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Quantifying Bimodality Part 2: A Likelihood Ratio Test for the Comparison of a 
Unimodal Normal Distribution and a Bimodal Mixture of Two Normal 

Distributions 
 

B. W. Frankland Bruno D. Zumbo 
Dalhousie University University of British Columbia 

 
 
Scientists in a variety of fields are often faced with the question of whether a sample is best described as 
unimodal or bimodal. In an earlier paper (Frankland & Zumbo, 2002), a simple and convenient method 
for assessing bimodality was described. That method is extended by developing and demonstrating a 
likelihood ratio test (LRT) for bimodality for the comparison of a unimodal normal distribution and a 
bimodal mixture of two normal distributions. As in Frankland and Zumbo (2002), the LRT approach is 
demonstrated using algorithms in SPSS. 
 
Key words: Bimodality, likelihood ratio test, mixture distribution, SPSS. 
 
 

Introduction 
 
Previously, a method for assessing bimodality 
using the non-linear algorithms in SPSS was 
presented (Frankland & Zumbo, 2002). It is a 
method for modeling complex mixture 
distributions with a unimodal normal 
distribution (with 2 free parameters) and with a 
bimodal mixture of two normal distributions 
(with 5 free parameters). The current work 
extends that previous work to the development 
of a likelihood ratio test (LRT) for bimodality. 
In this extension, the research question is: Does 
a bimodal mixture of two normal distributions 
represent a significantly better fit to the data 
than a unimodal normal distribution? Here, the 
fit of the data to the unimodal normal 
distribution is considered the null hypothesis. 
The fit of the data to the bimodal mixture of 
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two normal distributions is considered the 
alternative hypothesis. The null hypothesis is 
rejected if it provides a significantly poorer fit to 
the data. 

As noted in Frankland and Zumbo 
(2002), the techniques developed herein are 
focused on putative mixtures of normal 
distributions; they can be applied, in principle, to 
the comparison of any set of theoretical 
distributions. Normal distributions were chosen 
as the focus because it is likely that the normal 
distribution is a reasonable approximation to the 
data, either as a single unimodal distribution, or 
as each component of the mixture of two 
distributions. It is admitted, a priori, that the 
solution offered is not an analytical solution to 
the question of bimodality. The point was to 
develop an accessible, flexible and, most 
importantly, accurate method that could be used 
to test any number of hypotheses. The procedure 
uses the commercially available statistical 
package SPSS (most statistical packages should 
be capable of comparable analyses) to 
accomplish a Monte Carlo simulation to 
generate the likelihood ratio distribution for the 
bimodal/unimodal comparison. Because it can 
be assumed that most researchers will use this 
technique to analyze a single (or limited number 
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of) data set, the application is demonstrated 
within that context. 
 
The Likelihood Ratio Method 

A set of empirically determined data, of 
size n (lower case n), is compared to two 
hypothetical population distributions. It is 
assumed that the data is represented as a 
histogram (hereafter, data histogram, or 
histogram; the term empirical data will refer to 
the original pre-binned data). 

The histogram will define the number of 
bins, and their statistics (lower limit, center, 
upper limit) for the subsequent analyses (see 
Frankland & Zumbo, 2002). This determination 
should be made in the context of subsequent 
simulation. The sample size (n) is the most 
important factor for creating bins. The most 
efficient method is to determine the mean and 
standard deviation of the sample using a 
traditional method. These are estimates of the 
mean and standard deviation (μ, σ) of the 
corresponding normal population. Thereafter, 
the number of bins per standard deviation is set 
to accommodate the expected range and density 
of scores for any sample of size n, from this 
particular population, N(μ, σ). For example, 
given n = 500, one could use 10 bins per sd, 
with a full range of z-scores from -5.0 to 5.0. 
(This point will be discussed more fully later.) 
These bins can then be adjusted to fit the actual 
data.  

Alternatively, the raw data can be 
converted to z-scores, and the likelihood ratio 
test can be conducted using z-scores. The 
likelihood ratio test is agnostic with respect to 
the original scale of the data. The use of z-scores 
is more convenient for testing multiple data sets. 
However, the fitted statistics for the unimodal 
and bimodal distributions are not obtained. Here, 
z-scores were used (see Frankland & Zumbo, 
2002 for raw scores). 

In the first step, the best-fit parameters 
for the unimodal and bimodal functions are 
determined (see Frankland & Zumbo, 2002). 
The data histogram is first compared to a 
function that describes a hypothetical unimodal 
normal distribution (hereafter, unimodal 
function). With the unimodal function, the free 
parameters to be determined are the mean (μ) 
and standard deviation (σ, or variance, σ2): 
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The mean and standard deviation could be easily 
obtained using traditional methods, but for this 
application, the mean and standard deviation 
must be determined using a method that 
compliments that which is used for the bimodal 
values. 

The histogram is compared to a function 
that describes a hypothetical bimodal mixture of 
two normal distributions (i.e., bimodal function). 
In this case, there is a mean (μ1, μ2) and a 
standard deviation (σ1, σ2) for each normal 
distribution, as well as, the mixture proportion 
(λ; note that some authors use π, and others use 
α, for this parameter):  
,ଵߤ)ܤ  ,ଵଶߪ ,ଶߤ ,ଶଶߪ (ߣ = 

ߣ  ∗ 1ඥ2ߪߨଵଶ ݁ି(௑೔ିఓభ)మଶఙభమ + 

(1 − (ߣ  ∗ 1ඥ2ߪߨଶଶ ݁ି(௑೔ିఓమ)మଶఙమమ  

 = ߣ ∗ ଵܰ(ߤଵ, (ଵଶߪ + (1 − (ߣ ∗ ଶܰ(ߤଶ,  ଶଶ)     (2)ߪ
 
Means and variances with subscripts refer to 
those from the bimodal distribution. In addition 
to the best-fit parameters, the likelihood that the 
sample came from a unimodal population, and 
the likelihood that the sample came from a 
bimodal population are determined. These two 
likelihoods are converted to a ratio (the 
likelihood ratio, LRdata). 

In the second step, a Monte Carlo 
simulation is used to create the likelihood ratio 
test (LRT) for bimodality. In this step, a normal 
distribution is defined, N(0, 1). From this 
unimodal population, a sample is taken. This 
sample is converted to a histogram using the 
same bin parameters as defined previously. The 
bins used for the raw data must match the bins 
used for the simulation. The binned sample from 
the normal distribution is then fitted to a 
unimodal function and to a bimodal function. 
Finally, the likelihood ratio for the sample is 
computed. This process is repeated for a large 
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number of samples drawn at random from the 
defined unimodal normal population. From the 
set of samples, a distribution of the likelihood 
ratios is created. The likelihood ratio distribution 
provides a direct assessment of the probability of 
getting the original likelihood ratio (LRdata), if 
the data were drawn from a unimodal normal 
population. If that probability is low, then the 
original data is assumed to be bimodal. This is 
simply type 1 error rate, which is normally set to 
α = 0.05. 

In the simulation there are K samples, 
each being denoted by k. Each of the K samples 
is based on n data points, drawn from a normal 
distribution. Each data point is Xi. These n data 
points per sample are converted to a histogram: 
The number and the boundaries of bins are 
determined by the original data (i.e., bin centers 
and limits reflect the raw data, X). There are Ii 
bins (I = 1 to I). The initial definition of the bins 
should encompass the full plausible range of the 
data (i.e., ideally, the tails should stretch to 
infinity). For each sample, one likelihood-ratio 
statistic (LRk) is produced. The distribution of K 
likelihood-ratio statistics (LRk, k = 1 to K) 
statistics provides the test of likelihood ratio of 
the data (LRdata). Note that the original empirical 
data determines the sample size n. As will be 
discussed, the sample size is the primary 
determinate of the number of bins, I. Time, 
computational resources and desired accuracy 
determine K. The procedure is demonstrated 
with a specific example. 
 
The Original Data 

For this demonstration, a bimodal data 
set of N = 500 data points was created. The data 
set consisted of a mixture of two normal 
distributions. Each distribution was obtained 
using the SPSS command NORMAL, which 
generates standard Normal pseudo-random 
variates. The first distribution was N(μ1, σ1) = 
N(-1.0, 0.7) and the second was N(μ2, σ2) = 
N(1.0, 1.0). Note that the variances are different. 
The data set consisted of 60% from the first 
distribution and 40% from the second 
distribution (sd), and is notated as B(μ1, σ1, μ2, 
σ2, λ) = B(-1.00, 0.71, 1.00, 1.00, 0.60). The raw 
data had a mean of .169, a standard deviation 
(sd) of 1.296, a skew of .412 + .109 and a 
kurtosis of .371 + .218. The median was .329. 

These data were converted to z-scores 
and then binned. By design, there were 10 bins 
per sd and a full range of -5.0 ≤ z ≤ 5.0. Each 
bin had a width of .01 sd. There was a single bin 
centered at z = 0 (hence, the bin was defined as -
.05 ≤ z ≤ .05). By design, there were 101 bins in 
total, with the last being 4.95 ≤ z ≤ 5.05 and -
5.05 ≤ z ≤ - 4.95. However, the bins in the tails 
were widened to encompass the ranges 4.95 ≤ z 
≤ 6.95 and -6.95 ≤ z ≤ -4.95. This captures the 
skewness that can manifest in an empirical 
bimodal distribution (alternatively, one can use a 
larger range of bins). The resulting distribution 
is shown in Figure 1. 

The z-scores in the raw data ranged 
from -2.09 to 3.07, and after binning, there were 
only 50 bins with non-zero counts (see Figure 
1). However, the full range of bins must be 
provided, with zero counts for those that are 
empty. This is important for the subsequent 
simulations. There are ways to create empty bins 
in SPSS, but for a single data set, the manual 
method is about as fast as any other. The data do 
not appear to be bimodal, although they are not 
obviously normal either (it simply seems 
skewed). Based on counts per bin, the binned 
distribution, with I = 50, produced (μ, σ)=(-.002, 
1.001). This is slightly altered from the original 
raw data. This alteration is important because all 
subsequent analyses are based on the binned 
data. 

The subsequent analysis uses the bin 
lower limit (xl), bin center (xc) and upper limit 
(xu), so the SPSS data file is expected to contain 
the following variables: 
 
• Binnum: bin number (not actually used, but 

useful for humans) 
• Observed: observed count per bin (X) 
• xl: bin lower limit in the original scores 
• xc: bin center in the original scores 
• xu: bin upper limit in the original scores 
• Total: total counts (total number of data 

points, a constant 
 
Fitting the Original Data 
As described previously (Frankland & Zumbo, 
2002), when fitting the unimodal or bimodal 
functions, the algorithm determines the 
parameters  for  the  unimodal,  N(μ, σ),    and 
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bimodal, B(μ1, σ1 ,μ2, σ2, λ), distributions using 
an iterative, sequential-quadratic, search 
algorithm. The algorithm determines the values 
of μ and σ (or μ1, σ1, μ2, σ2, and λ) so that the 
predicted count per bin (Ŷi or Y’i) forms the best 
possible match to the by minimizing the sum of 
the squared deviations between theoretical count 
per bin and the actual count per bin (Yi). 
Conceptually, the fitting procedure is the same 
as ordinary, unweighted, least-squares 
regression (OLS) with Xi being the center of the 
bin, and Yi being the actual count per bin. The 
Xi are transformed non-linearly to create 
predicted bin count Ŷi (or Y’i).  

The parameters of the functions are 
adjusted iteratively until Ŷi produces the best 
match to Yi, ascertained by minimizing the sum 
of the squared deviations between the predicted 
and actual, Σe2

i = Σ(Ŷi-Yi)
2. Relative to OLS, 

only the method of fitting is different. Note that, 
in this analysis, every bin has the same 
contribution to the final solution regardless of 
the number of scores per bin. The predictions, 
Ŷi, are not weighted by sample size per bin. This 
is the simplest approach, but a weighted 
approach could be developed (i.e., weighted by 
bin count or, equivalently, bin error). 

Because each bin has an equivalent 
contribution to the final solution, one must  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
choose the bins carefully. After much trial and 
error, bolstered by post hoc rationalizations, it 
seems that empty bins for the full range of z-
scores should be included in the analysis. This is 
not a χ2 solution, though there are links to that 
methodology. Such data should not be dropped 
(or trimmed). That is, empty bins between bins 
with counts, and empty bins representing the 
tails of the distribution should be retained or 
added to the histogram. These empty bins in the 
tails can be combined if necessary. 

First, as noted, after much trial and 
error, the inclusion of empty bins does not seem 
to make a lot of difference to the final solution. 
The fitted parameters do change, but the change 
is within the error of all approaches. However, 
the inclusion of empty bins has many benefits 
for the later simulations. 

Second, the true functions that are being 
fitted technically stretch to ±∞. It is only by 
virtue of sample size that the data does not 
stretch to infinity. Having empty bins in the tails 
forces the functions to go to zero when they 
should go to zero. Alternatively, the inclusion of 
empty bins in the tails is equivalent to forcing 
the regression solution to go through the origin, 
which is reasonable (the distributions approach 
zero asymptotically). At this point, the goal is to 

Figure 1:The Empirical Bimodal Distribution B(-1.00, 0.71, 1.00, .1.00, 0.60) 
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find the best fitting parameters to define the 
populations. 

Third, bins in the tails (particularly those 
distant from the center of the data) represent 
real, though rare, data. Assuming that the 
original sampling that led to the data is truly 
random, deleting such outliers would be 
equivalent to lobbing off a part of the 
population. On the other hand, if retained, these 
outliers have high leverage in the solution. 
Empty bins in the tails also represent real 
information (low probability events). The 
inclusion of empty bins in the tails has the effect 
of reducing the leverage associated with the 
retention of outliers. That is, in the solution, a 
number of bins with (Ŷ, Y) = (~0, 0) will 
balance a few bins with (Ŷ, Y) = (~0, 1) or (~0, 
2). 

Last, bins in the tails can be combined. 
The fitting functions work by determining the 
probability of observed data per range of z-
scores. The functions use numerical integration 
with a trapezoid rule. In the tails, the functions 
are relatively flat (or, at least, approaching 
linear). Hence, in the tails, the use of a trapezoid 
rule with wider bins would not introduce large 
distortions. 

Bins should define a reasonable range of 
data that can incorporate the full range of the 
data, including the possible range that might 
occur in the subsequent simulation. A simple 
definition would use a range of ±5σ (i.e., z-
scores). More sophisticated estimates can be 
made, particularly with very large samples, but 
this seems to be a useful default value. 

The fitting algorithms for the unimodal 
and bimodal functions are shown in Listing 1 
(also see Frankland & Zumbo, 2002). Note that 
probabilities are actually computed using a two-
trapezoid rule per bin, with three values (Xl, Xc, 
Xu) per bin (the routine uses proportions per bin, 
but it could be written to use actual counts). 
 
Listing 1 
 
compute              prop = observed/total. 
model program   mean= 0.0 sd = 1.0. 
compute xa = abs(xl - xc). 
compute xb = abs(xu - xc). 
compute h1 = (.398942/sd)  
                * exp(-(((xl-mean)**2) / (2*sd**2)) ). 

compute h2 = (.398942/sd) 
                * exp(-(((xc-mean)**2) / (2*sd**2)) ). 
compute h3 = (.398942/sd)  
                * exp(-(((xu-mean)**2) / (2*sd**2)) ). 
compute  predun = .5 * (h1+h2) * xa  
                + .5*(h2+h3)*xb. 
cnlr          prop. 
                /pred = predun 
                /bounds sd gt 0.0001 
                /save = predun residun. 
 
model program  mean1 = -1.0 mean2 = 1.0  
                           sd1 = 1.0 sd2 = 1.0 ratio = 0.5. 
compute  xa = abs(xl - xc). 
compute  xb = abs(xu - xc). 
compute  h1 = (.398942/sd1)  
                *exp(-(((xl-mean1)**2)/(2*sd1**2)) ). 
compute  h2 = (.398942/sd1) 
                *exp(-(((xc-mean1)**2)/(2*sd1**2))). 
compute  h3 = (.398942/sd1)  
                *exp(-(((xu-mean1)**2)/(2*sd1**2))). 
compute  h4 = (.398942/sd2) 
                *exp(-(((xl-mean2)**2)/(2*sd2**2)) ). 
compute  h5 = (.398942/sd2)  
                *exp(-(((xc-mean2)**2)/(2*sd2**2))). 
compute   h6 = (.398942/sd2) 
                *exp(-(((xu-mean2)**2)/(2*sd2**2))). 
compute   predbi = ratio *(.5*(h1+h2)*xa 
                 + .5*(h2+h3) * xb) 
                 + (1-ratio)*(.5*(h4+h5)*xa  
                 + .5*(h5+h6) * xb). 
 
cnlr           prop. 
                 /pred = predbi 
                 /bounds sd1 gt 0.0001; sd2 gt 0.0001; 
                  1.0 ge ratio ge 0.0 
                 /save = predbi residbi. 
 

The constraints (bounds) are placed on 
the values of variances and the ratio. A constant 
could be included in the equations. In practice, it 
seems to make little difference for the fit of 
either function. More precisely, other factors, 
particularly the width of the bins, have a greater 
effect. The routine produces the predicted 
proportion per bin, Ŷi (or Y’i, notated as predun 
and predbi) and the residual, ei = Y’i − Yi 
(notated as residun and residbi). These variables 
are added to the data file. The sum of the 
residuals should be zero. The sum of the 
residuals-squared (Σe2

i) is equivalent to SSY.X in 
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OLS (i.e., SSY.X = Σe2
i), which can be converted 

to the standard error of estimate, sY.X, and 
eventually R2 

For the current data, after creating bins 
that stretched to ±7σ, the analysis using the 
bimodal function produced B(μ1, σ1, μ2, σ2, λ) = 
B(-0.489, 0.681, 1.145, 0.497, 0.734), with s2

Y.X 
= 1.389*10-5 and R2 = .933. The standard errors 
on the parameters estimates are 0.046, 0.043, 
0.075, 0.064, and 0.041 respectively. When 
converted back to raw scores using the inverse 
of the z-transform, these correspond to B(-0.802, 
0.881, 1.312, 0.643, 0.734) This compares 
acceptably with the parameters used to define 
the population. The analysis using the unimodal 
function produced N(μ, σ) = N(-0.163, 1.038), 
with s2

Y.X = 2.419*10-5 and R2 = .880. The 
standard errors on the parameters estimates are 
0.044 and 0.036 respectively. Converted to raw 
scores, one has N( -0.380, 1.343). The fitted 
functions are layered on top of the original data 
in Figure 2. 

The s2
Y used for the computation of R2 

is the variance of the counts, not the variance of 
the original data. The point here is not to 
compare the parameters returned by algorithm to 
those of the optimal solution. Rather, the point is 
to compare the fits using the unimodal and 
bimodal functions when computed using the 
same routine. Note that the change in fit is ΔR2 = 
.933 - .880 = .053. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For comparison purposes, if the 
histogram is cut off at the edge of the data (i.e., -
2.2 < z < 3.2), but retaining the empty bins 
between those extremes, one obtains B(-.486, 
.686, 1.150, .491, .739) with s2

Y.X = 2.764*10-5 
and R2 = .880. Note that these are within the 
errors cited above. For the unimodal function, 
one gets N(-.176, 1.054) with s2

Y.X = 5.720*10-5 
and R2 = .764. 

If all the empty bins are removed (even 
those between other non-empty bins), one 
obtains B(-.486, .686, 1.150, .491, .739) with 
s2

Y.X = 2.948*10-5 and R2 = .866, and N(-.175, 
1.055) with s2

Y.X = 4.777*10-5 and R2 = .769. 
Clearly, all three methods produce equivalent 
fits and parameters. 

As expected, in all cases the bimodal 
function produced the better fit between Ŷi and 
Yi. when using the same method (smaller error, 
higher R2). It is interesting that s2

Y.X is smaller 
when there are more bins (i.e., more X and Y 
points). This is counterintuitive, but it implies 
that the additional points – the empty bins – 
have very little error (so that the average error 
decreases). In addition, note that the choice of 
bin values does not affect the relative fits 
dramatically. The ratios s2

Y.X,b/s
2

Y.X,u are .662, 
.691 and .710 respectively, while the ΔR2 are 
.055, .082 and .098 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Unimodal Bimodal Curve Fits to the Empirical Bimodal Distribution 
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The Likelihood Ratio for the Original Data 
These two fits cannot be directly 

compared (either R2 or s2
Y.X) because the 

population with greater number of free 
parameters will generally produce the better fit. 
The reason for this is somewhat oblique to the 
statistical analysis. The premise is that when 
comparing two theories (i.e., two populations) 
both theories will have been selected by past 
research to be reasonable fits to the data (even if 
only by eye). Hence, both functions will 
approximately match the data, so the function 
with the more flexibility (more df's) will 
generally fit better. 

Instead, the likelihood that the data 
came from a unimodal population can be 
compared to the likelihood that the data came 
from a bimodal population (this is almost 
Bayesian). The probability, or likelihood, of 
getting the particular set of data if, in fact, that 
data came from the specified unimodal, N(μ, σ) 
is L(N). It is also known as L0, since the simpler 
unimodal distribution will become the null 
hypothesis. Similarly, for the bimodal 
population, B(μ1, σ1, μ2, σ2, λ), the probability is 
L(B) or LA since the more complex bimodal 
population will become the alternative 
hypothesis. In each case, the probability is 
nothing more than the product of the 
probabilities for the individual bins, i (i = 1 to I). 
 

( ) ( , )μ σ= = ∏O i
i

L N L P             (3) 

 

( ) ( )1 1 2 2, , , ,μ σ μ σ= = ∏A i
i

L B L P       (4) 

L0 and LA represent the maximum 
likelihood solutions for each population: They 
are, in some sense, the best possible fits between 
the data and the corresponding function, and 
therefore represent the maximum probabilities 
(likelihoods) for each hypothesis. The usual 
mean and standard deviation is, in fact, the 
maximum-likelihood solution for the normal 
distribution. 

Usually, to compare the two hypotheses, 
the ratio of likelihoods is computed. This is the 
likelihood ratio (LRdata or Λdata) for the data. In 
the likelihood ratio, for reasons that will be 

obvious momentarily, the simpler or null 
hypothesis is placed in the numerator. 

ௗ௔௧௔ܴܮ  = Λୢୟ୲ୟ = ୓ܮ ୅ൗܮ             (5) 

 
This ratio will be bounded by (0.0, 1.0). 

A ratio near 0 indicates that the alternative 
hypothesis (the bimodal distribution) is a much 
better fit, and a ratio near 1 indicates that both 
hypotheses provide equivalent fits. A ratio much 
greater than 1 should be impossible since the 
unimodal should not be able to provide a better 
fit than the bimodal distribution. 

Because there are many computational 
advantages, one usually works with the natural 
logarithm of the likelihood ratio. Hence, one 
usually has: 
 

-2ln(Λௗ௔௧௔) =  − 2 ln ቀܮ୓ ୅ൗܮ ቁ           (6) 

 = 2 ln(ܮ୅) − 2 ln(ܮ୓) 
 

= 2 lnሾ∏ ௜ܲ(ߤଵ, ,ଵߪ ,ଶߤ ,ଶߪ ௜ߣ )ሿ-2 lnሾ∏ ௜ܲ(ߤ, ௜(ߪ ሿ 
 
= 2 ∑ lnሾ ௜ܲ(ߤଵ, ,ଵߪ ,ଶߤ ,ଶߪ ሿ(ߣ − 2௜ ∑ lnሾ ௜ܲ(ߤ, ሿ௜(ߪ  
 = 2 ෍ሼlnሾ ௜ܲ(ߤଵ, ,ଵߪ ,ଶߤ ,ଶߪ ሿ(ߣ − lnሾ ௜ܲ(ߤ, ሿሽ௜(ߪ  =  ௗ௔௧௔ܴܮܮ

 
The value of logarithm of the likelihood 

ratio, LLR = -2ln(Λ), is bounded by (-∞, ∞), 
although very large positive or negative values 
(<-1000, >1000) would not be expected. A zero 
indicates equivalent fits, negative values imply 
that the unimodal is a better fit while positive 
values imply that the binomial is a better fit. 
Large positive values lead to rejection of the null 
hypothesis. The important point (for algorithms) 
is that by using ln(LA) and ln(L0), one converts 
the previous products and their ratio into a series 
of sums. Most importantly, the difference 
between the two hypotheses can be computed on 
a bin-by-bin basis, and then summed. 

To find the ratio, the likelihood that the 
data comes from the best-fit unimodal 
distribution must be determined, along with the 
likelihood that the data comes from best-fit 
bimodal distribution. This has not been detailed 
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in previous work (i.e., Frankland & Zumbo, 
2001). To obtain these probabilities, for each 
bin, the probability of an observed count, given 
the theoretical bin count must be determined. If 
it is assumed that, within any single bin, i (i = 1 
to I), the counts per bin follow a Poisson 
distribution (a normal distribution per bin may 
also be assumed), the probability of any 
observed count (Yi) can be obtained given the 
theoretically predicted count (Ŷi or Y’i). Within 
each bin, the probability for any particular count 
is (subscripts have been dropped for clarity): 
ܻ)݌  ෠ܻ) = ෠ܻܻ!ൗ ௒

 

 
           lnൣ݌൫ܻ ෠ܻ⁄ ൯൧ = ܻ ln൫ ෠ܻ൯ − ln(ܻ!) − ෠ܻ     (7) 
 

Essentially, the predicted count, Ŷ, is 
nothing more than a non-linear transformation of 
the bin value (e.g., collectively, xl, xc, xu). 
Listing 2 provides a method for computing the 
probabilities in each bin, given predicted counts 
from the unimodal and bimodal functions. Note 
that since the Poisson distribution uses counts, 
not proportions, proportions (of Listing 1) are 
converted into counts. The loop simply 
computes the factorial. The loop should not be 
executed if the observed count is zero. 
 
Listing 2: Poisson Probabilities per Bin: 
Unimodal and Bimodal Functions 
 
compute  expectun = predun * total. 
compute  expectbi = predbi * total. 
compute  poisun = (expectun**observed) 
                  * exp(-1*expectun). 
compute   poisbi = (expectbi**observed) 
                  * exp(-1*expectbi). 
loop          #i = 1 to observed. 
 compute   poisun = poisun / #i. 
 compute   poisbi = poisbi / #i. 
end loop. 
compute    lnpoisun = ln(poisun). 
compute    lnpoisbi = ln(poisbi). 
compute    llrdata = 2 * (lnpoisbi - lnpoisun). 
 
Bin-by-bin, the probabilities (poisun and poisbi) 
are converted to logs and then subtracted. In the 

final step, the differences would be summed to 
create the ratio LLRdata. 

However, the use of logarithms has 
many benefits. As noted in Equations 6 and 7 
(and Listing 2), the factorial depends on the 
observed count and as such, is the same for both 
the unimodal and bimodal functions on a bin-by-
bin basis. When converted to logs, the factorials 
become sums that cancel in each bin. Hence, the 
pesky loop to compute the factorial is not 
needed, removing complications arising from 
bins with zero counts. The early transition to 
logarithms also prevents possible overflow 
errors in the event that there is a large difference 
between the observed and predicted, and 
underflow errors in the event that e-Ŷ is very 
small. Hence, Listing 2 is revised as follows: 
 
Listing 2 Revised: LRT using Poisson 
Probabilities per Bin 
 
compute  expectun = predun * total. 
compute  expectbi = predbi * total. 
compute  lnpoisun = observed 
                 * ln(expectun) - expectun. 
compute  lnpoisbi = observed  
                 * ln(expectbi) - expectbi. 
compute  llrdata = 2 * (lnpoisbi - lnpoisun). 
 
Comment Sum the ln(LRdata) using the 
                 simple frequencies command. 
 
frequencies prop expectun residun lnpoisun 
                    expectbi residbi lnpoisbi llrdata 
                    /format = notable 
                    /statistics = mean stddev variance 
                     minimum maximum sum. 
The sum of llrdata is LLRdata = -2ln(Λdata), easily 
obtained from the descriptives or frequencies 
command of SPSS 

For the current data, when using bins in 
the full range of -5.0 < z < 5, the LLR = 28.645. 
Note that this is far from the value of zero that 
would be expected if the data were truly 
unimodal. However, this is not surprising given 
that the data was designed as bimodal. 

With the more restrictive range -2.2 < z 
< 3.2 (i.e., cut the histogram at the edge of the 
data, but retaining intervening empty bins), the 
value is LLR = 4.259 (but the simulation 
distribution changes accordingly). When no 
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empty bins are included the value is LLR = 
2.363. One then uses these values to determine 
whether the sample is more likely to have come 
from a unimodal or bimodal population. 

The other variables in the frequencies 
command provide quick, but useful, checks on 
the analysis. The sums of the proportion per bin 
(prop) or the predicted per bin (predun, predbi) 
should be one. The sums of the observed, 
expectun and expectbi should equal the number 
of data points (N = 500). The residuals should 
sum to zero. In addition, the variance of the 
residuals is essentially the squared-standard 
error of estimate (s2

Y.X) for each function. The 
output includes the variance of the bin counts. 
This is s2

Y. From this, one can compute the 
correlation R2 ≈ 1 - s2

Y.X/s2
Y. Although the 

CNLR routine will provide R2 directly, this 
computation is useful when computing R2 in a 
simulation (herein it serves as a further check). 
 
The Sampling Distribution of Log-Likelihood 
Ratio (LLR) 

The last step is to decide whether or not 
the observed ratio, LLRdata = -2ln(Λdata), is 
reasonable if, in fact, the null hypothesis is true. 
This is the likelihood ratio test (LRT) or more 
properly the log- likelihood ratio test (LLRT). To 
make this decision, one needs the theoretical 
sampling distribution of LLR = -2ln(Λ). This 
theoretical distribution is focused on the possible 
values of LLR when the data is taken from the 
defined unimodal normal distribution (i.e., from 
N(μ, σ), or L0). The empirical or theoretical 
bimodal population is irrelevant to the creation 
of this distribution. 

To create this distribution, one defines a 
normal distribution, and then takes a sample 
(notated by k) from that distribution. That 
sample is fit with a unimodal function, with a 
bimodal function and then the LLRk is 
determined. If the two functions provide 
equivalent fits, the LLRk is expected to be near 
0.0, but in fact, a value slightly greater than 0.0 
is expected (if the data is unimodal, the bimodal 
function will provide a better fit given its greater 
flexibility). This sample has the same sample 
size as the original data (n; called total in Listing 
2). 

The process is repeated for K samples to 
create the sampling distribution of LLR. The 

mean of this distribution is expected to be 
slightly greater than 0.0. The value of K reflects 
the desired precision in the final likelihood ratio 
distribution, weighted by the amount of 
patience. 

If the observed value of LLRdata = -
2ln(Λdata) for the single sample under 
consideration is unlikely given that distribution, 
then the null hypothesis is rejected – it is then 
concluded that the data is bimodal. That is, the 
null hypothesis is that the data is unimodal. In 
that case, the LLRdata should be near 1.0 (the 
mean of the likelihood ratio distribution). If the 
data is actually bimodal, then the value of 
LLRdata will be unexpectedly large. The usual 
criteria regarding Type 1 Error Rate (α) can be 
employed as the basis for the decision. If the 
LLRdata is one of those values that is so large that 
it would only be expected to occur 5% of the 
time (if the null hypothesis, L0, were to be true), 
then it is unlikely and the associated L0 is 
unlikely, and the null hypothesis is rejected. 

A Monte-Carlo simulation is used to 
create the sampling distribution of LLR. There 
are many nuances that can be varied for the 
simulation, but the point here is to create a basic 
template that can be used broadly or adapted to 
specific situations. 

For that simulation, there are a couple of 
important observations. Firstly, for the 
simulation, the scaling of the bin centers (or 
limits) is irrelevant to the issue of computing the 
sampling distribution of the LLR. The routine 
assesses the relative match of the Yi to the 
predictions based on the best fitting unimodal 
function (Ŷi,0) and bimodal function (Ŷi,A). Both 
the unimodal and bimodal functions use the 
same bin centers. Both Ŷi,0 and Ŷi,A are simply 
non-linear transforms of the same underlying bin 
centers. Hence, the data can be conveniently 
rescaled so that the bins are coded in terms of z-
scores, with a certain number of bins per 
standard deviation. The data only needs to be 
coded in the original units for discussion of the 
actual unimodal or bimodal means, variances, as 
well as the λ. 

Secondly, the routine must run 
unattended. This requires careful consideration 
of the bin definitions. When taking random 
samples from a population (unimodal or 
bimodal), every sample in the simulation will 
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produce different data. Each data point will be 
assigned to one bin in the histogram. Therefore, 
one must provide the full range of possible bins 
for the data to fall into. Most critically, there 
cannot be any missing bins within the range of 
the data. That is, each sample may not produce a 
non-zero count for every bin, but for the 
simulation as a whole, every individual data 
point must fall within some bin. Hence, all 
possible bins must be defined a priori. However, 
this is not difficult to do because one knows that 
the K samples are derived from a normal 
distribution with known mean and variance. 

It is important to remember that 
sampling from the theoretical normal 
distribution may produce data that extends 
beyond the range of the original raw data. 
Hence, the creation of the likelihood ratio 
distribution should allow for bins that 
encompass far more range than that of the 
original data. The bins should extend as far as is 
reasonable given the theoretical normal 
population and the empirical data to be tested. It 
is also appropriate (or safe) to retain a wide bin 
for each tail to capture the occasional data point 
that goes beyond the expected range. 

The bins in the simulation must match 
those used with the histogram for the original 
data: If not, the wrong sampling distribution is 
created. Note that the LLRdata previously 
computed depended on the types of bins used. 
Hence, the bins used to construct the histogram 
for the original data, and the bins used for the 
simulation must be the same. This is most easily 
accomplished using a fixed number of bins per 
sd (e.g., 5 or 10 depending on n), with a range of 
bins that is adequate for both the raw data and 
the simulation. Bins in the tails can be made 
wider without affecting the solution. This is the 
logic behind the aforementioned range of -5.0 < 
z < 5.0 with bin for the lower tail expanded to -
5.0 to -7.0 and the bin for the upper tail 
expanded to 5.0 to 7.0. For example, if one is 
working with original data that contains n = 100 
data points, the range of z-scores should be 
about +3.5 standard deviations with 4 or 5 bins 
per sd (hence 28 to 35 bins in total). This should 
result in reasonable counts near the center of the 
distribution, while allowing for the increased 
spread that is characteristic of a bimodal 
distribution.  

If an original sample of n = 100 should 
have a large proportion of data extending 
beyond 3.5 standard deviations, one should 
question the need for a test based on the null 
hypothesis of a unimodal normal distribution 
(i.e., the data is clearly not normal). That is, only 
0.047% of a normal distribution is beyond 3.5σ, 
which, for a sample of 100, is no scores. For 500 
data points, the range should be expanded to at 
least +4 bins (0.0063% of a normal distribution) 
or +5 (0.00057% of a normal distribution). Of 
course, wider limits are needed because nothing 
is truly normal, and one must have sufficient 
range to encompass the original histogram 
which is not likely normal. 
 
Creating the Sampling Distribution 

For the Monte-Carlo simulation, the 
only significant addition to the previously cited 
routines is the automated data generation. In the 
following, it is acknowledged that many of the 
routines can be simplified or streamlined. This 
presentation was chosen to maintain the clarity 
of the logic. 

To find the distribution of the LLR, the 
Monte-Carlo simulation (MCS) uses the full 
range of bins defined by the data and simulation. 
These bins are notated by z-scores since this is 
convenient. The MCS then takes K samples, 
each of size n, from this population. This results 
in one large data file. That file contains 
individual data points. That large data file is split 
and each sample is analyzed separately (and 
automatically). Each sample is converted to a 
histogram using the aforementioned bin sizes. 
Again, the bin sizes for the theoretical 
distribution are perfectly matched to those used 
with the real data, and the real data must have 
defined and used a sufficient range of bins for 
the entire simulation. Then, for each sample, the 
LLR is computed. Finally, all samples are 
reduced to a single data file containing the 
distribution of LLRk. This distribution can be 
plotted, or more simply the necessary critical 
values can be obtained. 

The first part of the process is shown in 
Listing 3. This generates K samples of size n. 
There are a couple of tricks to be discussed 
momentarily. Note the random seed. 
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Listing 3: Generating K samples of Size n 
 
set seed           random. 
input program. 
compute        #mean = 0. 
compute        #std = 1. 
loop               #K = 1 to 1000. 
+ loop            #N = 1 to 601. 
+ compute     K = #K. 
+ compute     meanbin = 51. 
+ compute     binpersd = 10. 
+ compute     total = 500. 
+ do if ( #N le 101 ). 
+ compute     N = -1. 
+ compute     zscore = 0. 
+ compute     binnum = #N. 
+ compute     xl = (binnum-meanbin - .5)  
                      / binpersd. 
+ compute     xc = (binnum-meanbin)  
                      / binpersd. 
+ compute     xu = (binnum-meanbin + .5)  
                      / binpersd. 
+ end if. 
+ do if ( #N gt 101 ). 
+ compute     N = #N - 101. 
+ compute     zscore = normal(#std) + #mean. 
+ compute     binnum = rnd(zscore * binpersd)  
                      + meanbin. 
+ end if. 
+ end case. 
+ end loop. 
end loop. 
end file. 
end input program. 
execute. 
 
frequencies   binnum. 
if ( binnum le 1 )       binnum = 1. 
if ( binnum ge 101 )  binnum = 101. 
if ( binnum eq 1 )      xl = -6.95. 
if ( binnum eq 101 )  xu = 6.95. 
if ( binnum eq 1 )      xc = (xu - xl) / 2 + xl. 
if ( binnum eq 101 )  xc = (xu - xl) / 2 + xl. 
execute. 

First, to generate n data points, n+101 
data points are generated. The extra 101 data 
points are a trick. They are place holders to 
ensure that every data set has the same range of 
bins. They define the bin sizes (in z-scores). The 
101 comes from the desire to have a range of -
5.0 < z < 5.0, with 10 bins per standard 

deviation. Note the variable meanbin and 
binpersd. There is one odd bin at the center. This 
can be altered to suit the circumstances (i.e., a 
different number of bins per standard deviation; 
a range of z-score range of bins). 

Second, bins are actually numbered 
from 1 to 101, rather than from -50 to 50. The 
variable meanbin defines the center bin. The 
values of xl, xc, and xu define the limits (lower, 
center, upper) of the bin in terms of z-scores. 
These are most useful for verifying the 
execution of the program. The frequencies 
command simply serves to check if any data 
exceeded the expected range of z-scores. Note 
that the tails are artificially widened after the 
data is created. 

This routine creates a data file that 
contains the following variables per case: 
K               sample number 
meanbin    the center bin 
binpersd    the number of bins per standard  
                  deviation 
xl               the lower (left) limit of the bin, in  
                  z-scores 
xc              the center of the bin, in z-scores 
xu              the upper (right) limit of the bin, in  
                  z-scores 
total           the total number of data points per 
                  sample 
N               datum number (not actually used, but 
                  useful for humans) 
                  N = -1 indicates a bin place holder 
zscore        the z-score of the created datum 
binnum      the conversion of the zscore to a bin 
number 
Note that some of the defined values are 
constants for all cases (for each data point). This 
is essentially the same as in original data. 

The processing continues in Listing 4. 
This large data file is split into K smaller files 
for individual analyses. The SPSS SPLIT FILE 
function accomplishes this. The data is then 
sorted (within each sample is faster) by bin 
number, and collapsed by bin number using the 
AGGREGATE function. This creates a 
histogram, for each sample, by counting the 
number of times each binnum was presented in 
the data (the line observed = n(binnum)). Other 
variables are collapsed as well. Note that 
meanbin, binpersd, total, xl, xc, and xu are all 
constants. Hence, taking the first occurrence 
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(within each sample) is the most efficient 
manner to get these values: It does not require 
any computations by SPSS. Also note that the 
breaking variables (K and binnum) are 
automatically included in each sample, while the 
variable zscore is dropped (one could take the 
mean of zscore to obtain the true bin center). 
 
Listing 4: Converting Data to Histograms, then 
Cleaning 
 
split file by K. 
sort cases by k binnum. 
aggregate       outfile = * 
                       /break = K binnum  
                       /meanbin binpersd total = 
                        first(meanbin, binpersd, total) 
                       /xl xc xu = first(xl, xc, xu) 
                       /observed = n(binnum). 
execute. 
compute         observed = observed - 1.  
frequencies    observed. 
if ( observed lt 0 )  observed = 0. 
 

In addition, recall that the first 101 
values of data only served to ensure that every 
bin existed (i.e., they were place holders used to 
define bins). This case would have been 
included in the count of values per bin number 
(binnum). Hence, every bin has one count (i.e., 
observed) too many, so one must subtract one 
from every value of observed. Note that if the 
range of bins was not defined sufficiently (the 
initial 101 bins), there will be a negative count 
in some bins. This would create havoc with the 
routines, so a check is used to force the count 
per bin (observed) to be greater than or equal to 
zero. The frequencies command is a better 
check. In fact, if there are negative bin counts 
(after subtracting one), the analysis should be re-
run, or widen the tails still further. Technically, 
this would also require recomputing LLRdata 
because the bins used for the simulation must 
match the bins used for the data. 

Listing 5 provides the fitting of the two 
functions and the computation of LLRk. It is 
essentially a repeat of previous discussions 
(particularly Listing 1). Note the set results none 
command. This turns off the outputting of 
results which is very useful in a simulation. In 
addition, split file processing is still engaged. 

This is the slowest part of the routine (get a large 
coffee). 
 
Listing 5: Fitting Each Sample with the Bimodal 
and Unimodal Functions to Obtain LLR 
 
set results none. 
 
compute  prop = observed / total. 
 
model program   mean=0.0 sd = 1.0. 
compute  xa = abs(xl - xc). 
compute  xb = abs(xu - xc). 
compute  h1 = (.39894228/ sd) 
                 *exp(-(((xl-mean)**2) /(2*sd**2)) ). 
compute  h2 = (.39894228/ sd) 
                 *exp(-(((xc-mean)**2) /(2*sd**2)) ). 
compute  h3 = (.39894228/ sd) 
                 *exp(-(((xu-mean)**2) /(2*sd**2)) ). 
compute   predun = .5*(h1+h2)*xa  
                 + .5*(h2+h3)*xb. 
cnlr           prop 
                 /pred = predun 
                 /bounds sd gt 0.0001 
                 /save = predun residun 
                 /criteria iter 100. 
 
model program  mean1=-1.0 mean2=1.0  
                           sd1=1.0 sd2=1.0 ratio=0.5. 
compute  xa = abs(xl - xc). 
compute  xb = abs(xu - xc). 
compute  h1 = (.39894228/ sd1) 
                *exp(-(((xl-mean1)**2)/(2*sd1**2))). 
compute  h2 = (.39894228/ sd1) 
                *exp(-(((xc-mean1)**2)/(2*sd1**2))). 
compute  h3 = (.39894228/ sd1) 
                *exp(-(((xu-mean1)**2)/(2*sd1**2))). 
compute  h4 = (.39894228/ sd2) 
                *exp(-(((xl-mean2)**2)/(2*sd2**2))). 
compute  h5 = (.39894228/ sd2) 
                *exp(-(((xc-mean2)**2)/(2*sd2**2))). 
compute  h6 = (.39894228/ sd2) 
                *exp(-(((xu-mean2)**2)/(2*sd2**2))). 
compute  predbi = ratio *(.5*(h1+h2)*xa  
                + .5*(h2+h3)*xb) 
                + (1-ratio)*(.5*(h4+h5)*xa  
                + .5*(h5+h6)*xb) . 
cnlr          prop 
                /pred = predbi 
                /bounds sd1 gt 0.00001; 
                 sd2 gt 0.00001; 
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                 1.0 ge ratio ge 0.0 
                /save = predbi residbi 
                /criteria iter 100. 
 
compute  expectun = predun * total. 
compute  expectbi = predbi * total. 
compute  lnpoisun = observed * ln(expectun)  
                - expectun. 
compute  lnpoisbi = observed * ln(expectbi)  
                - expectbi. 
compute  llrdata = 2*(lnpoisbi - lnpoisun). 
execute. 
 

Finally, as shown in Listing 6, the data 
are collapsed once again (using the 
AGGREGATE function) to create one case (i.e., 
one line in the data file) per sample. This one 
case contains all the essential information for the 
entire sample. The most important is the LLRk 
from which the sampling distribution of LLR can 
be created. The use of percentiles in the 
FREQUENCIES command provides the 
standard critical points directly, but the 
distribution can also be created. 
 
Listing 6: The Sampling Distribution of LLR 
 
aggregate outfile = * 
                 /break k 
                 /nbins = n(total) 
                 /count = sum(observed) 
                 /sumy predun residun predbi residbi= 
                  sum(prop, predun, residun, predbi, 
                  residbi) 
 
                 /sdy sdresun sdresbi =  
                    sd(prop, residun, residbi) 
                 /llr = sum(llrdata). 
 
compute   R2bi = 1 - (sdresbi**2 / sdy**2). 
compute   R2un = 1 - (sdresun**2 / sdy**2). 
compute   chgR2 = (sdresun**2 - sdresbi**2)  
                 / sdy**2. 
 
frequencies  variables = llr chgr2 
                     /percentiles = 90 95 99 
                     /statistics = mean stddev variance 
                      minimum maximum median  
                      skewness seskew kurtosis sekurt 
                     /order= analysis. 
 

For the current data, using the bin sizes of the 
original data, with n = 500 and K = 1,000, one 
obtains the following distribution of LLR (see 
Figure 3). 

From this, it can be determined that 5% 
of the distribution for LLR exceeded the critical 
value of .186, so the observed value of LLRdata = 
28.645 is significant. The hypothesis that the 
data came from a unimodal distribution is 
rejected, using a type 1 error rate of α = .05. 
This is not surprising given the population 
definition B(-1.0, 0.7, 1.0, 1.0, .6), the large 
sample size (N=500), range of bins -5.0 < z < 
5.0 and the 10 bins per standard deviation. Note 
that it is the sample size that allows for a large 
range of z, with a small z per bin. The 10% point 
was .153, and the 1% point was .226. The mean 
for the distribution was .002 and the standard 
deviation was .122 (skew: -.573 + .077; kurtosis: 
.413 + .155). Note that the mean is quite close to 
the expected value of zero. 

The CNLR function does not allow the 
correlation (R2) to be saved per sample. 
However, R2 can be computed per sample from 
R2 ≈ 1 - s2

Y.X/s2
Y. This can also be converted to a 

distribution. Given the unimodal and bimodal R2 
per sample, one can create ΔR2, and create the 
distribution of ΔR2. The sample ΔR2 can also be 
compared to this distribution, or this empirically 
determined sampling distribution of ΔR2 can be 
compared to the theoretical distribution of ΔR2 
with df1=3 and df2=n-5. 

For the current data, the change in fit 
was ΔR2 = .053. For the distribution of ΔR2, the 
critical points were .0000916 at 10%, .000115 at 
5% and .000152 at 1%. The mean was 
.00000153 and the standard deviation 
.00000064. Given that the observed ΔR2 was 
.053, the hypothesis that the data came from a 
unimodal distribution is rejected. 

Te standard deviation function in the 
AGGREGATE command (e.g., sdresun = 
sd(residun)) returns the inferential form of the 
standard deviation which in these simulations is 
Σe2

i / (I-1) (where I = number of bins). However, 
the CNLR algorithm provides the standard error 
of regression (s2

Y.X), and this is used to compute 
R2 for each sample. Thus, the s2

Y.X cited in the 
output of the unimodal modal is Σe2

i / (I-2), and 
the s2

Y.X cited for the bimodal modal is Σe2
i / (I-

5). Therefore, technically, the R2 cited in the  
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output of the CNLR for the single sample cannot 
be directly compared to the distribution of R2 
determined from R2 ≈ 1 - s2

Y.X/s2
Y. However, the 

difference is slight, and this entire process only 
estimates the distributions (i.e, it is not an 
analytic solution). A correction could be applied 
if desired (I-1 / I-dfmodel), which would be useful 
if generating very large simulations. 
 
Extensions 

The CNLR (or NLR) command, with 
the use of the subcommand /outfile= aaaa.bbb, 
allows various parameters from each sample to 
be saved for future analyses. For example, the 
fitted parameters can be obtained per sample (μ, 
σ) and (μ1, σ1, μ2, σ2, λ) so to map the parameter 
space. When examining these values, it should 
be kept in mind that the algorithm will 
occasionally flip the order of μ1 and μ2, so, 
before computing any interesting statistics, one 
should insure that μ1 is less than μ2 (flipping μ1 
and μ2 also requires flipping σ1 and σ2, as well as 
inverting λ). The output file also contains the 
SSY.X, the number of cases and the split file 
number. 

A χ2 test of the fit can also be obtained, 
by computing (Ŷi - Yi)

2/Ŷi, per bin before 
collapsing the data. This is not advocated 
because the sum can create overflow errors. The 
reduced χ2 can also be used. It is interesting to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
note that in the special case when the null is a 
normal distribution, and the alternative is a 
mixture distribution of two normal distributions 
with equal variances (σ1 = σ2), the sampling 
distribution of LLR is known to be related to the 
χ2 distribution: 
 ߯జଶ = −2 ln(Λ) 

 

= −2 ln ቀܮ୓ ୅ൗܮ ቁ 

 = 2 ln(ܮ୅) − 2 ln(ܮ୓)              (8) 
 
The df (υ) for the χ2 distribution is equal to the 
difference in the number of parameters fitted. In 
this special case, υ = 2: There are two 
parameters for the unimodal normal distribution, 
N(μ,σ), and four for the bimodal mixture of two 
normal distributions B(μ1, σ, μ2, σ, λ),. Hence, in 
that special case, LLRdata = -2ln(Λdata) can be 
compared to the χ2

2 distribution (see McLachlan, 
1987, for a more extensive discussion), though 
this equivalency assumes that the computation 
of the expected frequency per bin follows a 
Normal, rather than Poisson distribution. If the 
LLRdata exceeds the critical value for χ2(2), then 
the null can be rejected. The χ2

2 distribution can 
also be compared to the LLR distribution 
obtained herein. However, these constraints are 

Figure 3: The Likelihood Ratio Distribution (K = 1,000, N = 500) 
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not acceptable in the general case. The current 
procedure allows the use of unequal variances, 
and the current procedure can be extended to 
any non-normal distributions. 

Because the scaling of the bin centers 
(or limits) is irrelevant (i.e., Xi), z-scores can be 
used for any data set. When the data set is 
converted to a histogram, the important issues 
are the number of bins per standard deviation 
and the full range of bins. The actual scaling of 
the bins is irrelevant (to the computation of 
LLRdata). As such, any particular data set can be 
converted to a standard histogram, with a set 
number of bins and range of bins. The LLRdata 
can be determined for that standard histogram. 
This LLRdata could then be compared to tabulated 
values of critical LLRs for particular values type 
1 error rate (α). That is, using SPSS, tables of 
critical values can be created for various 
combinations of total sample size, bin size (bins 
per sd), and range of bins. This would avoid all 
the tedium of running this simulation for every 
data set. The simulation could be saved for non-
tabulated situations. Arguably, it is still better to 
complete the entire simulation so that the bins 
can be carefully tailored to data. Note that the 
number of samples in the simulation (i.e, K) 
should not be an issue. That is, K reflects desired 
precision and reliability. Every simulation 
should produce approximately the same critical 
values (always remember that the fitting process 
is iterative, not algorithmic). 
 
Power 

The previous simulations can be used to 
compute power for any given exact alternative to 
the null. The exact alternative would specify the 
parameters in B(μ1, σ1, μ2, σ2, λ), and then use 
this as the population for the simulation, in place 
of N(μ, σ). The proportion of sample LLR’s that 
exceeded the previously defined critical values 
for the null would then be determined. For this 
to work, the bimodal population must use the 
same range of bins and the same bin size as the 
corresponding null hypothesis.  

Often, when computing power, a wider 
range of bins is needed because data in the tails 
are more common from a bimodal population. 
This implies that the LLR test for the unimodal 
population would need to be computed with a 
larger range of bins. 

In addition, when the bimodal 
population is not symmetric (i.e., σ1 = σ2, and λ 
= .5), it is more difficult to get the population 
centered in the histogram. The middle of the 
histogram should correspond to the mean of the 
bimodal distribution, so that there is sufficient 
range in the tails. This is a pragmatic issue since 
the bimodal population, and hence every random 
sample from it, is fit with the unimodal and 
bimodal function on the basis of the same 
histogram. 
 

Conclusion 
 
This work has been a demonstration of the 
application of commonly available statistical 
software, in this case SPSS, to solving the 
problem of assessing putative mixture 
distributions, particularly decisions comparing a 
unimodal normal distribution to a bimodal 
mixture of two normal distributions. Routines 
were developed to enable anyone to determine 
the best-fit statistics for fitting data to a 
unimodal normal distribution or a bimodal 
mixture of two normal distribution, to then use 
those parameters to generate the LLR, and 
finally, to generate the sampling distribution of 
the LLR. 

These routines have been developed and 
refined over a number of versions of SPSS from 
6.0. to 11.5. In fact, the routines were initially 
developed within SPSS 4.0, running under VMS 
8.0, on a VAX 4500. Different version might 
require minor modifications. In addition, 
routines have be developed and run on a variety 
of hardware. On a 1,000 MHZ Duron with 1.256 
Gigs of memory, a simulation with K = 1,000, 
and N = 500 required about 15 minutes. A 600 
MHZ, Pentium 4 with 256 Megs of memory 
increased this to about 15 minutes. By contrast, 
similar simulations on a 40 MHZ AMD 386 had 
to be run overnight. Interestingly, the VAX also 
required an overnight batch job. 

When setting up, the process is simple 
and relatively efficient: simply convert the 
empirical data to z-scores and then create a 
histogram with an appropriate number of bins 
per sd and an appropriate range of z-scores. This 
depends primarily on the sample size. The 
simulation to create the LLR distribution uses 
the same bin size and range. The variable bin 
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widths could be used, with narrower bins near 
the center of the distribution and wider bins in 
the tails. As long as the bins form a mutually 
exclusive and exhaustive set for the range of 
interest, this is not a problem. In fact, it might be 
more optimal in the long run to develop 
algorithms that use bins that represent constant 
probabilities under the normal distribution. 

The method can be adapted to non-
normal distributions or to mixtures of non-
normal distributions. There is unlimited 
flexibility in the choice of fitting functions. The 
process creates an empirical sampling 
distribution for whatever hypotheses are being 
tested. 

As noted predicted bin counts could be 
generated using other methods, in particular the 
normal distribution. That route was not 
presented here because it the use of normal 
distribution to predict bin counts resulted in a 
test with lower power. However, that method is 
more closely tied to the χ2 test of fit, and the 
LLRT approximation to the χ2. 

The second advantage is that the 
algorithm can be modified to obtain greater 
accuracy. Non-linear regression using a least-
squares error term assumes that the theoretical 
error is a constant for all values of the 
independent variable. That is, every bin, 
regardless of its count, has the same contribution 
to the final solution. However, the error of a 
count (if Poisson statistics are valid) is the 
square root of the count. Hence, relative errors 
per bin increase as the count decreases. This can 
be used as a control in the CNLR routine. SPSS 
non-linear regression allows one to specify the 
error term. Hence, a weighted least-squares 
(non-linear) regression approach could be used. 

In summary, the routine works; 
however, it must be cautioned that this algorithm 
is only considered an interim solution to the 
problem – one of many (cf., Eriksen & Eriksen, 
1972; Eriksen & Yeh, 1985; Hartigan, 1974; 
Jones & McLachlen, 1990; Müller & Sawitzki, 
1991; Roeder, 1990, 1994; Yantis, Meyer and 
Smith, 1991; Yellott, 1971).  

Hopefully, a proper fully parametric 
method for assessing bimodality will be 
developed, one that extracts all the information 
contained within each individual data point 
rather than working through the intermediary of 

a histogram. However, even if a proper 
parametric method is developed, it will 
necessarily be tied to particular parent 
distributions. As such, the algorithms developed 
herein will continue to serve some purpose with 
other non-normal parent distributions. 
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