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EARLY SCHOLARS 
On Some Properties of Quasi-Negative-Binomial Distribution and Its Applications 

 
Anwar Hassan     Sheikh Bilal 

  University of Kashmir         Degree College 
 India        India 

 
 
The quasi-negative-binomial distribution was applied to queuing theory for determining the distribution 
of total number of customers served before the queue vanishes under certain assumptions. Some structural 
properties (probability generating function, convolution, mode and recurrence relation) for the moments 
of quasi-negative-binomial distribution are discussed. The distribution’s characterization and its relation 
with other distributions were investigated. A computer program was developed using R to obtain ML 
estimates and the distribution was fitted to some observed sets of data to test its goodness of fit. 
 
Key words: Simultaneous quasi-negative-binomial distribution, Borel-Tanner distribution, probability 
generating function, convolution property, characterization, chi-square fitting. 
 
 

Introduction 
 

The classical negative binomial distribution has 
become increasingly popular as a more flexible 
alternative to the Poisson distribution, especially 
in cases when it is doubtful whether the strict 
independence requirements for a Poisson 
distribution will be satisfied. In a classical 
negative binomial distribution the probability of 
success from trial to trial is assumed to be 
constant, but this assumption holds true only in 
the case of chance mechanism and is not 
realistic for many practical situations. Most 
living beings use past experiences (successes or 
failures) and wisdom to help determine future 
strategies to achieve goals, thus, the probability 
of success or failure does not remain constant. It 
is generally felt that the probability of a success  
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depends on the number of previous failures, and 
the quasi- negative-binomial distribution, as 
well as other distributions, takes this fact into 
consideration. 

Much work has been done on the quasi-
binomial distribution, but little has been done on 
quasi-negative-binomial distribution. The quasi-
negative-binomial distribution has been obtained 
in different forms by Janardan (1975), Nandi & 
Das (1994), and Sen & Jain (1996), but has not 
to date been studied in detail. This article 
examines various aspects of this distribution. 
The distribution of the number of customers 
served in the queuing theory under certain 
assumptions, which gives rise to a quasi-
negative-binomial distribution, was derived. It is 
also shown that the quasi-negative-binomial 
distribution belongs to a family of Abel series 
distributions. Some structural properties of the 
distribution are discussed, along with its relation 
with some other important distributions, and a 
characterization of the distribution is provided. 
A computer program written in R was developed 
to obtain ML estimates and the distribution was 
fitted to a number of data sets to show its 
superiority over other distributions. 
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Methodology 
 

Quasi-negative-binomial distribution (QNBD) 
In the theory of queuing, suppose there exists a 
single queue beginning with r customers. Haight 
& Brever (1960) showed that, if it is first 
assumed that the random arrival time of a 
customer is at a constant rate ( λ ), and a 
constant amount of time is devoted to serving 
each customer ( β ), then the probability 
distribution of the total number of customers 
served before the queue vanishes is: 

1( : ) ( )
( )!

, 1,.......

x r x r xrP X x x e
x r

x r r

λβλβ− − − −=
−

= +
 (2.1) 

This is known as the Borel-Tanner distribution 
and it gives the probability of a customer 
arriving during the period ),( ttt Δ+ as

)(0)( tt Δ+Δλ , by assuming λ  is constant, 

where )(0 tΔ is the probability of two or more 
customers arriving in this period. This 
assumption, however, is not realistic. The 
random arrival time of customers is not at a 
constant rate, it varies from interval to interval 
of equal length. In order to make the formula 
more flexible it is allowed to vary in different 
intervals of equal length with a constant amount 
of time ( β ) spent serving each customer. Thus 
gives the probability distribution of total number 
of customers served before the queue vanishes 
as: 

1

( : )

( )
( )!

x r x r x

P X x

rE x e
x r

λβλβ− − − −

=

 
 − 

 

(2.2) 
 
where expectation is to be taken over λ . 
Suppose that the distribution of λ  is a gamma 
variate with parameters (a, b), then the above 
equation becomes: 

1
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Taking rxx += , that is, starting with an idle 

queue the probability distribution becomes: 
1( ) ( ) ( )
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
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0,1,2,.....x =  
(2.4) 

 

where 1
1 θβ =−rb , 2

1 θβ =−b . The distribution 
represented by (2.4) is a quasi-negative-binomial 
distribution (QNBD). Hence, the distribution of 
the total number of customers served before the 
queue vanishes, assuming a start with an idle 
queue wherein the random arrival time of 
customers follows a gamma distribution and the 
time occupied in serving each customer is 
constant, is a QNBD. 

Equation 2.3 clearly suggests that the 
quasi-negative-binomial distribution is a mixture 
of the Borel-Tanner distribution (2.1) with 
gamma ),( baγ  as the mixing distribution. 
Another way of obtaining the QNBD (2.4) is to 
compound the restricted generalized Poisson 
model ),( αθθ  with the gamma distribution

),( baγ , where 1
1

−= bθ  and 1
2

−= bαθ . This 
is the method employed to obtain the probability 
generating function of the proposed model (2.4).  
 
The Abel series distribution and QNBD. 

Charalambides (1990) explored the use 
of the Abel series and introduced the family of 
Abel series distributions with applications to 
fluctuations of sample functions of stochastic 
processes. Nandi & Das (1994) defined a family 
of Abel series distributions for real valued 
parameters r  and b  by its probability function: 
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)(

),()(
)(

1

rf
bxhbxrrxP

x−+=  

,........2,1,0=x  
(3.1) 

where 0),( ≥bxh ; 0≥r  if 0≥b  and 

0≥+ xbr  if 0≤b ; )(rf  is finite and positive 
function given by: 

),()()( 1
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bxhbxrrrf x
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−
∞
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xbrx
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rfd
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Taking 

arcrf −−= )()(  
 
results in 

xabxc
xa

xabxh −−+
−

−+= )(
!)!1(

)!1(
),(  

 
and, using (3.1), gives 
 

11 ( ) ( )
( : )

( )

x a xa x

ax

r r bx c bxP X x
c r

− − −+ −

−
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(3.2) 

Finally, taking 
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rc
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the quasi-negative-binomial distribution (2.4) is 
obtained. Hence, the QNBD is a member of the 
Abel series of distributions. 
 
Structural properties. 

Some of the structural properties that 
describe the nature of the quasi-negative-
binomial distribution were studied. These 
properties are described as follows: 
 

Convolution property. 
Using (3.2) it is possible to show that 

quasi-negative-binomial variates possess the 
important – and very desirable – convolution 
property given by Theorem 4.1: The sum of two 
independent quasi-negative-binomial variates 

1X  and 2X  with parameters ),,( 211 θθa  and 

),,( 212 θθa , respectively, is a quasi-negative-
binomial variate with parameters 

),,( 2121 θθaa + . 
 
Proof: 

The sum of the probabilities of the 
QNBD equals unity, therefore from (3.2) the 
following results: 
 

xax

x

xa

x

a bxcbxrrrc −−−
∞

=

−+
− ++








=−  )()()( 1

0

1

(4.1) 
 
Considering the expansion of 

2121 )()()( )( aaaa rcrcrc −−+− −−=−  as a 
single series of Abel polynomials on the left-
hand side and the product of two series of Abel 
polynomials on the right-hand side, using (4.1) 
and simplifying, the following identity is 
obtained: 
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1 ( ) 1
1 1

0

( ) ( )
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  = + + −  
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

 
(4.2) 

This identity reduces to a Vandermonde-type 
identity on 0=b , Lagrangian Probability 
Distribution (Consul & Famoye, 2006).  

Assuming the sum xXX =+ 21 , then 
by definition: 

( )1 2 1 2
0

( ) : ( , , , ) ( , , , )
x

t x t
t

P X X x P a r b c P a r b c−
=

+ =
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1 2
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Using the result (4.2) in the above gives: 
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1 21 2
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Next, taking 
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results in the convolution property: 
 

1 2

1 2

1 2

1
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1 1 2

( )
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1 2 1 2

( )

( )
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More generally the sum of n independent quasi-
negative-binomial variates with parameters 

),,( 21 θθia , ni ,.........2,1=  is also a quasi-

negative-binomial variate with parameters

( )21 ,, θθ ia . 

 
Unimodality 

The QNBD is unimodal according to the 
Lemma: if the mixing distribution is non-
negative, continuous, and unimodal then the 
resulting distribution is unimodal. (Holgate, 
1970) Thus, the proposed model is unimodal 
since the mixing distribution is the gamma 
distribution, which is unimodal. 

Theorem 4.2: The QNB model (2.4) is 
unimodal for all values of ),,( 21 θθa  and the 

mode is 0=x  if 11 <θa  and, for 11 >θa , the 

mode is at some point Mx =  such that 

1

1

1

1

1

)1(

1

1

θ
θ

θ
θ

−
−

<<
−

− aMa
. 

 
Proof: 

The QNBD model (2.4) gives the ratio  

 1 
)1(

)1(

)0(

)1(
1

21

11 <
++
+

= +a

aa
P
P

θθ
θθ

 If 11 <θa , 

 

since 1
)1(

)1(
1

21

1 <
++

+
+a

a

θθ
θ

   ),,( 21 θθa∀  

 
In general, the ratio of any two successive 
probabilities of QNBD (2.4) is: 

1 2 2 1 2
1

1 2 1 2 2

( 1)

( )

( ) (1 )
11 ( ) (1 )

x a x

x

P x
P x

x xa x
a xx x x

θ θ θ θ θ
θ θ θ θ θ

+

−
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+ + + ++= + ++ + + + +
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Since  1 
1)1(

)1(

221

21 <+++++

++ +

xax
x xa

θθθ
θθ

),,( 21 θθa∀ , the ratio 1
)(

)1( <+
xP

xP
, if 

x

x

x
x

x
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)1(

)1(

1
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1

12
1

12

11
121
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−−

++
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<
+
+

θθθθ
θθθ

 , which 

is true only if 11 <θa  as 

1
)1(

)1(
1

12
1

12

11
12 <

++
+

−−

−−

x

x

x
x

θθθθ
θθ

      ),( 21 θθ∀ . 

Hence, for 11 <θa , the ratio
)(

)1(

xP
xP +

 is a non-

increasing function, therefore the mode of the 
distribution is 0=x . Suppose 11 >θa and the 

mode is at Mx = , the ratio defined by (4.3) 
gives two inequalities: 
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(4.5) 
By inequality (4.4): 
 

1
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….                                                                 (4.6) 
since 
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12 <

++
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     ),( 21 θθ∀  

 
The inequality (4.6) gives the lower bond to M 
as: 

1

1

1

1

θ
θ
−

−
>

aM
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And by inequality (4.5): 
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Again  
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gives 
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because 

11 >θa , 1
)1(1 >
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Maθ
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and 
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Thus, (4.8) can be written as: 
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which gives the upper bond to M as: 

1

1

1
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θ
θ

−
−

<
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By combining (4.7) and (4.9): 
 

1

1

1

1

1

)1(

1
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θ
θ

θ
θ

−
−
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the proof is completed. 
 
Probability generating function 

Consul & Shenton (1972, 1974) showed 
that the derivation of the probability generating 
function (PGF) of a generalized Poisson variate 
is not straightforward and is based on the power 
series expansion of a function in terms of 
another variable (see GPD by Consul-1989). As 
they show, the PGF of a generalized Poisson 
variate ),( αθθ  is: 

)1()()( −== tX
x euEuG θ  



HASSAN & BILAL 

621 
 

where )1( −= tuet αθ
,  and u is a dummy 

variable. 
Similar to the generalized Poisson 

variate, the PGF of QNBD also does not seem to 
be straightforward. Therefore, by compounding 
the restricted generalized Poisson model 

),( αθθ  with the gamma distribution ),( baγ , 

where 1
1

−= bθ  and 1
2

−= bαθ , and using a 
theorem by Feller (1943), the PGF of a QNBD 
is: 
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where )1( −= tuet αθ
. 

 
The function t(u) can be written explicitly using 
Lagrange’s Theorem (see Whittaker and 
Watson, 1927) as: 
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Since θ  is varying as gamma distribution 

),(~ baγθ , the equation above gives: 
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And, after simplification results in: 
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Taking 1
1

−= bθ and 1
2

−= bαθ : 
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Hence the PGF of a QNBD (2.4) is: 
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Recurrence relation between the moments 

Suppose ),( 1θμ ak′  denotes the rth 

moment about the origin of a QNBD (2.4), then  
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taking 1+= xx  and expanding 1)1( −+ kx  
results in: 
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Converting the above series into ),( 1θμ ak′  

functions the recurrence relation  
1 1
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is obtained. 
Where ),1( 21 θθμ ++′ aj  is the jth 

moment about the origin of a QNBD with 
parameters ),,1( 221 θθθ ++a . The relation 
(4.10) is used to determine the moments about 
the origin of a QNBD. Thus the mean of the 
distribution is: 









++′

+
+=′ ),1(

)(
1 211

21

2
11 θθμ

θθ
θθμ aa  

(4.11) 
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Using (4.10) recursively on the function 1μ′ , the 

mean is ]_;,1,1[ 20211 θθμ +=′ aFa , where 

]_;,1,1[ 202 θ+aF  is a hypergeometric function 

defined by: 

!
)1(1]_;,1,1[ 2

0

][][
202 j

aaF
j

j

jj θθ 
∞

=

+=+ . 

 
The second moment about the origin is 
determined from (4.10) as: 

1 2
1 1 2

1 2
2 1

2
2 1 2

1 2

2
1 ( 1, )

( 1, )

a
a

a

θ θ μ θ θ
θ θ

μ θ
θ μ θ θ

θ θ

+ ′+ + + + + ′ =
 ′ + + + 

(4.12) 

 
Repeated use of (4.12) on the function 2μ′  gives: 

}]_;,1,1[{ 120212 AaFa ++=′ θθμ      (4.13) 

 
where 
 

1 2
1 1 1 2

1 2

2
2 1 1 2

1 2

2 1 2
2

1 2

1 1 2

2
( 1, ) ( 1)

3
( 2, 2 )

2

4
( 1)( 2)

3

( 3, 3 ) ...

A a a

a

a a

a

θ θ μ θ θ
θ θ
θ θθ μ θ θ
θ θ

θ θθ
θ θ

μ θ θ

+ ′= + + + +
+
+ ′ + +
+

++ + +
+

′ + + +

 

 
Repeated use of (4.11) on the function 1μ′  gives: 

2
1 1 2 2 0 2 2

2 0 2

( 2 )( 1) [2, 2, _; ]

( 1)( 2) [3, 3, _; ]

A a F a
a a F a
θ θ θ θ

θ
= + + + +

+ + +
On substituting the value of 1A in (4.12) the 
second moment is obtained by: 
 

2 1 2 0 2

1 1 2 2 0 2

2
1 2 2 0 2

[1, 1, _; ]

( 2 ) ( 1) [2, 2, _; ]

( 1)( 2) [3, 3, _; ]

a F a
a a F a

a a a F a

μ θ θ
θ θ θ θ
θ θ θ

′ = +
+ + + +

+ + + +
 
Placing 3=k  in (4.10) the third moment is 
obtained by: 

1 2
3 1 1 1 2

1 2

1 2
2 1 2

1 2

2
3 1 2

1 2

2 3
1 ( 1, )

3
( 1, )

( 1, )

a a

a

a

θ θμ θ μ θ θ
θ θ

θ θ μ θ θ
θ θ

θ μ θ θ
θ θ

 +′ ′= + + + +
+ ′+ + +
+

′+ + + + 

 

(4.14) 
Repeated use of (4.14) on the function 3μ′  gives: 

}]_;,1,1[{ 3220213 AAaFa +++=′ θθμ (4.15) 

where 

1 2
2 1 1 2 2

1 2

1 2
1 1 2

1 2

2
2

1 2
1 1 2

1 2

2 3
( 1, ) ( 1)

2 5
( 2, 2 )

2

( 1)( 2)

2 7
( 3, 3 ) ...

3

A a a

a

a a

a

θ θ μ θ θ θ
θ θ

θ θ μ θ θ
θ θ

θ
θ θ μ θ θ
θ θ

+ ′= + + + +
+

+ ′ + +
+

+ + +
+ ′ + + +
+  

(4.16) 
and 

1 2
3 2 1 2 2

1 2

1 2
2 1 2

1 2

2
2

1 2
2 1 2

1 2

3
( 1, ) ( 1)

4
( 2, 2 )

2

( 1)( 2)

5
( 3, 3 ) ...

3

A a a

a

a a

a

θ θ μ θ θ θ
θ θ

θ θ μ θ θ
θ θ

θ
θ θ μ θ θ
θ θ

+ ′= + + + +
+

+ ′ + +
+

+ + +
+ ′ + + +
+

 

(4.17) 
Repeated use of (4.11) in (4.16) gives: 

2
2 1 2 2 0 2 2

2 0 2

(2 3 ) ( 1) [2, 2, _; ] 2

( 1)( 2) [3, 3, _; ]

A a F a
a a F a

θ θ θ θ
θ

= + + + +
+ + +

 

Converting 2μ′  functions on the right hand side 

of (4.17) into 1μ′ functions by the repeated use 

of (4.12) and using (4.11) on the function 1μ′  
gives: 
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3 1 2 2 0

2
2 2 2 0 2

2 2
1 1 2 2 2 0 2

2
1 2 2 2 0 2

4
2 2 0 2

( 3 )( 1)

[2, 2, _; ] ( 1)( 2) [3, 3, _; ]

( 6 9 )( 1)( 2) [3, 3, _ ; ]

(3 10 )( 1)( 2)( 3) [4, 4, _ ; ]

3 ( 1)( 2)( 3)( 4) [5, 5, _ ; ]

A a F
a a a a F a

a a F a
a a a F a

a a a a F a

θ θ
θ θ θ

θ θ θ θ θ
θ θ θ θ

θ θ

= + +

+ + + + +

+ + + + + +

+ + + + + +

+ + + + + +
 
Substituting the values of 2A and 3A into (4.15) 

results in: 

3 1 2 0 2 1

1 2 2 0 2

2 2

1 1 1 2 2

2 0 2

2

1 2 1 2 2

2 0 2

4

1 2

2 0 2

[1, 1, _; ]

3( 2 ) ( 1) [2, 2, _; ]

( 6 12 ) ( 1)

( 2) [3, 3, _ ; ]

(3 10 ) ( 1)

( 2)( 3) [4, 4, _ ; ]

3 ( 1)( 2)( 3)

( 4) [5, 5, _ ; ]

a F a

a a F a

a a

a F a

a a

a a F a

a a a a
a F a

μ θ θ θ
θ θ θ

θ θ θ θ θ
θ

θ θ θ θ θ
θ

θ θ
θ

′ = + +

+ + +

+ + + +

+ +

+ + +

+ + +

+ + + +

+ +

 

 
Similarly the fourth moment can be determined 
from (4.10) as: 

1 2
4 1 1 1 2

1 2

1 2
2 1 2

1 2

1 2
3 1 2

1 2

2
4 1 2

1 2

3 4
1 ( 1, )

3( 2 )
( 1, )

4
( 1, )

( 1, )

a a

a

a

a

θ θμ θ μ θ θ
θ θ

θ θ μ θ θ
θ θ

θ θ μ θ θ
θ θ

θ μ θ θ
θ θ

 +′ ′= + + + +
+ ′+ + +
+

+ ′+ + +
+

′+ + + + 
(4.18) 

Repeated use of (4.18) on the function 4μ′  gives: 

4 1 2 0 2

1 2
1 1 2

1 2

[1, 1; _ , ]

3 4
( 1, )

a F a

a

μ θ θ

θ θ μ θ θ
θ θ

′ = + +


 + ′ + + +

 

 

)2,2()1(
2

73
2112

21

21 θθμθ
θθ
θθ ++′+

+
++ aa  

 

21 2
2 1 1 2

1 2

3 10
( 1)( 2) ( 3, 3 ) ...

3
a a aθ θ θ μ θ θ

θ θ
+ ′+ + + + + + + 

 

1 2
2 1 2

1 2

1 2
2 2 1 2

1 2

21 2
2 2 1 2

1 2

2
3 ( 1, )

3
( 1) ( 2, 2 )

2

4
( 1)( 2) ( 3, 3 ) ...

3

a

a a

a a a

θ θ μ θ θ
θ θ

θ θ θ μ θ θ
θ θ
θ θ θ μ θ θ
θ θ

 + ′+ + + +
+ ′+ + + +
+

+ ′+ + + + + + + 

1 2
3 1 2

1 2

1 2
2 3 1 2

1 2

21 2
2 3 1 2

1 2

4
( 1, )

5
( 1) ( 2, 2 )

2

6
( 1)( 2) ( 3, 3 ) ...

3

a

a a

a a a

θ θ μ θ θ
θ θ

θ θ θ μ θ θ
θ θ
θ θ θ μ θ θ
θ θ

 + ′+ + + +
+ ′+ + + +
+

 + ′+ + + + + +  +  
 
Repeated use of (4.11), (4.12), and (4.14) 
recursively on the functions 1μ′ , 2μ′  and 3μ′  

respectively with simplifications results in: 
 

4 1 2 0 2 1

1 2 2 0 2

2 2
1 1 1 2 2 2

2 0 2

[1, 1, _; ]

(7 14 ) ( 1) [2, 2, _; ]

(6 36 6 55 ) ( 1)

( 2) [3, 3, _ ; ]

a F a
a a F a

a a
a F a

μ θ θ θ
θ θ θ

θ θ θ θ θ θ
θ

′ = + +
+ + +

+ + + + +
+ +

 

3 2 2
1 1 1 2 1 2 1 2

2 3
2 2

2
2 0 2 1 2 1 2

2 3
1 2 2

( 3 12 63

13 114 ) ( 1)( 2)( 3)

[4, 4, _ ; ] (6

52 131 ) ( 1)( 2)

a a a a
F a

a a a

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ θ
θ θ θ

+ + + +

+ + + + +

+ +

+ + + +

 

2
2 0 2 1 2

2 3
1 2 2

6
2 0 2 1 2

2 0 2

( 3)( 4) [5, 5, _ ; ]

(15 70 ) ( 1)( 2)( 3)

( 4)( 5) [6, 6, _ ; ] 15

( 1)( 2) ( 3)( 4)

( 5)( 6) [7, 7, _ ; ]

a a F a
a a a a

a a F a
a a a a a
a a F a

θ θ θ
θ θ θ

θ θ θ

θ

+ + + +

+ + + +

+ + + +
+ + + +

+ + +
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The moments about the origin can be easily 
verified for the negative-binomial distribution 
when 02 =θ . Further, central moments can be 
obtained from the moments about origin, thus 
resulting in the variance: 

[ ]

2 1 2 0 2 1 1 2

2 0 2

2
1 2 2 0

2

2 1 2 0 2

[1, 1, _; ] ( 2 )

( 1) [2, 2, _; ]

( 1)( 2)

[3, 3, _; ] [1, 1, _; ]

a F a
a a F a

a a a F

a a F a

μ θ θ θ θ θ
θ

θ θ

θ θ θ

= + + +
+ +

+ + +

+ − +

 

 
The third and fourth central moments are 
coming in messy forms and are not shown here. 
 
Relation with other distributions. 

Theorem 5.1: Let X = a quasi-negative-
binomial variate with parameters ),,( 21 θθa . If 

∞→a  such that αθ =1a  and λθ =2a  show 
that X tends to generalized Poisson distribution 
with parameters ),( λα . 

 
Proof: 
The QNBD can be expressed as: 
 

1
1 1 2

1 2

( 1)...( 1)
( : )

!

( )

(1 )

x

a x

a a a xP X x
x

x
x

θ θ θ
θ θ

−

+

+ + −=

+
+ +

   (5.1) 

 
1 1

1
1 1 2

1 2

2
1 2 1 2

(1 ).......(1 ( 1)  )

!

( ) ( )
( )( 1)

1 ( )( )
2!

( ) ...( )

x

a x

a x a
x

a a a x
a x a xa x x

x x

θ θ θ

θ θ

θ θ θ θ

− −

−

+

+ + −=

+
+ + −+ + + +

+ + +

 

 
Taking limit ∞→a , such that αθ =1a  and 

λθ =2a  results in a generalized Poisson 

distribution with parameters ),( λα as defined 
by Consul & Jain (1973). 
 

Theorem 5.2: Let X = a quasi-negative-
binomial variate with parameters ),,( 21 θθa . If 

∞→a  such that αλ =−1a , show that X tends 
to the Borel-Tanner distribution. 
 
Proof: 
Stating (5.1) as: 

1

( 1)......( 1)
( : )

!

( )

( )

x a

a x

a a a xP X x
x

r r x
r x

λ
λ

−

+

+ + −=

+
+ +

 

 
where 

2

1

θ
θ

=r  and 
2

1

θ
λ = . 

 
Shifting the support of x from 0 to r, that is, 

rxx −=  , results in: 

1

( : )

( 1)......( 1)

( )! ( )

, 1, 2,...

x r a

a x r

P X x
a a a x r rx

x r x
x r r r

λ
λ

− −

+ −

=
+ + − −

− +
= + +

 

rxarx

rx

x
rxaaa

rx
rx

−+−−

−−

+
−−++

−
=

)1(

)1)......(1(

!)( 1

1

λλ
 

 
Taking the limit ∞→a  in such a way so 

αλ =−1a  results in the Borel-Tanner 
distribution  

1( : ) ,
( )!

, 1, 2,...

x r x x rrP X x x e
x r

x r r r

α α− − − −=
−

= + + . 
 

Theorem 5.3: Let X = a quasi-negative-
binomial variate with parameters ),,( 21 θθa . 
Show that zero-truncated quasi-negative-
binomial distribution tends to quasi-logarithmic 
series distribution as 0→a . 
 
Proof: 
The zero-truncated quasi-negative-binomial 
distribution is 
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1

1
1 1 2

1 1 2

( )
( )  

( ) ( 1)

( )
,

[1 (1 ) ](1 )

1,2,.....

x

a a x

a xP x
a x

x
x

x

θ θ θ
θ θ θ

−

− +

Γ +=
Γ Γ +

+
− + + +

=  
(5.2) 

 
Writing: 
 

1

1

2 3
1 1

( ) 1 (1 )

( 1)
1 (1

2!( )
( 1)( 2)

...
3!

aa

a aa
a

a a a

θ

θ

θ θ

− Γ − + = 
+ − − + 

Γ  
+ + − +  

 

2
1 1

3
1

( 1)
(

2!( 1)
( 1)( 2)

......)
3!

a

a
a a

θ θ

θ

+ − − + 
= Γ +  

+ + 
  

       (5.3) 

 
Substituting the value from (5.3) into (5.2) and 
taking limit 0→a  the quasi-logarithmic series 
distribution is obtained: 

1
1 1 2

1
1 1 2

( )
( ) ,

[ log(1 )](1 )

1,2,...

x

a x

xP x
x x

x

θ θ θ
θ θ θ

−

+

+=
− − + +

=
 

Theorem 5.4: If 1X and 2X  are two 
independent quasi-negative-binomial variates 
with parameters ),,( 211 θθn  and ),,( 212 θθn , 
respectively, then the conditional probability of

1X , given nXX =+ 21 , gives a 
hypergeometric-QNBD. 
 
Proof: 

Because 1X and 2X  are two 
independent quasi-negative-binomial variates, 
the conditional probability 
 

( )
1

1 2

1 2

1 2
0

:
:

( , )

( , )
n

x

X xP X X n

P X x X n x

P X x X n x
=

  = + 
= = −

= = −

 

can be written as  

( )
1

1

2

2

1 2

1 2

1

1 2

11
1 1 2

1 2

11
1 1 2

1 2
11

1 1 2

1 2

:
:

( )
(1 )

( ( ) )
(1 ( ) )

( )
(1 )

xn x

n xx

n xn n x

n n xn x

nn n n

n n nn

X xP X X n

x
x

n x
n x

n
n

θ θ θ
θ θ

θ θ θ
θ θ
θ θ θ

θ θ

−+ −

+

− −+ − −

+ −−

−+ + −

+ +

 
 + 

+ 
  + + 

+ − 
  + + − =

+ 
  + + 

 

1 2

1 2

1 2

1

2

1 1

1

1
1 1 2

1
1 2 1 2

1 2

1
1 2 1 2

( )

( ( ) ) (1 )

(1 )

(1 ( ) ) ( )

n x n n x

x n x

n n n

n

x

n n nn x

n x

n n x n

x
n x n

x
n x n

θ θ θ
θ θ θ θ

θ θ
θ θ θ θ

+ − + − −

−

+ + −

−

+ +− −

+

+ − −

  
  
  =

 
 
 
+

+ − + +
+ +

+ + − +

 

 
Thus resulting in a new distribution, here called 
the hypergeometric QNBD. This probability 
distribution reduces to the classical 
hypergeometric distribution on 02 =θ . 
 
Some characterization. 

A number of complex distributions can be 
reduced to the simpler form QNBD as shown in 
the following theorems. 
 

Theorem: 6.1. If X is a quasi-inverse 
Polya variate with parameters (n, a, b, t), and if 

∞→b such that 1
1 λ=−ab  and 2

1 λ=−tb  
show that X approaches to quasi-negative-
binomial variate. 
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Proof: 
If X is a quasi-inverse Polya variate with 

parameters (n, a, b, t), then its probability mass 
function is: 

 

[ ] [ ]

[ ]

( : )

( ) ( )

( )

0,1,2,.....

n x

x

x n

n x

nP X x
n x

a a xt b xt
a xt a b n x t

x

+

+

 =  +  
+ +

+ + + +
=

,

 

 
which can be rewritten as: 
 

( 1)....( 1)
( : )

!
( 1)...( 1)

( )...( 1)

( )...

( 1)

n n n xP X x
x

a a xt a xt x
b xt b xt n

a b n x t

a b n x t n x

+ + −=

+ + + + −
+ + + −

+ + +

+ + + + + − .

 

 

Taking limit ∞→b  such that 1
1 λ=−ab  and 

2
1 λ=−tb  results in: 

1
1 1 2

( )1
1 2

2

( )

(1 ( ) )
( : )

(1 ) .

x

n xn x

nx

x
n xP X x
n

λ λ λ
λ λ

λ

−

− ++ −

−

+

+ + + =   + 
 

 

Incorporating 1
211 )1( −+= λλθ n  and 

1
222 )1( −+= λλθ n , the QNBD (2.4) is 

obtained. 
Theorem 6.2: If X is a generalized 

negative Polya-Eggenberger variate with 
parameters ),,,( γαβn , and if ∞→β  such 

that 1
1 λβ =−n  and 2

1 λγβ =−  show that X 
approaches to quasi-negative-binomial variate. 
 
Proof: 
The generalized negative Polya-Eggenberger 
distribution with parameters ),,,( γαβn  is: 
 

[ ] [ ]

[ ]
( ) ,

( ) ( )

0,1,2,.......

x n x xn x

n xx

n a bP X x
n x a b

x

ββ

ββ

+ −+

+
 = =  + + 

=
 

 
This can be rewritten as: 

[ ] [ ]

[ ]

( : )

( 1)....( 1)

!

( )

x n x x

n x

P X x
n n x n x x

x
β

β

β β

α γ
α γ

+ −

+

=
+ − + − +

+

     (6.1) 

 
Writing 
 

][

][][

][

][

)( xxxn

xxn

xn

xxn

++−+

−+

+

−+
=

+ αβ

βα

β

β

γ
γγ

γα
γ

 

][

][

)( xxxn +−++
= α

α

βγ
γ

 

( 1)...( 1)

( )...

( 1)

n x x
n x x x

γ γ γ α
γ β
γ β α

+ + −=
+ + −
+ + − + + −

 

 
On substituting this value into (6.1) and taking 

the limit ∞→β , such that 1
1 λβ =−n  and 

2
1 λγβ =−  results in: 

 
11

1 1 2

1 2

( )
( : )

( )

0,1,...

xx

xx

xP X x
x

x

αα

α
λ λ λ

λ λ

−+ −

+

+ =  + + 
=

 

Taking 1
211

−= λλθ  and 1
22

−= λθ  QNBD 
(2.4) is obtained. 

Theorem 6.3: If X is a quasi-inverse 
hypergeometric variate with parameters (n, a, b, 

t), and if ∞→b  such that 1
1 λ=−ab  and 

2
1 λ=−tb , show that X approaches to quasi-

negative-binomial variate. 
 
Proof: 
If X is a quasi-inverse hypergeometric variate 
with parameters (n, a, b, t) then its probability 
mass function is: 
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( : )

0,1,2,.....

a xt b nt

x n

a b n x t

n x

n aP X x
n x a xt

x

+ +

+ + +

+

  
  
  =

+ +  
 
 

=

 

Restating this as 

[ ] [ ]

[ ]

( 1)!
( : )

( 1)! !

( 1) ( 1)

( ( ) ( ) 1)

x n

n x

n x aP X x
n x a xt

a xt x b nt n
a b n x t n x +

+ −=
− +

+ − + + − +
+ + + − + + ,

 

 
expanding

][

][][

)1)()((

)1()1(
xn

nx

xntxnba
nntbxxta

xta
a

+++−+++
+−++−+

+
 

and taking limit ∞→b , such that 1
1 λ=−ab

and 2
1 λ=−tb  the equation reduces to: 

1

1 ( )
1 1 2 1 2

2

( : )

( ) (1 ( ) )

(1 ) .

n x

x

x n x

n

P X x

x n x
n

λ λ λ λ λ
λ

+ −

− − +

−

 =  
 
+ + + +

+

. 

 

Taking 1
211 )1( −+= λλθ n  and 

1
222 )1( −+= λλθ n , the QNBD (2.4) is 

obtained. 
Theorem 6.4: If 1X and 2X  are two 

independent non-negative integer valued random 
variables such that 
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where )1)......(1( 1222
][

2
1 −++= nnnnn n  and 

0,0,0,0 2121 >>>> nnθθ ,show that 1X
and 2X  are two independent quasi-negative-

binomial variates with parameters ),,( 211 θθn
and ),,( 212 θθn respectively. 
 
Proof: 
Let )()( 111 xfxXP ==  and 

)()( 222 xgxXP == . By condition (i) 
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and by condition (ii) 
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(6.3) 

Dividing (6.2) by (6.3) results in: 
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which gives a recurrence relation 
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Repeated use of the equation above gives: 
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f the above relation represents a probability mass 

function, then 2

1
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x
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this reduces the equation above to 
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This is a quasi-negative-binomial distribution 
with parameters ),,( 212 θθn . Similarly it can 

be shown that )(xf  also represents a quasi-
negative-binomial distribution with parameters

),,( 211 θθn . 
 
Goodness of Fit 

Due to its complicated likelihood 
function, the maximum likelihood estimate of 
the parameters of the proposed distribution are 
not straightforward and require some iterative 
procedure such as Fisher’s scoring method or the 
Newton-Rampson method for their solution. R-
software provides one such solution. In R-
software there exists the function nlm, which 
minimizes the negative log-likelihood function 
or equivalently maximizes the log likelihood 
function for estimating the parameters of the 
distribution by adopting the Newton-Rampson 
iterative procedure. A random start procedure is 
employed, that is, for a set of random starting 
points, the function nlm searches recursively 
until global maxima is reached. To verify that 
the global maximum has been found the gradient 
should be equal to zero. The closer the value of 
the random starting points to the ML estimate, 
the lesser number of iterations will be required 
to obtain the global maximum. 

Two data sets examine the fitting of the 
proposed model and compare it with the 
negative binomial distribution and generalized 
negative binomial distribution defined by Jain & 
Consul (1971). A computer program was 
developed using R-software to estimate the 
parameters of the distribution by using the nlm 
function. The ML estimates of the parameters so 
obtained are shown at the bottom of the tables. It 
is evident from tables 4.1 and 4.2 that, in all 
cases, the Chi-square values of the proposed 
model give the best fit as compared to other 
distributions. 
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Table 4.1: Absenteeism among shift-workers in steel industry; data from Arbous & Sichel, 1954 

Count 
Observed 
Frequency 

Expected Frequencies 

NBD 
GNBD Jain & 

Consul’s (1971) 
QNBD Proposed 

Model 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

25-48 

7 
16 
23 
20 
23 
24 
12 
13 
09 
09 
08 
10 
08 
07 
02 
12 
03 
05 
04 
02 
02 
05 
05 
02 
01 
16 

12.02 
16.16 
17.77 
18.08 
17.65 
16.80 
15.72 
14.52 
13.28 
12.06 
10.89 
09.78 
08.75 
07.80 
06.93 
06.14 
05.43 
04.79 
04.22 
03.17 
03.23 
02.86 
02.50 
02.91 
01.91 
12.77 

10.51 
17.45 
20.38 
20.80 
19.88 
18.34 
16.56 
14.78 
13.08 
11.53 
10.13 
08.89 
07.79 
16.83 
05.99 
05.26 
04.61 
04.05 
03.56 
03.14 
02.76 
02.43 
02.15 
01.90 
01.68 
13.50 

10.47 
16.05 
18.55 
19.19 
18.72 
17.63 
16.24 
14.74 
13.23 
11.80 
10.46 
9.25 
8.15 
7.18 
6.31 
5.55 
4.88 
4.30 
3.79 
3.34 
2.94 
2.60 
2.30 
2.04 
1.81 
16.48 

TOTAL 248 248 248 248 

ML 
Estimate 

 
p=0.854 
n=1.576 

 

p=0.00010775 
β =5978.5288 

n=29337.08391 

2.0034559=a  
 3.8528528 1 =θ  

0.06097762 =θ  

χ2 
d.f. 

 
14.92 

17 
27.79 

16 
11.18 

16 
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