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Application of Dynamic Poisson Models to  
Japanese Cancer Mortality Data 

 
             Shuichi Midorikawa                      Etsuo Miyaoka                          Bruce Smith 
        Tokyo University of Science         Tokyo University of Science             Dalhousie University 
 
 
A dynamic Poisson model is used with a Bayesian approach to modeling to predict cancer mortality. The 
complexity of the posterior distribution prohibits direct evaluation of the posterior, and so parameters are 
estimated by using a Markov Chain Monte Carlo method. The model is applied to analyze lung and 
stomach cancer data which have been collected in Japan. 
 
Key words: Dynamic Poisson model, Markov Chain Monte Carlo, cancer mortality data, age-period-
cohort model prediction. 
 
 

Introduction 
 
The number of cases of stomach cancer in the 
Japanese male population is tabulated in Table 
1, by five year period, and by 5 year age group. 
Periods are identified in the Table by their 
central year. For example, the period labeled 
1970 includes all data for the years 1968 through 
1972, inclusive. These data were obtained from 
the Japanese Ministry of Health and Welfare. 
(http://wwwdbtk.mhlw.go.jp/toukei/index.html) 

The goal of this article is the 
development trend models for these data, and in 
particular, the development of methods for short 
to medium term prediction, which will be 
important from the perspective of public health 
planning. The entries in Table 1 for the 2005 and 
2010 periods are, in fact, predictions, calculated 
as described in section 5 below. In assessing 
trends in such data, care must be taken to 
accommodate for trends in the underlying 
population structure. 
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In particular, the reduction in numbers of 
cancers at increased age is due primarily to the 
reduction in the associated number of 
individuals at risk. To accommodate for the 
number of individuals at risk, we focus on the 
incidence rate, equal to the number of events 
divided by the number at risk. Table 2 shows the 
incidence rate as numbers of stomach cancers 
per million males, calculated by dividing the raw 
incidence numbers from Table 1 by the 
population size (the total number of males in the 
associated age group), and multiplying by one 
million. The population cohort numbers were 
obtained from the Japanese Ministry of Internal 
Affairs and Communications. 

 There are some notable trends in the 
incidence rate data of Table 2. In particular, 
except for the oldest few age groups, the 
incidence rate is increasing with age, in each 
period. On the other hand, at least up until age 
65 or 70, the incidence rate within age group 
appears to be more or less decreasing over time. 
Incidence rates for female stomach cancer, and 
for male and female lung cancer, were similarly 
calculated, and are illustrated in the appendix, 
together with predictions for the periods 
centered at 2005 and 2010. Patterns similar to 
the males for the rate of female stomach cancer 
are noted (Table 5), and with respect to rates of 
lung cancer in both males and females, the data 
appear to show increasing rates over age group, 
and over time (Tables 6 and 7). 
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Table 1: Numbers of cases of stomach cancer - males 
Age 

Group 

5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 

15-19 9 9 15 17 19 9 5 5 11 5 4 5 5 

20-24 27 30 46 72 80 59 28 21 18 20 18 18 18 

25-29 65 106 127 158 162 162 104 87 49 49 30 45 45 

30-34 166 196 300 353 346 309 308 196 102 77 70 87 95 

35-39 359 395 470 615 628 562 526 453 315 207 142 171 165 

40-44 788 854 790 781 1004 1003 799 719 646 494 303 322 300 

45-49 1406 1568 1517 1309 1387 1638 1583 1192 1101 1027 724 766 581 

50-54 2206 2470 2488 2402 1991 1922 2465 2203 1772 1626 1608 1491 1231 

55-59 3024 3398 3717 3666 3214 2871 2632 3253 2992 2592 2458 2209 2068 

60-64 3602 4125 4569 4993 4638 4201 3603 3467 4263 4034 3408 3310 2929 

65-69 3465 4195 4799 5483 5699 5334 5013 4082 4081 5210 5237 4213 3998 

70-74 2505 3244 4147 4483 5228 5594 5472 4952 4258 4869 6009 4757 4257 

75-79 1063 1743 2289 3010 3459 4132 4743 4702 4613 4571 4859 4234 4005 

80-84 261 479 829 1034 1457 2000 2636 3273 3512 4073 3977 2976 2971 

85-89 61 78 170 241 313 536 804 1283 1727 2361 2767 1747 1580 

90- 3 15 16 28 35 77 134 269 460 806 1184 628 598 

Table 2: Stomach cancer - males, rate per million 

Age 
Group 

5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 

15-19 2 2 3 3 4 2 1 1 2 1 1 

20-24 7 7 11 16 15 13 7 5 4 4 4 

25-29 23 28 31 38 36 30 23 22 12 11 6 

30-34 70 70 80 85 83 67 57 43 26 19 16 

35-39 151 170 170 164 153 134 115 84 70 53 35 

40-44 358 367 347 286 275 244 193 160 121 110 78 

45-49 696 734 672 588 522 450 394 294 246 194 163 

50-54 1283 1280 1219 1105 930 740 698 565 444 370 310 

55-59 2193 2114 2062 1899 1584 1395 1055 959 791 667 575 

60-64 3246 3362 3178 3072 2656 2183 1864 1476 1318 1121 911 

65-69 4353 4564 4673 4498 4090 3411 2890 2305 1864 1744 1562 

70-74 4636 5463 5979 5682 5455 4892 4170 3332 2735 2521 2253 

75-79 3971 5096 6076 6661 6517 6021 5607 4718 3855 3644 2997 

80-84 2730 3596 4901 5531 6048 6511 6326 5978 5176 4957 4355 

85-89 2489 2304 3527 4008 4381 5321 5805 6696 6259 6540 5806 

90- 706 2573 1937 2040 2003 3554 4041 4873 5647 6894 6715 
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The numbers of deaths from cancer 
represent count data, and as such, statistical 
models for counts, rates or proportions are 
appropriate. Cancer mortality rates have often 
been modeled using a classical age-period-
cohort model, which is a type of Poisson 
regression model, and was used to make 
predictions for lung cancer mortality rates in 
England and Wales (Osmond, 1985), for 
example. In particular, for the data in Tables 1 
and 2, there are 16 age groups, 11 periods (the 5 
year time intervals), and 26 cohorts. Individual 
cohorts are represented as diagonal slices in the 
Table. For example, in Table 2, two cohorts are 
identified by boldface type. The oldest cohort 
includes those individuals who where were 90 
years or older in the period labeled 1950, and 
this is the only period in which data was 
recorded for this cohort. The youngest cohort 
includes those individuals who were 15-19 in the 
period labeled 2000, and there is again only one 
year of incidence data for this cohort. There are 
6 cohorts which include a maximum of 11 
periods of incidence data. 

Let )16,,2,1( ∈i  index age group, 
where age group 1 includes 15-19 year olds, age 
group 2 includes 20-24 year olds, and so on; 

)11,,2,1( ∈j  index 5 year period, with period 
1 centered at 1950, period 2 centered at 1955, 
and so on; and )26,,2,1( ∈k  index cohort, 
where, for example, cohort 26 includes 
individuals who were 15-19 in 2000, cohort 2 
includes individuals 85-89 in 1950, and so on. 

Let ijkY  denote the number of cases in age 

group i , period j  and cohort k . The classical 

age-period-cohort model assumes that ijkY  is a 

Poisson random variable with mean ijkλ , where 

.)log()log( kjiijkijk n γβαλ +++=   (1) 

Here iα , jβ  and kγ  are the effects of 

age group i , period j  and cohort k  
respectively. The size of the population at risk, 
assumed to be known without error from census 
data, is denoted as ijkn , and was used to 

transform the raw incidence data in Table 1 to 
the rates in Table 2. Inclusion of the offsets ijkn  

in the model for the Poisson mean implies that 

we are effectively modeling incidence rates

ijkijk n/λ , thereby correcting for the number at 

risk. 
It is clear that the parameterization is not 

identifiable, as we are using three co-ordinates 
to index into a two dimensional Table of counts. 
In particular, jik +−= 16 . 

Detailed discussions of this model, 
including identifiability issues, are included, for 
example, in Osmond and Gardner (1982), 
Clayton and Schifflers (1987a, b), and Holford 
(1991), and various methods have been 
suggested to overcome the non-identifiability 
problem, for example, imposing constraints on 
the parameters (Osmond & Gardner, 1982; 
Holford, 1991), or restricting consideration to 
certain estimable functions of the parameters 
(Clayton & Schifflers, 1987a; Holford, 1991). 
Clayton & Schifflers (1987a, b) advised the use 
of a reduced age-period or age-cohort model 
whenever possible and the use of the full age-
period-cohort model only when no other model 
provides a satisfactory fit. Tango (1985) showed 
that nonlinear effect parameters can be uniquely 
determined by imposing restrictions on each 
block of parameters, for example,

0===  lji γβα  , with the nonlinear 

age effects being specified as: 
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It is important to note that while 

individual age, period and cohort parameters are 
not identifiable, forward prediction is possible 
(Holford, 1985). 

Different cohorts are typically unequally 
represented in age-period-cohort data. In the 
present case, there are single observations on 
cohorts 1 and 26, two observations on cohorts 2 
and 25, eleven observations on each of cohorts 
11 through 16, and so on. Therefore, the 
precision of estimated cohort effects will differ 
markedly, which has important consequences for 
prediction. For example, simple predictive 
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models that carry forward estimated cohort 
effects may lead to predictions with a high 
degree of variability. Recently, Bayesian models 
have been used to smooth predictions by 
incorporating a priori beliefs about the 
smoothness of the model parameters. Berzuini 
and Clayton (1994) predicted lung cancer 
mortality rates using a Bayesian age-period-
cohort model. Besag, et al. (1995) fit a Bayesian 
logistic regression to prostate cancer mortality 
rates in the USA, with age, period and cohort as 
explanatory variables, and Bray (2000, 2002) 
used Gaussian autoregressive priors for 
incidence rates of Hodgkin's disease. 

This paper is organized as follows: A 
dynamic Poisson model and a dynamic age-
period-cohort model are specified, Markov 
Chain Monte Carlo is reviewed and the 
estimation method is discussed in detail, a 
prediction method is described, and the result of 
the analysis of Japanese cancer data is provided. 
Finally, concluding remarks are given. 
 
Model Specification 

Throughout in this section, ty  denotes 

the t-th in a sequence of observations, 
Tt ,,1= , tθ  is a p-dimensional parameter 

vector, tF  is a known p-dimensional vector of 

regressors, tG  is a known pp ×  matrix, tw  is 

a p-dimensional vector of errors with covariance 
matrix W, and )(⋅g  is a link function. 
 
Dynamic Poisson Model 

A dynamic Poisson model is a state 
space time series model consisting of 
observation and system equations, as follows: 
 
Observation equation: 

.')(,
!

)exp(
)|( ttt

t

y
tt

tt Fg
y

yP
t

θλλλλ =−=     (3) 

System (state) equation: 
].,0[~,1 WNG pttttt ηηθθ += −              (4) 

 
When there is no system equation, the dynamic 
Poisson model becomes the usual Poisson 
regression model. The dynamic Poisson model is 
a particular case of the general state space 

model, discussed, for example, in Kitagawa and 
Gersch (1996). There is currently much activity 
in the development of algorithms for general 
state space models, focusing primarily on so-
called particle filters. For example, see Kitagawa 
(1998) or Doucet, et al. (2001). 
 
Dynamic Age-Period-Cohort Model 

To incorporate the age-period-cohort 
model within the dynamic Poisson model, let 

)(ti , )(tj  and )(tk  denote the age, period and 

cohort indices associated with observation tY ,  

and denote the associated age, period and cohort 
effects as )(tiα , )(tjβ  and )(tiγ . Assume 

)1,1,1),(log(' tt nF = , where tn  is the number at 

risk  for observation t, and let 
),,,1(' )()()( tktjtit γβαθ = . 

Let ),,,0(' )()()(
γβα ηηηη tktjtit = , and IGi =  

be the 44×  identity matrix. In this case the 
dynamic state space model is specified by the 
following observation and system equations. 
 
Observation equation: 
 

( ) ( ) ( )log( ) log( )

exp( )
( | ) ,

!

.

t

t t i t j t k t

y
t t

t t
t

n

P y
y

λ α β γ

λ λλ

= + + +

−=
  (5) 

 
System (state) equation: 
 

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

, ~ [0, ],

, ~ [0, ],

, ~ [0, ].

i t i t i t i t

j t j t j t j t

k t k t k t k t

N W

N W

N W

α α
α

β β
β

γ γ
γ

α α η η

β β η η

γ γ η η

−

−

−

= +

= +

= +

  (6) 

 
This assumes that the system equation 

corresponds to three independently evolving 
random walks for age, period and cohort effect - 
the same model as considered by Knorr-Held 
and Rainer (2001). The state variables 

},,1,,,{ )()()( Tttktjti =γβα  take the form of 

time varying parameters, while the variances 

αW , βW , and γW  are assumed not to depend on 

time. 
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In addition to the observation and system 
equations, a Bayesian dynamic age-period-
cohort model requires the specification of prior 
distributions for model parameters. However, 
because of the recursive nature of the state 
equation, the Bayesian model requires prior 
distributions only for αW , βW , γW , 0α , 0β , 

0γ . Where ],[ 2σμN  denotes the normal 

distribution with mean μ  and variance 2σ  and 

],[ SIG ν  denotes the inverse gamma 

distribution with scale parameter S  and shape 
parameter ν , assume the following prior 
distributions: 0 ~ [ , ],N Rα αα μ  0 ~ [ , ],N Rβ ββ μ  

0 ~ [ , ],N Rγ γγ μ ~ [ , ],W IG Sα α αν
~ [ , ]W IG Sβ β βν  and ~ [ , ]W IG Sγ γ γν . Non-

informative priors are achieved by letting 1−
αR , 

1−
βR , 1−

γR , αν , βν , γν , αS , βS , and 0→γS . 

Other prior was applied to the dynamic age-
period-cohort model, but the result was similar 
to non-informative priors. 

Where there are A age groups, P periods 
and C cohorts, it follows that the joint posterior 
for 0 1, , , ,Aα α α  0 1, , , ,Pβ β β  

0 1, , , ,Cγ γ γ  αW , βW  and γW  is given by: 

0 0 0

1
12

1
1 1

1
12

1
1

1
12

1
1

1 2 1
0 0

( , , , , , , , , , , , | )

exp( ) 1
( ) exp( ( ))

! 2

1
( ) exp( ( ))

2

1
( ) exp( ( ))

2

1 1
exp ( ) exp (

2 2

t

A P C

yT A
t t

j j
t jt

P

k k
k

C

l l
l

W W W y

W W
y

W W

W W

R R

α β γ

α α

β β

γ γ

α α β β

π α α β β γ γ

λ λ α α

β β

γ γ

α μ β μ

−
−

= =

−
−

=

−
−

=

− −

∝

− × × − −

× − −

× − −
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2

1 2
0

)

1
exp ( )

2

( ; , ) ( ; , ) ( ; , ).IG IG IG

R

f W S f W S f W S

γ γ

α α α β β β γ γ γ

γ μ

ν ν ν

−

 
  

 × − −  
× × ×

(7) 
where )exp( )()()( tktjtitt n γβαλ ++= , and 

),;( Sf IG ν⋅  is the inverse gamma density 

function with parameters ν  and S . 

More generally, the independence 
structure of the priors could be removed by 
assuming that ),,( ′= γβα WWWW  follows a 

trivariate inverse Wishart distribution with 

kernel ( )





− −−

W

W
SWtrW 12

1

2

1
exp||

ν
, and that 

),,( 000 ′γβα  has a trivariate Gaussian 

distribution with mean vector μ  and covariance 

matrix R . 
 
Estimation Method 

A Bayesian approach is taken to 
estimate parameters using posterior means. As 
analytical calculation of integrals with respect to 
the posterior distribution is typically intractable, 
a Markov chain Monte Carlo method has been 
used to approximate the posterior means. The 
Gibbs sampler was used to generate samples 
from the joint posterior distribution. General 
discussions of the Gibbs sampler are provided, 
for example, by Geman and Geman (1984) and 
Gammerman (1997). The WinBugs 
implementation was used to carry out 
computations (Spiegelhalter, et al., 2003), with 
non-informative hyper-priors referred to 
previously. 

As described, Tango (1985) was 
followed in defining nonlinear age and period 
effects after applying zero sum constraints. Such 
mean constraints were also used by Berzuini and 
Clayton (1994) and Bray (2000, 2002). 

In order to assess convergence of the 
sampler, two chains of 10,000 iterations were 
run from different initial values and time series 
plots of the MCMC samples were examined. As 
an example, Figure 1 shows a plot of the 
sampled values of 1γ , for the male stomach 
cancer data. And Figure 2 shows the 
autocorrelation function of 1γ . The plot 
suggests that convergence was achieved, and it 
was confirmed that all other parameters were 
convergent in the same manner. 
 
Prediction 

Osmond (1985) used a standard age-
period-cohort model (1) to project lung cancer 
mortality rates for England and Wales. In this 
method, unknown period and cohort effects for 
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future periods are estimated using linear 
regression, while estimated age effects need not 
be extrapolated. 
 

Figure 1: Time series plots of MCMC 
iterations for 1γ . 

 
 

Figure 2: The autocorrelation function 
of 1γ . 

 
 

A criticism of the regression, while estimated 
age effects need not be extrapolated. A criticism 
of the method is the arbitrariness introduced by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the choice of past values to use in the regression, 
and the type of regression model (e.g., weighted 
or unweighted). 

More recently, parametric bootstrap 
methods have been used to make projections, for 
example, by Berzuini and Clayton (1994) and 
Bray (2000, 2002). In particular, to obtain a 

prediction for 1

~
+Tλ  given data TYY ,,1  , 

sample 

[ ]WGN TTT
ˆ,ˆ~

~
11 θθ ++ ,      (8) 

where Ŵ  and Tθ̂  are estimates based on 

TYY ,,1  . Then set 

111

~~
+++ ′= TTT F θλ .       (9) 

This process is repeated J  times leading to 

{ }Jjj
T ,,1,

~ )(
1 =+λ , which are then averaged to 

provide the overall prediction 1

~
+Tλ  of 1+TY . The 

prediction at time 2+T  is then based on the 

combined data TYY ,,1   and prediction 1

~
+Tλ . In 

carrying out the calculations, 100=J was used. 
The Table 3 shows predicted values and 
simulated 95% prediction intervals for male 
stomach cancer in 2005. 

Predictions were also made using the 
traditional age-period-cohort model (1). To 
estimate age and period effects, a simple linear 
regression was used on one previous period or 
age group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Predicted value and simulated 95% prediction intervals for male stomach cancer in 2005 
Age Group Lower Predicted Value Upper 

15-19 5.580305162 5.745869588 5.91469553 
20-24 17.96144371 18.07019342 18.17972061 
25-29 45.17424256 45.46220645 45.7517975 
30-34 86.88730352 87.43865363 87.9901386 
35-39 170.0798945 171.1925396 172.2686358 
40-44 320.5989165 322.6740741 324.7104773 
45-49 762.0522524 766.9412402 771.9716268 
50-54 1481.543376 1491.174459 1500.812711 
55-59 2195.522161 2209.505762 2223.767449 
60-64 3288.881735 3310300914 3331.643898 
65-69 4186.238369 4213.082323 4240.180761 
70-74 4727.281932 4757.428491 4788.496251 
75-79 4207.928407 4234.477476 4262.194609 
80-84 2957.042947 2976.174262 2995.429859 
85-89 1736.78588 1747.876571 1759.049125 

90- 624.2118163 628.1242619 632.1725958 
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To assess the adequacy of models for 
fitting and prediction, the first nine periods for 
model fitting were used and projections for the 
tenth and eleventh periods were constructed. 
Estimates and predictions were compared with 
observed counts using the following estimates of 
residual and prediction error. 

Scaled residual error 
=

−
=

9

1

2

ˆ

)ˆ(

i i

ii

y

yy
,     (10) 

Scaled prediction error 
=

−
=

11

1

2

~
)~(

j j

jj

y

yy
,  (11) 

where iŷ  is the fitted value for period i  and jy~  

is the predicted value for period j . Table 4 
shows these estimates of residual and prediction 
errors for the age-period-cohort model and a 
dynamic Poisson models. The estimates of 
residual error are consistently a bit smaller for 
the age-period-cohort model, as compared to the 
dynamic Poisson model. 

For the male stomach cancer data, the 
estimated prediction error is a bit smaller using 
the age-period-cohort model. However, in the 
other three cases, the prediction error is smaller 
using the dynamic Poisson model, and 
dramatically so in the case of male lung cancer. 
This suggests that the dynamic Poisson model is 
the preferred method for making future 
predictions.  

The latter two columns of Tables 1, 5, 6 
and 7 contain predictions of lung and stomach 
cancer rates to the periods centered at 2005 and 
2010 using the dynamic Poisson model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling Variance Heterogeneity 
Thus far, we have assumed constant 

variances for each of the system variables )(tiα , 

)(tiβ , and )(tiγ  of the dynamic Poisson model. 

Under this assumption, we have observed that 
some estimated variances were very large, 
leading to imprecision of predictions. For 
example, children born during the years when 
war occurred, might be faced high risk, then the 
cohort effect become extremely large than 
children born at another time. In an attempt to 
reduce the variability in predictions, the model 
has been generalized to include non-constant 
variance, as follows. 

( )

( )

( )

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( )

, ~ 0, ,

, ~ 0, ,

, ~ 0, ,

i t

j t

k t

i t i t i t i t

j t j t j t j t

k t k t k t k t

N W

N W

N W

α α
α

β β
β

γ γ
γ

α α η η

β β η η

γ γ η η

−

−

−

= +

= +

= +

  
  
  

   (12) 

 
Again using non-informative priors, this led, for 

example, to estimates 
1

ˆ
βW ,

P
WW ββ
ˆ,,ˆ

2
  for the 

P  period effect variances, which were averaged 
to produce an overall estimate 

 =
= P

j j
WPW

1
ˆ1~

ββ . This latter quantity was 

then used to predict the $N+1$'st period effect, 
as 

[ ]βββ WN NjNj

~
,

~
~

~
)()1( + ,     (13) 

 
For moderately large P , βW

~  should typically be 

less than βŴ , thereby increasing the stability of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Scaled residual and scaled prediction error 
  Scaled Residual Scaled Prediction Error 

Stomach 
Man 

Dynamic Poisson model 6.62314 79.83967 

Age-Period-Cohort model 6.575341 73.35086 

Stomach 
Woman 

Dynamic Poisson model 8.740782 80.4833 

Age-Period-Cohort model 8.169002 100.3244 

Lung 
Man 

Dynamic Poisson model 2.066267 48.64581 

Age-Period-Cohort model 2.26717 234.6294 

Lung 
Woman 

Dynamic Poisson model 1.150069 49.20646 

Age-Period-Cohort model 1.12215 61.80142 
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the forecast. Indeed, a small βW
~  could be 

obtained when the number of death at a specific 
period group was increased. Table 5 shows the 
estimated variances for the fixed and 
heterogeneous variance models. 

 
Conclusion 

 
In the data sets considered, it was observed that 
the classical age-period-cohort model provided a 
better fit to past data than did the dynamic age-
period-cohort model. On the other hand, when 
the focus is on making projections, it was found 
that the classical age-period-cohort model, 
which  makes strong parametric  and  regression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

assumptions, was out performed by the dynamic 
model. Under the assumption of homogeneous 
error variances in the system equations of the 
dynamic age-period-cohort model, large 
standard errors were observed in several cases. It 
is possible that at least some of this imprecision 
is the result of natural variation in the Monte 
Carlo algorithm. Further research will focus on 
incorporating heterogeneous variances into the 
model. 

The focus has been on the dynamic 
Poisson model, but the dynamic model can be 
extended in a straightforward manner to 
incorporate generalized linear models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: The value of βW
~

 and βŴ  to each data in Japan 

  Variance For Period Variance For Cohort 

Stomach 
Man 

Homogeneous 
0.001324854 0.034891835 

βŴ  γŴ  

Heterogeneous 
0.003901684 0.02093981 

βW
~

 γW
~

 

Stomach 
Woman 

Homogeneous 
0.001282216 0.034843206 

βŴ  γŴ  

Heterogeneous 
0.003719764 0.029620221 

βW
~

 γW
~

 

Lung 
Man 

Homogeneous 
0.035637919 0.049188392 

βŴ  γŴ  

Heterogeneous 
0.031894849 0.040851123 

βW
~

 γW
~

 

Lung 
Woman 

Homogeneous 
0.049800797 0.039339103 

βŴ  γŴ  

Heterogeneous 
0.043756821 0.028132685 

βW
~

 γW
~
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Age 
Group 

Table 6: Stomach cancer - females, count 
5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
15-19 9 9 10 11 23 8 5 5 1 5 4 3 3 

20-24 39 43 55 65 86 63 43 21 26 10 9 15 15 

25-29 115 119 153 198 232 246 179 123 75 64 48 43 54 

30-34 242 289 389 432 380 465 431 293 180 126 98 90 93 

35-39 415 495 597 672 651 629 619 561 387 237 162 204 152 

40-44 679 784 857 857 937 874 745 693 677 448 306 330 318 

45-49 902 982 1152 1139 1194 1152 1003 870 714 831 596 641 489 

50-54 1166 1331 1398 1588 1430 1421 1296 1116 938 824 890 997 881 

55-59 1490 1675 1779 1836 1956 1658 1634 1423 1180 1072 987 1251 1272

60-64 1891 1951 2124 2217 2339 2274 2031 1903 1583 1432 1291 1533 1657

65-69 2139 2337 2366 2592 2766 2726 2579 2117 1991 1910 1638 1895 1972

70-74 1743 2111 2462 2628 2976 3009 2957 2706 2211 2340 2131 2091 2221

75-79 959 1517 1858 2036 2362 2653 2974 2864 2727 2545 2610 2247 2199

80-84 306 622 964 1076 1354 1596 2076 2388 2606 2976 2820 2123 2033

85-89 81 132 268 343 420 569 845 1301 1693 2194 2685 1557 1502

90- 9 22 45 63 74 123 202 373 585 1054 1592 1503 775 

Age 
Group 

Table 7: Lung cancer - males, count 
5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

15-19 9 5 10 6 5 1 5 1 1 5 4 5 5 

20-24 4 9 9 18 11 10 4 5 5 5 5 7 7 

25-29 6 12 17 21 18 22 23 12 17 14 10 13 14 

30-34 3 14 27 34 34 42 49 41 39 49 57 28 29 

35-39 10 19 31 68 66 80 115 157 149 102 97 101 67 

40-44 20 47 62 99 168 202 207 275 363 287 288 282 247 

45-49 43 105 174 190 226 415 450 450 577 757 635 710 627 

50-54 85 195 323 407 431 451 933 983 918 1138 1463 1444 1449

55-59 107 250 550 618 826 904 1218 1818 2020 1831 2210 2453 2578

60-64 153 362 669 1078 1249 1534 1856 2321 3655 3760 3352 3787 4310

65-69 175 398 734 1135 1742 2180 2727 3172 4165 6044 5804 4898 5772

70-74 111 306 603 935 1501 2408 3316 4228 4675 6105 8193 6549 6157

75-79 58 125 309 570 854 1636 2784 4018 5022 5703 7326 6881 6576

80-84 9 36 106 198 306 589 1340 2355 3495 4730 5445 4958 5375

85-89 0 6 17 27 63 142 342 849 1466 2206 3146 2580 2720

90- 1 0 5 3 8 15 74 153 313 660 1017 790 874 
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Age 
Group 

Table 8: Lung cancer - females, count 
5 year period centered at 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
15-19 5 5 5 6 5 0 0 1 1 0 0 4 4 

20-24 1 5 9 10 6 0 4 5 0 5 0 6 6 

25-29 4 8 5 13 10 17 14 8 8 5 10 9 9 

30-34 6 20 31 37 34 33 43 18 27 36 30 25 26 

35-39 11 31 43 68 49 72 78 96 89 65 75 61 54 

40-44 19 50 50 88 107 98 121 151 164 169 146 147 111 

45-49 22 67 126 106 166 200 207 220 258 379 261 299 276 

50-54 46 85 139 232 211 297 350 374 425 551 667 557 542 

55-59 50 106 194 293 337 412 492 587 618 733 806 908 822 

60-64 49 120 250 356 482 545 688 843 886 1020 1069 1284 1368

65-69 49 139 251 374 506 671 932 1044 1239 1416 1601 1751 1892

70-74 44 113 203 344 483 728 1083 1353 1562 1767 2018 2239 2384

75-79 19 51 147 270 344 557 1001 1392 1811 2205 2459 2903 2894

80-84 6 16 63 109 194 277 610 1061 1382 2104 2453 3672 3113

85-89 0 5 17 27 43 117 190 480 864 1320 1989 3538 3327

90- 2 0 6 3 10 21 54 125 285 580 1096 2253 2493
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