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INVITED ARTICLES 
Quantile Regression: On Inferences about the Slopes 

Corresponding to One, Two or Three Quantiles 
 

   
 

Rand R. Wilcox Kathleen Costa 
University of Southern California 

 
 
The problem of testing hypotheses about the slope of a quantile regression line when the sample size is 
small is considered. A modified bootstrap method is suggested that is found to have certain advantages 
over the inverse rank method recommended by Koenker (1994). A method is suggested that 
simultaneously controls the probability of at least one Type I error when performing two or three tests 
corresponding to two or three specific quantiles. Using data from actual studies, it is illustrated that the 
new method can yield substantially shorter confidence intervals than the rank inverse method and, even 
with a large sample size, the choice of method can matter. 
 
Key words: Tests of independence, familywise error, bootstrap methods, Porteus Maze Test, Olympic 
athletes. 
 
 

Introduction 
 
Consider the random variables 1, , pX X¼ ,Y  

having some unknown (p+1)-variate distribution  
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and let Yg  be the conditional g  quantile of Y

given 1,..., pX X . When using the Koenker and 

Bassett (1978) quantile regression method the 
goal is to estimate Yg  assuming that 

 

1 1 p pY X Xg g g ga b b= + + + ,     (1) 

 
where the unknown parameters 1 , , pg gb b¼  and 

ga  are estimated based on the random sample 

1( , , , )i ip iX X Y¼ , 1, ,i n= ¼ . The special case 

.5g = corresponds to what is called the least 
absolute value regression estimator, meaning 
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that the parameters are chosen so as to minimize 
the sum of the absolute values of the residuals. 
This special case predates ordinary least squares. 
For a summary of results relevant to .5g = , see 
Birkes and Dodge (1993). A generalization of 
this method to other quantiles was first 
considered by Koenker and Bassett (1978). 
Since then, many new theoretical results have 
been published plus methods for computing 
confidence intervals for the parameters (e.g., 
Koenker, 1994; Koenker & Xiao, 2002). S-
PLUS and R provide functions for estimating the 
parameters, which includes confidence intervals. 
Although some small-sample size results on the 
accuracy of these confidence intervals (plus the 
accuracy of several other methods) were 
reported by Koenker (1994), the results were 
limited to p = 1, n=50 and a Type I error 
probability of 0.1.a =  Moreover, his results 
were limited to symmetric distributions. Thus, a 
goal in this article is to comment on some 
situations not considered by Koenker (1994). 
The focus in this article is on testing 
 

0 1: 0.H gb =  

 
Among the situations considered here, 

preliminary simulations indicated that the rank 
inversion method, recommended by Koenker 
(1994), continues to give fairly accurate 
confidence intervals for n = 20 (and p = 1) when 
testing at the .05 level with .5g = , .8 and .9. 
However, for .01a = , problems begin to 
emerge. For .5g = , and when both X and Y 
have standard normal distributions, simulations 
indicate that now the actual Type I error 
probability is .002. For .8g =  the estimate is 
.001. This is a concern when making inferences 
about two or more quantiles because if the goal 
is to control the probability of at least one Type I 
error using for example the Bonferroni 
inequality, having Type I error probabilities well 
below the nominal level could result in relatively 
poor power. Accordingly, one goal is to suggest 
an alternative approach that gives more 
satisfactory results for this special case. 
 
 
 

Practical Reasons for Considering Quantile 
Regression 

Well-known reasons exist for 
considering quantile regression, but two 
illustrations are provided that helped motivate 
this article. The first illustration stems from 
Costa (2004) where the goal was to study factors 
that influence increases in horizontal velocity of 
the body among Olympic athletes who compete 
in sprints. One issue of specific interest is the 
rate of horizontal force development (RHFD). 
Past studies (Henry, 1952; Payne & Blader, 
1971; Mero, et al., 1983; Hafez, et al., 1985) 
indicate horizontal velocity at block departure is 
dependent on the horizontal impulse generated 
within the starting blocks. Faster horizontal 
velocities at the end of the first step out of the 
blocks are generated with larger net horizontal 
reaction forces during ground contact (Mero, 
1988). These, and related results summarized in 
Costa (1994), led to the hypothesis that there is 
an association between horizontal impulse (HI) 
and RHFD during the first step out of the blocks. 

The sample size is n = 39. Initial 
examination of the data, based on various 
smooths, hinted at a slightly non-linear 
association between HI and RHFD. Using, for 
example, the robust version of the smooth in 
Cleveland (1979), it appears that as HI increases, 
RHFD increases somewhat, up to a point, and 
then decreases. However, a test of the hypothesis 
that the association is linear, using the method in 
Stute, et al. (1998) in combination with a least 
squares fit, failed to reject at the .05 level. 
Replacing least squares with the more robust 
Theil (1950) and Sen (1968) regression 
estimator, again the hypothesis of a linear 
association is not rejected at the .05 level, but 
with only 39 pairs of points, this might be due to 
low power. Testing the hypothesis that the 
regression line is both straight and horizontal, 
using the wild bootstrap method in Wilcox 
(2005, section 9.5), the hypothesis of 
independence between HI and RHFD was 
detected at the .1 level. Simple analyses, such as 
Pearson's correlation and least squares 
regression, provided no indication of an 
association (Pearson's correlation is r = -0.04.). 

However, consider Figure 1, which 
shows a scatterplot of the data and three smooths 
indicated by the three solid lines. The top  
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smooth is aimed at estimating the .8 quantile of 
RHFD given HI. The middle smooth estimates 
the median of RHFD and the bottom smooth is 
for the .2 quantile. The so-called running-
interval smooth was used, as described for 
example in Wilcox (2005, section 11.4.4), in 
conjunction with the Harrell and Davis (1982) 
quantile estimator. (The S-PLUS function 
runmq, which comes with the library of 
functions in Wilcox, 2005, was used.) This 
suggests that as we move from the lower to the 
upper quantiles, a non-linear association begins 
to emerge. As is evident, for the .8 quantile, the 
association appears to be quadratic. If 
 

2
.8 0,.8 1,.8 2,.8Y X Xb b b= + + , 

 
then the estimates of 0,.8b , 1,.8b  and 2,.8b  are -

162.63, 277.13 and -109.47, respectively. The 
dashed line in Figure 1 shows this fitted model, 
which appears to be in reasonable agreement 
with the corresponding smooth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, an issue is testing both 0 1,: 0H gb =  and 

0 2,: 0H gb =  in a manner that controls the 

probability of at least one Type I error in a 
reasonably accurate fashion. 

The second illustration demonstrates 
that even with n large, quantile regression can 
help provide a deeper understanding about any 
association that might exist. Williams, et al. 
(2005) conducted a study dealing generally with 
the Porteus Maze Test (PMT), which is used to 
evaluate intelligence and executive functioning 
and screen for intellectual deficiency. A portion 
of the study dealt with the association between 
the so-called Q score resulting from the PMT 
test and a measure of maladjustment for the 
participants in this study. The sample size is n = 
1063. Pearson's correlation is r = 0.109, and 
using the usual Student's T test, the 
corresponding p-value is less than .001. The .5 
quantile regression estimate of the slope is 0 
indicating no association. 

Figure 1: A plot of HI versus HFRD Plus the .8 and .2 Quantile Regression Lines 
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Figure 2 shows a plot of the data. The 
three straight lines starting from the bottom, are 
the .5, .8 and .9 quantile regression lines. So it 
appears that as we move from the median value 
of Y toward the higher quantiles, an association 
appears. Using either the inverse rank method or 
the method considered here, 0 1,.9: 0H b =  is 

rejected at the .05 level. The least squares slope 
is estimated to be .0099, which is close to the 
estimated .8 quantile regression slope, which is 
.0098. The estimate of the slope for the .9 
quantile is .029. So, although Pearson's 
correlation rejects at the .001 level, the quantile 
regression lines provide an interesting 
perspective on the nature of the association. 
 

Methodology 
 
The Koenker and Bassett (1978) quantile 
regression method arises as follows. For some γ, 
0 1g< < , let  
 

0( ) ( ),uu u Igr g <= -  

 
where the indicator function 0 1uI < =  if u < 0; 

otherwise 0 0uI < = . Assuming that the γ 

quantile of Y, given X, is given by (1), the 
Koenker-Bassett quantile regression method 
estimates the unknown parameters 1 , , pg gb b¼  

and ga  with the values 1 , pb bg g¼  and ,ag  

respectively, that minimize 
 

( )irgrå ,                          (2) 

 
where 1 1i i i p ipr Y b X b X ag g g= - - - -  are 

the residuals. Here, the values that minimize (2) 
were determined with the function rq that is 
included in the robust library included with the 
software S-PLUS. 

The proposed method for dealing with 
very small sample sizes is based in part on a 
bootstrap estimate of the standard error. The 
idea of using a bootstrap estimate of the standard 
error is not new, but the 1, ,i n= ¼ more 
obvious approximation of the null distribution of 
the test statistic, labeled U below, is already 
known to be unsatisfactory. (For general results 

on bootstrap estimates of the standard error, see 
Buchinsky, 1994; Hahn, 1994.) More precisely, 
Koenker (1994) found that the actual probability 
coverage tended to be higher than the nominal 
level. Referring to his Table 2, when both X and 
Y have a Student's T distribution with degrees of 
freedom 1, 3 or 8, the actual probability 
coverage, when computing a .9 confidence 
interval, was estimated to be .920, .948 and .945, 
respectively. So, in terms of Type I error 
probabilities, the actual probability of a Type I 
error can be too low versus the nominal level. 
Very similar results were obtained here, as 
indicated in Section 3. One minor goal here is to 
expand upon Koenker's simulation study by 
considering sample sizes ranging between 20 
and 200, a wider range of α values, and some 
alternative situations that include skewed 
distributions. A more major goal is to suggest an 
adjustment that helps correct the problem just 
described. And as previously indicated, another 
goal is to control the probability of at least one 
Type I error when two or three specific quantiles 
are of interest. 

Let * * *
1( , , , )i ip iX X Y¼ , 1, , ,i n= ¼  be a 

bootstrap sample obtained by randomly 
sampling, with replacement, n vectors of 
observations 1( , , , ),i ip iX X Y¼  1, ,i n= ¼ . Given, 

γ label the resulting estimate of the slopes 
*, 1, ,kb k p= ¼ . Repeat this process B times 

yielding * *
1 ,k Bkb b¼ . Then from basic principles, 

an estimate of the squared standard error of kb g  

is 
 

2 * 2

1

,
1

( )
1

B

k bk k
b

S b b
B =

= -
- å  

 

where 
*

/ .k bk
b b B= å . So an approximate 

1 a-  confidence interval for gb  is

1 /2 ,k kb z Sg a-  where 1 /2z a-  is the 1 / 2a-  

quantile of a standard normal distribution. 
As previously indicated, preliminary 

simulations indicated that the actual probability 
coverage is larger than the nominal level. Here, 
a slight variation of Gosset's original strategy for  
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deriving Student's T test is used in an attempt to 
reduce this problem. That is, assume X and Y 
are independent, standard normal random 
variables and use simulations to approximate the 

distribution of
| |

.k
k

k

b
U

S
g

g =  Letting 1̂u a-  be the 

resulting estimate of the 1 a-  quantile of 
distribution of U, the 1 a-  confidence interval 
for kgb  is taken to be 1 .ˆ kb u Sg a-  

Consider p = 1; the 1 a-  quantile of 
the distribution of 1,.5U  was estimated for n=10, 

20, 30, 40, 60, 100 and 200, and .1a = , .05, 
.025 and .01 using simulations with 1,000 
replications. Then a least squares estimate was 
fitted having the form 
 

1
1 0ˆ .

d
u d

n
a- = +  

 
The resulting values for 0d  and 1d  are shown in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the top portion of Table 1. Results on how this 
approximation performs under non-normality 
are given in the next section of this paper. Still 
assuming p = 1, next consider the goal of 
making inferences about the slope corresponding 
to two different choices for g : .2 and .8.  

Furthermore, the goal is to control the 
probability of at least one Type I error (cf. 
Koenker & Machado, 1999). The strategy now is 
to approximate the null distribution of max(

1,.2 1,.8,U U ). This was also done for n=10, 20, 30, 

40, 60, 100 and 200, and a =.1, .05, .025 and 
.01. The resulting values for 0d  and 1d  are 

shown in the middle portion of Table 1. 
Finally, consideration was given to the 

goal where three choices for g  are to be used, 
namely, .2, .5 and .8. The idea is that any one 
choice for g  might miss an association that 
would be detected if a different choice were 
used, and again there is the goal of controlling 
the probability of at least one Type I error. The 

Figure 2: Q Scores versus a Maladjustment Score 
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resulting values for 0d and 1d  are shown in the 

bottom portion of Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simulation Study 

Simulations were used to study the 
small-sample properties of the methods just 
described, where the critical value is taken to be 

1̂u a- . The distribution for X was taken to be 

standard normal and the distribution for Y was 
taken to be one of four  g-and-h distributions 
(Hoaglin, 1985), which contains the standard 
normal distribution as a special case. If Z has a 
standard normal distribution, then 
 

2((exp( ) 1) / )exp( / 2)Y gZ g hZ= -  
 

if g > 0, and 2exp( / 2)ZY hZ=  if g = 0, has a g-
and-h distribution where g and h are parameters 
that determine the first four moments. The four 
distributions used here were the standard normal 
(g = h = 0.0), a symmetric heavy-tailed 
distribution (h = 0.2, g = 0.0), an asymmetric 
distribution with relatively light tails (h = 0.0, g 
= 0.2), and an asymmetric distribution with 
heavy tails (g = h = 0.2). Table 2 shows the 
skewness (κ1) and kurtosis (κ2) for each 

distribution considered. Additional properties of 
g-and-h distributions are summarized by 
Hoaglin (1985). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 shows the estimated probability 
of a Type I error when testing at the .05 or .01 
level with n = 20. The estimates are based on 
1,000 replications. From Robey and 
Barcikowski (1992), 1,000 replications is 
sufficient from a power point of view. More 
specifically, if we test the hypothesis that the 
actual Type I error rate is .05, and if we want 
power to be .9 when testing at the .05 level and 
the true α value differs from .05 by .025, then 
976 replications are required. As is evident, all 
indications are that reasonable control over the 
probability of a Type I error is obtained. Similar 
results were obtained when for a fixed γ, the 
goal is to test 0 1,: 0H gb =  and 0 2,: 0H gb = , 

or the three hypotheses 0 1,: 0H gb = , 

0 2,: 0H gb =  and 0 3,: 0H gb = , provided that 

when n is small, .2 .8g£ £ ; for brevity, the 
results are not reported. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Values for d0 and d1 
 

α d0 d1 
γ =0.5 

.100 1.645 -1.19 

.050 1.96 -1.37 

.025 2.24 -1.18 

.010 2.58 -1.69 

γ = (0.2, 0.8) 

.100 1.98 -1.13 

.050 2.37 -1.56 

.025 2.60 -1.04 

.010 3.02 -1.35 

γ = (0.2, 0.5, 0.8) 

.100 2.14 -1.31 

.050 2.49 -1.49 

.025 2.86 -1.52 

.010 3.42 -1.85 
 

Table 2: Some Properties of the g-and-h 
Distribution 

g h κ1 κ2 

0.0 0.0 0.00 3.00 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 
 

Table 3: Probability of at Least One Type I Error, 
n = 20 

g h α = 0.05 α = 0.01 

0.0 0.0 0.061 0.011 

0.0 0.2 0.056 0.008 

0.2 0.0 0.064 0.011 

0.2 0.2 0.056 0.007 
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Note that when dealing with the case p=2 or 3, 
the method used here can be used to control the 
probability of at least one Type I error when 
testing simultaneously the two hypotheses 

0 1,: 0H gb =  and 0 2,: 0H gb = , or the three 

hypotheses 0 1,: 0H gb = , 0 2,: 0H gb =  and 

0 3,: 0H gb = . It is noted that the simulations 

were repeated when testing these two 
hypotheses and it was found that the values in 
Table 3 can be used provided that, when n is 
small, .2 .8g£ £ . 
 
Comments and Illustrations Regarding 
Confidence Intervals 

Based purely on simulations, there 
seems to be little separating the rank inverse 
method recommended by Koenker (1994) and 
the bootstrap method used here when α =.05. It 
is illustrated, however, that when working with 
real data, the two methods can yield 
substantially different results. 

Consider again the Olympic athlete data 

and the model 2
.8 0,.8 1,.8 2,.8Y X Xb b b= + + . 

Using the rank inverse method, the .95 
confidence intervals for 1,.8b  and 2,.8b  are 

308( 1.798(10) ,320.245)-  and 

( )143.70,   4903.07- , respectively. By contrast, 

using the bootstrap method, the .95 confidence 
intervals are (25.95, 528.32) and (-208.28, -
10.66). Not only do the methods give different 
results when testing 0 1,.8: 0H b =  testing, the 

length of the confidence intervals differ 
substantially. A similar result is obtained when 
testing 0 2,.8: 0H b = , only now the difference 

between the lengths of the confidence intervals 
is less dramatic. 

Returning to the Porteus maze data, 
consider the model .8 0,.8 1,.8Y Xb b= + . The 

estimate of 1,.8b   is zero and using the standard 

method, the .95 confidence interval is (-0.235, 
0.000). Using the bootstrap method studied here, 
the .95 confidence interval is (-0.126, 0.126). So 
the standard method is unusual in the sense that 
the upper end of the confidence interval is equal 
to the estimated slope. For the .9 quantile, the 

estimate of the slope is -0.133 and the standard 
method gives a .95 confidence interval of (-
0.247, -0.007). Now the point estimate is near 
the center of the confidence interval. The 
bootstrap confidence interval is (-0.253, -0.014). 
 

Conclusion 
 
It is noted that some additional methods and 
situations were considered beyond those already 
described. Simulations were run with γ =.1, but 
now the null distribution of U was found to be 
rather unstable as a function of the distributions 
used to generate the data when the sample size is 
small. A percentile bootstrap method was 
considered, but it was found to be considerably 
less satisfactory in terms of probability 
coverage. The main point is that the adjusted 
bootstrap method considered here appears to 
perform reasonably well even under what would 
seem like extreme departures from normality. 
Moreover, both methods considered here seem 
to perform well when sampling from skewed 
distributions. Generally, when X and Y are 
independent, the choice between the two 
methods considered seems to make little 
difference, but when there is an association, this 
might no longer be the case, as was illustrated. 
Finally, R and S-Plus software is available from 
the author for applying the bootstrap method 
studied here. Ask for the function qregci. 
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