )

1

2 2| | | | ( ) (

n n n nf f

m

p R Y Z D
m m p

I RHR Y g tr Y tr ZAZ

+ +

∝
− − − −

′ ′+ +

 

(34) 
 
Integrating (34) with respect to Y and Z yields 
the density function of fY  as: 

 

1 1

( | )

2| ( )( )( ) | ,

f

n n f

m Y f Y f n f f f Y ff

p Y D
m

I S Y B X I X A X Y B X

+

− −
′

∝
−

′+ − − −

 

(35) 
 
which is a Matric- t  density. The predictive 
distribution of the future responses for given 
data is an fnm×  dimensional matric- t  

distribution with 1)( +−− mpn  degrees of 
freedom. Thus, the predictive distribution under 
the structural relation, Bayesian and classical 
approaches are the same. 
 
Predictive Distribution of Future Regression 
Matrix 

Based on the results in Kibria (2006), 

the joint density function of error statistics EB , 

ES , 
fEB  and 

fES  are obtained as: 

 

( ){ }

1

2

( , , , | , , )

1

2| | | |

' ' .

E E E E ff f

n f
n m p

E E f

E E E E f f E Ef f f

p B S B S E X X

m p

S S

g tr B XX B S B X X B S

− − −

′

∝

− − −

′× + + +

 

(36) 
 

The structural relation of model (1) yields 
 

1
12= ( ) = ,E Y E YB B and S Sβ

− −Σ − Σ   (37) 

 
and the Jacobian of the transformation 

]},[],{[ Σ→ βEE SBJ  is equal to 







 ++−+

Σ
1

22

1

||||
mpm

YS . Thus, the joint density of 

β , Σ , 
fEB , and 

fES  is obtained as: 

 

({

)}

1
12

( , , , | , , )

1

2| | | | ( ) ( )

' ,

E E ff f

n f
n m

E f

E f f E Ef f f

p B S E X X

m p

S g tr B XX B

S B X X B S

β

β β
+ +− −

′

Σ ∝

− − −

′ ′Σ Σ − −

+ + +

(38) 
 

where BBY =  and SSY =  for notational 
convenience. Similarly, the structural relation of 
the model (7) yields 
 

1

2= ( )E Yf f
B B β

−
Σ −  

and 
1= ,E Yf f

S S−Σ  

(39) 
where 

fYB  is the regression matrix for the 

future model, and 
fYS  is the Wishart matrix for 

the future responses. If the Jacobian of the 
transformation ]},[],{[ fffEfE SBSBJ →  is 

equal to 2

1

||
++−

Σ
mp

, then the joint density 

function of β , Σ , fB , and fS  is obtained as 

 

[({
)}

1

( , , , | , , )

1 1

2 2| | | |

( ) ( )

( ) ( ) ,

f f f

n n nf f

f

f f f f f

p B S Y X X
m p m

S

g tr B XX B

S B X X B S

β

β β

β β

+
−

−

′

Σ ∝
− − − + +

Σ

′ ′Σ − −

′ + + − − + 
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where ffY BB =  and ffY SS = . 

 
The marginal density function of β , fB  and 

fS  is obtained from (40) as 

 

[({
)}

1

( , , | , , )

1 1

2 2| | | |

( ) ( )

( ) ' ( ) .

f f f

n n nf f

f

f f f f f

p B S Y X X
m p m

S

g tr B XX B

S B X X B S d

β

β β

β β

+
−

Σ

−

∝
− − − + +

Σ

′ ′Σ − −

′ + + − − + Σ

  

(41) 
 

To evaluate the integral in (41), let ΛΣ− =1 , 
then 
 

( 1)=| | ,md d− +Σ Λ Λ  
 
therefore, 
 

[({
)}

( , , | , , )

1 1

2 2| | | |

( ) ( )

( ) ' ( ) ,

f f f

n n nf f

f

f f f f f

p B S Y X X
m p m

S

g tr B XX B

S B X X B S d

β

β β

β β

+

Λ

∝
− − − − −

Λ

′ ′Λ − −

′ + + − − + Λ

  

(42) 
 
Following Ng (2002), consider G to be a 
nonsingular matrix of order m  such that 
 

( ) ( )
= .

( ) ( )

T

f f f f f

G G
B XX B S

B X X B S
β β

β β′

′ ′− − + 
 ′+ − − + 

 

 
The transformation, TGGW Λ=  has the 

Jacobian of the transformation as 2

1

||
+− m

TGG , 

and integrating the above with respect to W  

yields the marginal density of fB,β  and fS  as, 

 
1

2( , , | , , ) | |

( ) ( )
2( ) ( )

1

2{ ( )} | |

1

2| |

( ) ( ) 2 .
( ) ' ( )

n f

f f f f

n n f

f
f f f f

n n f

n f

f

n n f

f f f f f

m p

p B S Y X X S

B XX B S
S

B X X B
m

g tr W W dW

m p

S

B XX B S
B X X B S

β

β β
β β

β β
β β

+
−

′

+

Σ

+
−

− − −

∝

′ ′− − +
+ ′+ − −

− −

− − −

∝

′ ′− − + 
×  ′+ − − + 

  

(43) 
 
The density function in (43) can further be 
expressed as 
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(44) 

 
where fff XXBXBXF '= +′ , 

ff XXXXA '= +′  and 
11 ]'[][= −− +′ ff XXXXH . 

The marginal density function of fB  

and fS  are obtained by integrating β  using 

matric- t  argument (Press, 1982) from (44) as 
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(45) 
Finally, the predictive distribution of the future 
regression matrix fB  is obtained as 

 

1

2

1 12 2

2

( | , , )

1

2| | ( ) ( ) 2

| |
2

= | | | ( ) ( ) | ,

2

f f

n f n n f

f f f f fS f

m

p nm

m f fmp

m

p B Y X X
m p p

S S B B H B B S dS

n H
S I S B B H B B

n pπ

+
−−

− −− −

∝
− − − −

′ + − − + 

 Γ  
  ′+ − −

− Γ  
 



 

(46) 
 
which is a Matric- t  density. Thus the predictive 
distribution of the future regression matrix for 
given data is an pm×  dimensional matric- t  

distribution with 1)( +−− mpn  degrees of 
freedom. That is 
 

1).,,,( +−−× mpnSHBtB Yfnmf   

 
The predictive distribution of fB  is identical to 

that obtained under the assumption of matric 
normal error (Haq 1982). Thus, the predictive 
distribution of the future regression matrix is 
unaffected by departures from normality, or are 
dependent but uncorrelated assumptions to the 
elliptically contoured distribution. It may be 
concluded that the predictive distributions of a 
future regression matrix under structural, 
Bayesian and classical approaches are the same. 
 

Conclusions 
 
The predictive distribution of future responses 
for observed information under assumptions of 
multivariate elliptically contoured error 
distributions were considered, and the structural, 
Bayesian and classical approaches all resulted in 
the same predictive distributions. The predictive 

distributions under the elliptical errors 
assumption are identical to those obtained under 
independent normal errors or matric- t  errors, 
thus showing robustness with respect to 
departure from the reference case of independent 
sampling from the matric normal or dependent, 
but uncorrelated sampling from matric- t  
distributions to elliptically contoured 
distributions. In the Classical approach, mild 
restictions were adopted, whereas the structural 
relation did not need those restrictions. The 
predictive distribution of the future regression 
matrix was also obtained as matric t . When 

1=fn , the predictive distribution of a single 

future response from a multivariate elliptically 
contoured distribution is obtained as a 
multivariate t  distribution with 1+−− mpn  
degrees of freedom. Findings in this article are 
more general, and include a linear model as a 
special case, as well as a variety of symmetric 
distributions. It is also noted that using the 
predictive distribution one can construct the β  
expectation tolerance regions for future 
response(s). In both application and theoretical 
aspects, these findings have potential 
applications in many areas of statistics. 

There is great interest in the statistical 
literature toward robust statistical methods to 
represent strongly asymmetric data as 
adequately as possible and, at the same time, 
reduce the unrealistic ordinary normal or 
Student t assumptions. In scientific fields, such 
as gold concentration in soil samples (Galea-
Rojas, et al., 2003), arsenate in water samples 
(Ripley & Thomson, 1987), cholesterol in blood 
samples (Lachos & Bolfarine, 2007) and many 
other situations, the data follow asymmetric 
distributions. 

In such cases, normal or t  distributions 
do not work well. Instead, certain types of 
skewed distributions are proposed in the 
literature to study the skewed data. These 
distributions allow for skewness and contain the 
normal or t  distribution as a proper member or 
as a limiting case. Various kinds of skew 
distributions exist in the literature: skew-
symmetric distributions (Gomez, et al., 2007), 
skew normal distribution (Azzalini, 1985, 1986), 
multivariate skew normal (Azzalini & Dalla 
Valle, 1996; Azzalini & Capitanio, 1999; Gupta, 
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et al., 2004), skew t  distribution (Jones & 
Faddy, 2003), generalized skew- t  distribution 
(Theodossion, 1998), skew multivariate t  
(Azzalini & Capitanio, 2003; Gupta 2003), skew 
elliptical distribution (Branco & Dey, 2001; Dey 
& Liu, 2005; Fang 2003, 2005a, 2005b; Sahu & 
Chai, 2005), generalized skew elliptical 
distribution (Genton & Loperfido, 2005). The 
location and scale parameters of skewed 
elliptical distributions control the skewness and 
maintains the symmetry of the elliptical 
distributions. 

They also provide an opportunity to 
study the robustness of normal theory 
procedures when both skewness and kurtosis are 
different from the normal. The skewed elliptical 
distributions are more useful to fit real data 
(Arnold & Beaver, 2000). Genton and Genton 
(2004) give an excellent review about skew-
elliptical distributions and provide many new 
developments, including theoretical results and 
applications of skewed-elliptical distributions 
with real life data. Regression analysis with 
skewed elliptical distributions have been 
considered by Sahu, et al., (2003), for example. 
Unfortunately, predictive inferences with 
skewed elliptical models are limited or not 
available in the literature. It is necessary and to 
derive the predictive distribution when the error 
of the model follows the skewed elliptical 
distribution. 
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