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Forecast-based schemes are often used to monitor autocorrelated processes, but the resulting forecast recovery 
has a significant effect on the performance of control charts. This article describes forecast recovery for 
autocorrelated processes, and the resulting simulation study is used to explain the performance of control 
charts applied to forecast errors. 
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Introduction 
 
Many traditional control charts were developed 
under the assumption that the measurements 
resulting from the in-control process are 
independent and identically distributed (iid) 
random variables. 

Recently, many advances in measurement 
technology and sampling frequency yield sample 
measures that are not independently distributed. 
Hence, an alternative to the traditional control 
charting approach is to utilize a forecast-based 
monitoring scheme, which involves identifying the 
proper time-series model characterizing the 
process, obtaining the appropriate Box-Jenkins 
one-step-ahead forecast of process observations,  
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and then applying traditional control charts to 
forecast errors (Alwan & Roberts, 1988; Wardell, 
Moskowitz, & Plante, 1994; Lin & Adams, 1996; 
Lu & Reynolds, 1999a; Lu & Reynolds, 1999b; Lu 
& Reynolds, 2001). If the assumed time-series 
model is correct, the forecast errors are iid normal 
random variables. Hence, the errors perform in a 
manner predictable through traditional control 
charting techniques, enabling monitoring for 
detection of step-shifts in the process mean level.  

One problematic characteristic of forecast-
based monitoring schemes is the phenomenon of 
forecast recovery; that is, the process forecasts 
recover quickly from process disturbances. Hence, 
the resulting forecast errors also recover quickly. 
This article describes models for autocorrelated 
data and the impact of forecast recovery for three 
special cases of the general autoregressive moving 
average (ARMA) model, and investigates the 
impact of forecast recovery on the Individuals, 
Exponentially Weighted Moving Average 
(EWMA), and the Combined EWMA-Shewhart 
(CES) control charts applied to forecast errors 
resulting from the ARMA models. A description 
of the simulation study is also provided. 
Recommendations are provided that will enable 
the practitioner to more readily identify the most 
appropriate control chart for use in monitoring 
various ARMA processes. 
 

Methodology 
 
When control chart performance has been 
evaluated, the average run length (ARL) has 
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typically been used to quantify performance of the 
chart. The ARL is defined as the average number 
of time periods until the control chart signals. 
When the process is in-control, this is the expected 
time until a false-alarm. When the process shifts 
out-of-control, the ARL measures the expected 
time to detect the shift. The desired chart is one 
that simultaneously provides large in-control 
ARLs and low out-of-control ARLs. An 
alternative performance criterion is the cumulative 
distribution function (CDF). The CDF measures 
the cumulative proportion or percent of signals 
given by the ith period following the shift. It should 
be noted that the CDF completely characterizes 
the run length distribution, while the ARL is only 
the mean. Additionally, the median run length 
(MRL) can be used in conjunction with the ARL 
and CDF since it is a better measure of central 
tendency for skewed distributions such as the run 
length distribution. The MRL is defined as the 
median (50th percentile) number of time periods 
until the control chart signals. The desired chart is 
one with a high probability of early detection of a 
shift. In most cases, a trade-off between obtaining 
a low out-of-control ARL and high probability of 
early detection results.  

The impact of forecast error recovery on 
ARLs has been discussed (Adams, Woodall, & 
Superville; 1994; Superville & Adams, 1994), and 
the CDF technique has been recommended as a 
meaningful criterion for evaluating the 
performance of charts on forecast errors. In light 
of forecast recovery, both ARL and CDF 
performance for step-shifts in the process mean 
were evaluated (Lin & Adams, 1996) on the 
Individuals chart, the exponentially weighted 
moving average (EWMA) chart, and the combined 
EWMA-Shewhart (CES), in regard to monitoring 
forecast errors arising from particular forecast-
based monitoring schemes. It was found that the 
Individuals chart provides relatively high ARLs 
and CDFs, the EWMA provides low ARLs and 
CDFs, and theCES borrows the best properties 
from both charts, low ARLs and high CDFs. High 
(low) CDFs are defined as those exhibiting a high 
(low) probability of initial shift detection relative 
to competing control charts. 

In this article, control chart performance 
results are based primarily on ARL and CDF 
measures, but the MRL is also provided for each 
chart. Standard error of the run length (SRL) 

measures were provided to summarize the 
variability of each chart’s run length distribution, 
as well as to give the reader an idea of the 
accuracy of each ARL measure. Performance 
results of the traditional control charts applied to 
forecast errors resulting from various ARMA(1,1), 
AR(1), and MA(1) processes with a step shift of c 
= 1σε are given in Table 5. 

Simulations of the performance of the 
Individuals, EWMA, CES control applied to the 
forecast errors arising from various ARMA(1,1), 
AR(1), and MA(1) processes in this article give 
some insight into the impact of forecast recovery 
on these traditional control charts. This insight will 
better enable the practitioner to choose the 
appropriate control chart for various ARMA 
processes. The control charts were designed to 
provide in-control ARLs of 300. The EWMA and 
CES control charts were designed to detect a shift 
of the magnitude of the sustained expected 
forecast error for each model. A thorough 
discussion of sustained forecast recovery and 
sustained expected forecast error is provided in the 
following subsections. 
 
Simulation Description 

The simulation programs were designed, 
compiled, and run in Microsoft FORTRAN 
PowerStation for Windows, Version 4.0, utilizing 
FORTRAN 90. The program for finding ARLs 
were also used to estimate the appropriate control 
limits through trial and error. The simulations 
conducted are as follows. 
1.  A series of 4,100 ARMA(2,1) variates were 

generated by FORTRAN MSIMSL subroutine 
RNARM. These variates were the simulated 
observations, Yi’s, for each of the models 
investigated. 

2.  The first 100 observations were used to allow 
a burn-in period. 

3.  A step shift was induced in the simulated 
observations. The magnitudes of shift range 
from 0 to 3σε in increments of 1σε. 

4.  The appropriate Box-Jenkins OSA forecast 
and OSA forecast errors were calculated. 

5.  The programmed control chart monitored the 
forecast errors. The run lengths for the 
specified shift size were recorded. 

6.  Steps 1 through 5 were repeated 10,000 times 
for each model and process shift. The run 
length for the control chart was recorded for 
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each simulation repetition and the ARL was 
obtained based on 10,000 repetitions. For the 
CDF programs, the percentages of runs 
producing a signal within the first 300 
observations following the shift were 
obtained. 

One issue concerning the simulation 
should be addressed. Each program can be run to 
simulate a process in a zero state or steady state. 
Zero state provides for simulating a process from 
start-up, while steady state provides for simulating 
a process that has been running in an in-control 
state for some time. When simulating for control 
limits and Null case ARL, MRL, and CDF 
performance, the programs were run from zero 
state. When simulating the ARL, MRL, and CDF 
performance for a process that has experienced a 
shift, the programs were run from steady state. 
 
Models for Autocorrelated Data 
 Two ARMA(p, q) models have been found to 
have application in statistical process control. The 
first model of interest is the ARMA(1,1). Wardell, 
Moskowitz, and Plante (1992) address the 
ARMA(1,1) model, as it is a reasonable fit to data 
for some manufacturing processes. The second 
model of interest is the ARMA(1,0), also known 
as the AR(1). Montgomery and Mastrangelo 
(1991) and Alwan and Roberts (1988) have 
addressed the importance of the AR(1) model in 
manufacturing processes. Atienga, Tang and Ang 
(1998) discussed a time series approach to 
detecting level shifts in AR(1) processes. Lastly, 
the ARMA(0, 1), also known as the MA(1), is 
considered for the sake of completion of all 
possible first order ARMA(p, q) models. The next 
section briefly discusses process shifts associated 
with the various time-series models before 
description of the models. 
 
ARMA(1,1), AR(1), MA(1) Models & Process 
Shifts 
 In building an empirical model of an actual 
time-series process, the inclusion of both 
autoregressive and moving average terms 
sometimes leads to a more parsimonious model 
than could be achieved with either the pure 
autoregressive or pure moving average alone. This 
results in the mixed autoregressive-moving 
average. When both terms are mixed in first order, 
the resulting model is the ARMA(1, 1). The model 

for an in-control ARMA(1, 1), AR(1), and MA(1) 
processes are given by Eq.s (1), (2), and (3) 
respectively,  
 t t-1t t-1 =  +  + Y Yξ φ − θε ε   (1) 

 t tt-1YY = ξ + φ + ε  (2) 
 t-1t t=  -  + Y ξ θε ε  (3) 
where ξ is a constant and the sequence of εt (t = 
1,2,...) values are independent N(0, 2

εσ ) random 
variables. The ARMA(1, 1) process is stationary 
for <  1  an d   <  1φ θ , the AR(1) process is 

stationary for < 1 φ , and the MA(1) process is 
stationary for all values of θ.  
 Now, suppose a step shift of size c occurs in 
any of the ARMA(1,1), AR(1), or MA(1) 
processes between time periods r-1 and r, that is, 
the process mean suddenly changes from ξ to ξ+c 
at observation r. The Box-Jenkins one-step-ahead 
(OSA) forecasts are defined by 

t-1t t-1ˆ  = + eYY ξ φ −θ for the ARMA(1,1) process, 

t-1tˆ  = YY ξ+φ  for the AR(1) process, and 

t-1tˆ  = - eY ξ θ for the MA(1) process. 
 The OSA forecast errors are calculated as 
et = Y - Yt t� , for all processes. The expected 
OSA forecast errors for an ARMA(1,1) process 
can be described mathematically as 

t

k

               0 t 1, 2 , , r 1

E (e )                c t r

t r k ,  k 1 , 2 , ( )(1 )1 c
1




= −

= =



= + =  φ − θ − θ
−  

− θ   

…

…

(4) 

Similar results for the AR(1) and MA(1) 
processes can be obtained by setting θ = 0 or φ = 
0, respectively in Eq. (4). This general 
representation is consistent with the special cases 
of the ARMA(1,1) model presented in Atienga, 
Tang and Ang (1998), Lin and Adams (1996), and 
Wardell, Moskowitz and Plante (1994). 

Tables 1, 2, and 3 portray a realization of 
the expectation of forecast errors at time periods t 
< r, t = r, and t >r, for a c = 1σε step shift in 
ARMA(1,1), AR(1), and MA(1) models. These 
choices of models were designed by Wardell, 
Moskowitz, and Plante (1994) to systematically 
cover the region over which the ARMA series is 
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stationary. Although the models possessing 
positive autocorrelation are most likely to be 
encountered in manufacturing processes, those 
possessing negative correlation may be more 
prevalent in nonmanufacturing applications. 
 When an ARMA(p,q) process undergoes a 
step shift in the mean, the expected value of the 
forecast of the process varies for a time and then 
converges to a new equilibrium level (Wardell et 
al. (1994)), referred to in this paper as the 
sustained level of the shift. The response of the 
forecasts also causes the forecast errors to respond 
dynamically, as can be seen in Tables 1, 2, and 3. 
For the ARMA(1,1) model, the forecast errors 
react much differently, depending on the degree 
and direction of the first order autocorrelation, ρ1, 
as well as the values of φ1 and θ1. For all 
ARMA(p,q) models, the expected forecast error at 
time t = r is equal to c, but the dynamic response 
of the errors can vary dramatically for times t > r. 
 
Table 1: Forecast Error Expectation for Positively 
Autocorrelated ARMA(1,1) Processes with a Shift of c 
= 1σε at Time Period t = r. 

Model 1 2 3 4 5 6 7 8 
φ1 .950 .950 .950 .950 .475 .475 .475 -.475 
θ1 .900 .450 -.45 -.90 .450 -.45 -.90 -.900 
ρ1 .072 .824 .971 .975 .025 .689 .737 .255 
t Expected Forecast Errors, E(et) 

< r .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

R + 1 .95 0.50 -.40 -.85 0.98 0.08 -.38 0.58 
R + 2 .91 0.28 0.23 0.82 0.96 0.49 0.86 0.96 
R + 3 .86 0.17 -.05 -.68 0.96 0.30 -.25 0.61 
R + 4 .83 0.13 0.07 0.67 0.96 0.39 0.75 0.92 
R + 5 .80 0.11 0.02 -.55 0.96 0.35 -.15 0.64 

. . . . . . . . . 
r + 44 .50 0.09 0.03 0.04 0.95 0.36 0.28 0.78 
r + 45 .50 0.09 0.03 0.02 0.95 0.36 0.27 0.77 
 

For positively autocorrelated ARMA(1,1) 
processes, the following is observed in Table 1: 
The E(et) recovers to a value less than c for all 
times t > r. The recovery rate depends not only 
upon the values of φ1 and θ1, but also upon the 
particular time t after the shift. Defining E(et

*) to 
be the expected sustained level of the original shift 
of size c resulting from an ARMA(1,1) process, 
Eq. (5) can be derived from Eq. (4) when t > r, as 
k → ∞ , and it can be shown that 
 
 
 

Table 2: Forecast Error Expectation for Negatively 
Autocorrelated ARMA(1,1) Processes with a Shift of c 
= 1σε at Time Period t = r. 

φ1 .475 -.475 -
.475 

-
.475 

-.950 -.95 -.95 -.95 

θ1 .900 .900 .450 -.45 .900 .450 -.45 -.90 
ρ1 -.255 -.737 -

.689 
-

.025 
-.975 -

.971 
-

.824 
-

.072 
t Expected Forecast Errors, E(et) 

< r 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 
r 1.00 1.0 1.00 1.00 1.00 1.00 1.00 1.00 

r + 1 1.43 2.38 1.93 1.03 2.85 2.40 1.50 1.05 
r + 2 1.81 3.61 2.34 1.01 4.52 3.03 1.28 1.01 
r + 3 2.15 4.73 2.53 1.02 6.01 3.31 1.38 1.05 
r + 4 2.46 5.73 2.61 1.02 7.36 3.44 1.33 1.01 
r + 5 2.74 6.63 2.65 1.02 8.58 3.50 1.35 1.04 

. . . . . . . . . 
r + 44 5.21 14.62 2.68 1.02 19.32 3.55 1.34 1.03 
r + 45 5.21 14.63 2.68 1.02 19.34 3.55 1.34 1.03 
 
 
Table 3: Forecast Error Expectation for AR (1) and 
MA(1) Processes with a Shift of c = 1σε at Time Period 
t = r. 
Model 9 10    11 12   

φ1 .950 .475 -.475 -.950 .000 .000 .000 .000 .000
θ1 .000 .000 .000 .000 .000 -.45 -.90 .900 .450
ρ1 .950 .475 -.475 -.950 .000 .374 .497 -

.497
-

.374
t Expected Forecast Errors, E(et) 

< r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

r + 1 0.05 0.53 1.48 1.95 1.00 0.55 0.10 1.90 1.45
r + 2 0.05 0.53 1.48 1.95 1.00 0.75 0.91 2.71 1.65
r + 3 0.05 0.53 1.48 1.95 1.00 0.66 0.18 3.44 1.74
r + 4 0.05 0.53 1.48 1.95 1.00 0.70 0.84 4.10 1.78
r + 5 0.05 0.53 1.48 1.95 1.00 0.68 0.25 4.69 1.80

. . . . . . . . . . 
r + 44 0.05 0.53 1.48 1.95 1.00 0.69 0.53 9.91 1.82
r + 45 0.05 0.53 1.48 1.95 1.00 0.69 0.52 9.92 1.82
 
 

 E(et) → 1
1

1 1

1

−
−

−













( )

( )
φ θ

θ
c = E(et

*).  (5) 

Table 4 contains values of E(et
*) for various 

combinations of φ1 and θ1, hence providing a 
realization of the dynamic response of the forecast 
errors. Again, the degree of autocorrelation as well 
as the values of φ1 and θ1 determines the rate of 
convergence. It is obvious from Eq. (4) that k 
enters into the determination of E(et) only through 
θ1; hence, only ARMA(1,1) and MA(1) models 
with nonzero θ1 converge to E(et

*). In general, it 
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appears that ARMA(1,1) models with large 1θ  

converge more slowly than when 1θ  is small. 
 Models with large ρ1 tend to converge to a 
value of E(et

*) close to zero, while models with 
small ρ1 (i.e., close to zero) tend to quickly attain a 
value of E(et

*) close to c. For some combinations 
of φ1 and θ1, most noticeably φ1 positive while θ1 
negative, the E(et) oscillates between values less 
than c, until finally converging to E(et

*). Again, 
depending upon the magnitude of φ1 and θ1, the 
oscillation may go between positive and negative 
values less than c (φ1 = 0.95, θ1 = -0.45), or 
between strictly positive values less than c (φ1 = 
0.475, θ1 = -0.45).  
 For negatively autocorrelated ARMA(1,1) 
processes, Table 2 reveals that the E(et) exceeds c 
for all times t > r. The magnitude of E(et) again 
depends on the values of φ1 and θ1, as well as the 
time t following the shift. In most instances where 
ρ1 approaches zero, E(et

*) assumes a value trivially 
larger than c. In instances where ρ1 approaches 
negative one, E(et

*) often assumes a value much 
larger than c. Again, some oscillation among the 
values of E(et) occurs at times t > r, but not to the 
degree as when ρ1 is positive. Only ARMA(1,1) 
processes exhibiting forecast recovery, that is, 
positively autocorrelated processes, are further 
considered in this article. The ARMA(1,1) 
processes in Table 1 to be further considered are 
labeled Models 1 through 8. 
 For positively autocorrelated AR(1) 
processes, the following is observed in Table 3: 
E(et) recovers to a constant value less than c for all 
t > r, for all ρ1 between zero and one. Larger 
values of φ1 lead to greater degrees of forecast 
recovery. Defining E(et

*) to be the expected 
sustained level of the original shift of size c 
resulting from an AR(1) process, Eq. (6) can be 
derived from Eq. (4) for all periods t > r, and it 
can be shown that 
 

E(et
*) = (1- φ1)c. (6)  

 
For negatively autocorrelated AR(1) processes, the 
following is observed in Table 3: E(et) increases to 
a constant value greater than c for all t > r, for all 
ρ1 between zero and negative one. Values of φ1 
closer to negative one lead to greater increases in 
values of the expected forecast errors. Only AR(1) 

processes exhibiting forecast recovery, that is, 
positively autocorrelated processes, are considered 
in this article. The AR(1) processes to be further 
considered in Table 3 are labeled Models 9 and 10. 
 For positively autocorrelated MA(1) 
processes, the following is observed in Table 3: 
E(et) recovers to a value less than c for all times t 
> r. The recovery rate depends not only upon the 
value of θ1, but upon the particular time t after the 
shift. Defining E(et

*) to be the expected sustained 
level of the original shift of size c resulting from 
an MA(1) process, Eq. (7) can be derived from Eq. 
(4) when t > r, as k → ∞ , and it can be shown 
that 

 E(et) → 
1

1 1( )−











θ
c = E(et

*).  (7) 

 
The degree of autocorrelation as well as the value 
of θ1 determines the rate of convergence. As in the 
case with the ARMA(1,1), E(et) oscillates, 
converging to the value E(et

*), which is less than c, 
for all t > r. At no time does E(et) exceed the value 
c. For negatively autocorrelated MA(1) processes, 
the following holds: the E(et) exceeds c for all 
times t > r. The magnitude of E(et) again depends 
on the value θ1, as well as the time t following the 
shift. The response of E(et) and the sustained level 
of the shift, E(et

*), is much like that for the 
ARMA(1,1) model in regards to various degrees 
of autocorrelation. Only MA(1) processes 
exhibiting forecast recovery, that is, positively 
autocorrelated processes, are considered in this 
article. The MA(1) processes to be considered in 
Table 3 are labeled Models 11 and 12. 
 Table 4 contains the sustained expected 
forecast error values, E(et

*), for various 
combinations of φ1 (left most column) and θ1 (top 
most row) for ARMA(1,1), AR(1), and MA(1) 
models, given a c = 1σε shift in the process mean 
level. The values φ1 and θ1 corresponding to the 
upper diagonal of Table 4 produce values of E(et) 
whose sustained level of shift is less than c. In this 
case, the forecast errors are said to recover. The 
lower diagonal region contains values of E(et), 
whose sustained level of shift is greater than or 
equal to c. All entries represent combinations of φ1 
and θ1 that result in stationary ARMA(1,1) 
processes. 
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 Now consider the following example for 
understanding Table 4. Given an ARMA(1,1) 
model (φ1 = -0.15, θ1 = -0.65) with time t < r (in-
control) E(et) of zero, the values of E(et) at times t 
< r, t = r, and t > r, are as follows for a c = 1σε 
shift in the process mean: 
 

E te
t r
t r

t r k k

(
, ,...

.
( . . )

( . )
. .

) =  
              

    

0 1 2 1
100

1
015 0 65
1 0 65

0 70

= −
=

−
− +

+








 = = + → ∞














 

      (8) 
 
 
 Notice that E(et) in Eq. (8) at time t > r is 
equal to 0.70 for k → ∞ . The intersection of φ1 = -
0.15 (left most column) and θ1 = -0.65 (top most 
row) in Table 4 also yields the expected forecast 
error value of 0.70. Additionally, the relationship 
between the lag one autocorrelation, ρ1, for the 
various combinations of φ1 and θ1, and the 
sustained expected forecast errors, E(et

*), in Table 
4, is very strong and linear, with a correlation of r 
= -0.997. Eq. (9) provides an estimate of the 
sustained expected forecast errors as a function of 
ρ1 for most ARMA(1,1), AR(1), or MA(1) models. 
Again, it is obvious from this relationship that 
large first order autocorrelation provides for more 
extreme forecast recovery. 
 
 �( ) . .*E et = −104 102 1ρ .   (9) 
 

Considering the AR parameter alone, 
forecast recovery occurs for all values of  
φ1 > 0, while the most extreme sustained forecast 
recovery occurs for values of φ1 > 0.50. 
Considering the MA parameter alone, the 
sustained level of forecast error recovery never 
falls below E(et

*) = 0.50, so no value of θ1 alone 
results in extreme forecast recovery. Considering 
both parameters, the most extreme sustained 
forecast recovery occurs when φ1 > 0 while θ1 < 0, 
and in most cases in which φ1 is large, that is, φ1 > 
0.50, regardless of the value of θ1. 
 

Results 
 
Recall that the degree and rate of forecast 
recovery, as well as the time until sustained level 

of forecast recovery occurs provide a source of 
conflict when choosing among control charts for 
monitoring forecast errors. Traditionally, if the 
ARL is used for the basis of comparison, the 
EWMA control chart most often provides smaller 
out-of-control ARLs than any other chart for small 
shifts, particularly when compared to the 
Individuals chart. However, the Individuals chart 
generally provides the greatest probability of 
obtaining a signal within the first few observations 
following the shift although a much larger ARL is 
provided. One can best understand the impact of 
forecast recovery by first examining chart 
performance applied to the AR(1) processes. 
 
Control Charts Applied to AR(1) Models   

Recall that when a shift occurs in any 
AR(1) process, the first forecast error following 
the shift appreciates the full impact of the shift, c. 
The forecast errors suddenly recover for all 
subsequent periods to a sustained level less than 
the original shift, (1-φ1)c. In contrast, the 
ARMA(1,1) and MA(1) processes recover 
gradually over time until finally converging to the 
sustained level less than the original shift. 
Depending on the particular process, oscillation 
may occur between values of sequential forecast 
errors. Since the forecast errors arising from the 
AR(1) process recover instantly to the sustained 
level of the shift, the worst performance of most 
control charts applied to a general ARMA(p,q) 
process should usually be obtained in the case of 
the AR(1) process for a given shift and sustained 
level of the shift. Performance results of the 
traditional control charts applied to forecast errors 
resulting from various ARMA(1,1), AR(1), and 
MA(1) processes with a step shift of c = 1σε are 
given in Table 5. 

Table 5, Models 9 and 10, show that the 
EWMA control chart maintains good ARL 
performance relative to the Individuals chart over 
a wide range of AR(1) parameter values and shift 
sizes, but the Individuals control chart consistently 
provides higher probabilities of initial shift 
detection, particularly for larger shifts (not 
shown). As found by Lin and Adams (1996), the 
CES control chart provides out-of-control ARLs 
similar to those of the EWMA chart while 
simultaneously maintaining the high probability of 
an early signal provided by the Individuals chart. 
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Table 4: Sustained Expected Forecast Errors for Combinations of φ1 and θ1. 
 
           
As the degree of forecast recovery worsens 
though, ARL and CDF performance decreases for 
all of the control charts. In regard to these 
traditional control charts, the CES chart provides 
the best compromising performance over a wide 
range of AR(1) process parameter values and shift 
sizes. 

Performance of Control Charts Applied to 
ARMA(1,1) and MA(1) Models 
 For the ARMA(1,1) and MA(1) processes, 
the behavior of the forecast errors prior to the 
sustained level has an impact on all of the control 
charts. 

 -.95 -.85 -.75 -.65 -.55 -.45 -.35 -.25 -.15 -.05 .00 .05 .15 .25 .35 .45 .55 .65 .75 .85 .95 
.95 .03 .03 .03 .03 .03 .03 .04 .04 .04 .05 .05 .05 .06 .07 .08 .09 .11 .14 .20 .33 1.0 
.85 .08 .08 .09 .09 .10 .10 .11 .12 .13 .14 .15 .16 .18 .20 .23 .27 .33 .43 .60 1.0 3.0 
.75 .13 .14 .14 .15 .16 .17 .19 .20 .22 .24 .25 .26 .29 .33 .38 .45 .56 .71 1.0 1.7 5.0 
.65 .18 .19 .20 .21 .23 .24 .26 .28 .30 .33 .35 .37 .41 .47 .54 .64 .78 1.0 1.4 2.3 7.0 
.55 .23 .24 .26 .27 .29 .31 .33 .36 .39 .43 .45 .47 .53 .60 .69 .82 1.0 1.3 1.8 3.0 9.0 
.45 .28 .30 .31 .33 .35 .38 .41 .44 .48 .52 .55 .58 .65 .73 .85 1.0 1.2 1.6 2.2 3.7 11 
.35 .33 .35 .37 .39 .42 .45 .48 .52 .57 .62 .65 .68 .76 .87 1.0 1.2 1.4 1.9 2.6 4.3 13 
.25 .38 .41 .43 .45 .48 .52 .56 .60 .65 .71 .75 .79 .88 1.0 1.2 1.4 1.7 2.1 3.0 5.0 15 
.15 .44 .46 .49 .52 .55 .59 .63 .68 .74 .81 .85 .89 1.0 1.1 1.3 1.5 1.9 2.4 3.4 5.7 17 
.05 .49 .51 .54 .58 .61 .66 .70 .76 .83 .90 .95 1.0 1.1 1.3 1.5 1.7 2.1 2.7 3.8 6.3 19 
.00 .51 .54 .57 .61 .65 .69 .74 .80 .87 .95 1.0 1.1 1.2 1.3 1.5 1.8 2.2 2.9 4.0 6.7 20 
-.05 .54 .57 .60 .64 .68 .72 .78 .84 .91 1.0 1.1 1.1 1.2 1.4 1.6 1.9 2.3 3.0 4.2 7.0 21 
-.15 .59 .62 .66 .70 .74 .79 .85 .92 1.0 1.1 1.2 1.2 1.4 1.5 1.8 2.1 2.6 3.3 4.6 7.7 23 
-.25 .64 .68 .71 .76 .81 .86 .93 1.0 1.1 1.2 1.3 1.3 1.5 1.7 1.9 2.3 2.8 3.6 5.0 8.3 25 
-.35 .69 .73 .77 .82 .87 .93 1.0 1.1 1.2 1.3 1.4 1.4 1.6 1.8 2.1 2.5 3.0 3.9 5.4 9.0 27 
-.45 .74 .78 .83 .88 .94 1.0 1.1 1.2 1.3 1.4 1.5 1.5 1.7 1.9 2.2 2.6 3.2 4.1 5.8 9.7 29 
-.55 .79 .84 .89 .94 1.0 1.1 1.1 1.2 1.3 1.5 1.6 1.6 1.8 2.1 2.4 2.8 3.4 4.4 6.2 10 31 
-.65 .85 .89 .94 1.0 1.1 1.1 1.2 1.3 1.4 1.6 1.7 1.7 1.9 2.2 2.5 3.0 3.7 4.7 6.6 11 33 
-.75 .90 .95 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.8 2.1 2.3 2.7 3.2 3.9 5.0 7.0 12 35 
-.85 .95 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9 1.9 2.2 2.5 2.8 3.4 4.1 5.3 7.4 12 37 
-.95 1.0 1.1 1.1 1.2 1.3 1.3 1.4 1.6 1.7 1.9 2.0 2.1 2.3 2.6 3.0 3.5 4.3 5.6 7.8 13 39 
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Table 5: ARLs , MRLs, and CDFs for the ARMA(1,1) Process with Step Shift c = 1σε. 
 

ARMA Control   Cumulative Percentage of Signals Following Shift 
Model Chart  ARL MRL  SRL 1st 2nd 3rd 4th 5th 6th 7th 

 IND 115 70 128 2.52 4.67 6.81 8.61 10.06 11.70 13.10
1 EWMA 15 12 12 2.03 4.04 6.95 10.75 15.48 21.03 26.94
 CES 21 16 19 2.41 4.65 7.05 9.55 12.28 15.48 18.91
 IND 279 191 284 2.52 3.23 3.62 3.98 4.28 4.62 5.00
2 EWMA 136 96 141 7.15 8.32 9.35 10.05 10.74 11.31 11.91
 CES 184 136 177 3.03 3.88 4.41 4.86 5.27 5.66 6.13
 IND 290 199 295 2.52 3.23 3.60 3.93 4.23 4.53 4.88
3 EWMA 217 145 239 7.01 7.92 8.63 9.22 9.83 10.39 10.86
 CES 259 178 265 3.03 3.74 4.19 4.54 4.90 5.24 5.64
 IND 270 177 293 2.52 4.34 5.97 7.14 8.10 8.93 9.75
4 EWMA 227 150 252 7.03 8.16 8.96 9.48 10.16 10.71 11.22
 CES 252 165 276 3.03 4.77 6.32 7.39 8.32 9.08 9.86
 IND 42 29 42 2.52 4.80 7.25 9.44 11.43 13.63 15.80
5 EWMA 9 8 5 1.51 4.28 8.73 15.38 23.33 32.56 41.75
 CES 12 11 7 2.34 4.93 8.09 12.14 16.89 22.85 29.38
 IND 177 122 180 2.52 2.94 3.68 4.13 4.59 5.10 5.67
6 EWMA 35 30 26 2.59 3.38 4.34 5.13 6.09 7.28 8.46
 CES 51 43 39 2.45 2.95 3.71 4.30 4.95 5.68 6.53
 IND 205 138 218 2.52 3.18 5.08 5.46 6.70 7.03 8.15
7 EWMA 48 41 37 4.46 5.19 6.27 6.72 7.80 8.31 9.32
 CES 67 57 52 2.79 3.48 5.34 5.76 6.97 7.33 8.53
 IND 64 43 63 2.52 3.38 5.84 6.85 8.78 9.92 11.85
8 EWMA 13 11 8 1.61 3.06 5.99 9.03 14.30 19.20 26.22
 CES 17 15 11 2.36 3.40 6.11 7.77 11.08 13.76 18.36

AR(1) IND 290 199 295 2.52 2.93 3.24 3.56 3.84 4.14 4.51
9 EWMA 194 131 209 7.05 7.95 8.72 9.26 9.89 10.44 10.97
 CES 242 167 246 3.03 3.51 3.93 4.30 4.66 5.03 5.44

AR(1) IND 119 81 120 2.52 3.27 4.08 4.91 5.60 6.41 7.21
10 EWMA 21 19 14 2.24 3.51 4.82 6.24 8.10 10.16 12.67
 CES 29 26 20 2.44 3.28 4.18 5.22 6.32 7.59 8.98

MA(1) IND 79 54 79 2.52 3.34 4.77 5.93 7.01 8.29 9.51
11 EWMA 15 13 9 1.70 3.11 5.11 7.85 11.34 15.65 20.50
 CES 20 18 14 2.38 3.35 5.04 6.68 8.60 10.99 13.83

MA(1) IND 117 78 120 2.52 2.93 5.13 5.49 7.04 7.45 8.92
12 EWMA 22 19 14 2.24 3.05 4.63 5.43 7.64 9.02 11.96
 CES 29 26 20 2.44 2.91 4.99 5.45 7.32 8.01 10.07
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Consider, for example, ARMA(1,1) Model 1 and 
AR(1) Model 10 in Table 5. Both exhibit a similar 
level of sustained forecast recovery (0.50 versus 
0.53). Model 10’s forecast errors attain a sustained 
level of shift at t = r + 1, while Model 1’s forecast 
errors attain a sustained level at t = r + 34. 
Although Model 10 has a slightly higher sustained 
level of forecast recovery, the Individuals control 
chart performs better when applied to Model 1. 
The reason for this difference is a result of the 
magnitude of the gradually recovering forecast 
errors of Model 1. The Individuals chart takes 
advantage of the magnitude of forecast errors from 
time periods t = r + 1 to t = r + 33. Again, the 
AR(1) process forecast errors recover immediately 
to the sustained level of the shift at time period t = 
r + 1. The other control charts also exhibit similar 
behavior when applied to these two models. 
 Consider another example using Model 1 
compared with MA(1) Model 12 in Table 5. Both 
exhibit similar levels of sustained forecast 
recovery (0.50 versus 0.53), and both models 
attain a sustained level of shift at approximately t 
= r + 34. Both models exhibit gradually recovering 
forecast errors, but again the magnitude of the 
recovering forecast errors has a profound effect on 
the control charts. While the forecast errors arising 
from Model 1 gradually decrease from E(et

*) = 
0.95 to 0.50, those for Model 12 oscillate between 
values from E(et) = 0.10 to 0.91 until converging 
upon the sustained level of the shift at E(et

*) = 
0.53. As a result of this oscillating behavior, the 
control charts applied to Model 12 do not perform 
as well as the same charts applied to Model 1 even 
though Model 12 has a higher sustained level of 
the shift. 
 Many ARMA(1,1) processes exhibit 
oscillating behavior of forecast errors to some 
degree. The worst cases are those in which the 
forecast errors oscillate between values that alter 
in sign as well as magnitude and finally converge 
to the sustained level of the shift. ARMA(1,1) 
Models 3 and 4 in Table 5 are good examples of 
forecast errors exhibiting this oscillation behavior. 
Table 1 displays this behavior numerically for a 
shift of size c = 1σε. The forecast errors in Model 
3 oscillate between sequential values that differ in 
sign as well as absolute magnitude. The forecast 
errors in Model 4 oscillate between sequential 

values that differ in sign, but the absolute 
magnitudes of the forecast errors are very similar. 

The behavior of the forecast errors in 
Model 4 dampens the performance of any control 
chart that requires the summing or averaging of 
forecast errors over time such as the EWMA or 
CUSUM control charts. If the forecast errors differ 
in sign but not in absolute magnitude, the result is 
a canceling-out effect of summed or averaged 
forecast errors, until finally reaching the sustained 
level of the shift. Models producing forecast errors 
that differ in sign as well as absolute magnitude 
(Model 3) experience the same canceling out 
effect but not to the same degree as is seen in 
Model 4. 

Consider a comparison of the performance 
of control charts applied to Models 3 and 4. Both 
exhibit the same level of sustained forecast 
recovery (0.03). Model 3’s forecast errors attain a 
sustained level of shift at t = r + 5, while Model 
4’s forecast errors attain a sustained level at t = r + 
38. Longer time until sustained recovery is 
attained usually provides for an all around better 
chart performance for a given sustained level of a 
shift, but the oscillation behavior of the forecast 
errors in Model 4 negates this advantage in the 
case of the EWMA control chart. The Individuals 
control chart takes advantage of the magnitude of 
the recovering forecast errors in Model 4, ignoring 
the sign of each forecast error value. As a result, 
the Individuals chart applied in Model 4 was found 
to have phenomenally better ARL, MRL, and CDF 
performance than in the case of Model 3, over all 
shift sizes. In contrast, the EWMA control chart 
applied in Model 4 was found to perform 
significantly worse than in the case of Model 3 
providing ARLs, MRLs, and CDFs that are lower 
for every shift size. Although the EWMA chart 
suffers in Model 4, the good performance of the 
Individuals chart results in CES control chart 
performance that is also good. 
 
Recommendations 

As a result of the phenomenon of forecast 
recovery and the behavior of recovering forecast 
errors, the authors have several recommendations 
in regards to selecting the appropriate control chart 
to use with various autocorrelated processes. The 
practitioner should: 
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1. Determine the appropriate ARMA model and 
parameters regarding the process to be 
monitored, and use Eq. (9) to estimate the 
degree of forecast recovery. 

2. Use Eq. (4) to determine the effect of forecast 
recovery on the forecast errors that will result 
from a step-shift of size c in the mean of the 
underlying ARMA process.  

3. Use one of Eq. (5), (6), or (7), depending on if 
the model is an ARMA(1,1), AR(1), or 
MA(1), to determine the sustained level of 
recovery resulting from the step-shift of size c. 
The expected behavior of the recovering 
forecast errors should also be studied in 
regards to the rate of recovery, oscillation, the 
magnitude and sign of recovering forecast if 
oscillating, and the expected sampling period 
when the forecast will recover to the sustained 
level.  

4. Select and apply the control chart who’s 
performance is least affected by the forecast 
recovery, in face of the magnitude of the shift 
to be detected as well as the behavior of the 
recovering forecast. 

The practitioner should take note that in 
the selection of the control chart, one first 
determines the magnitude of the shift that is 
deemed most important to detect. Recall, while the 
Individuals chart is best suited for rapidly 
detecting relatively large shifts, the EWMA chart 
is best suited for the eventual detection of small 
shifts. The CES chart serves as a compromise. 
Second, one must bear in mind that the behavior of 
recovering forecast might yield an otherwise 
favorable chart unsuitable for the monitoring the 
process at hand. 
 

Conclusion 
 
This article provided a description of various 
models for autocorrelated data, as well as an 
introduction to the Box-Jenkins OSA forecast and 
forecast error often used to monitor an 
autocorrelated process. Also provided was a 
mathematical description of the impact of forecast 
recovery on the ARMA(p,q) process, and 
particularly the ARMA(1,1), AR(1), and MA(1) 
processes. 
 Additionally, the article included a 
discussion concerning the relationship between 
initial/sustained rates of forecast recovery, and a 

model’s particular parameter values and first order 
autocorrelation structure. It was shown that while 
the rates of forecast recovery differ for all models, 
these recovery rates are indeed a function of the 
model parameters. Additionally, knowledge of 
first order autocorrelation was shown helpful in 
determining the degree of sustained forecast error 
recovery in the ARMA(1,1), AR(1), and MA(1) 
processes. Examples were given of various 
ARMA(p,q) forecast error recovery rates over 
time, while tables were provided relating the 
sustained expected value of forecast errors for a 
wide variety of ARMA(p,q) processes. 

Finally, it was found that the sustained 
level of forecast recovery following a shift had a 
tremendous effect on the performance of each 
control chart examined. The rate of recovery as 
well as the absolute magnitude and sign of forecast 
errors prior to attaining the sustained level of 
recovery were found to greatly influence the 
performance of the control charts. It was shown 
that for a given shift and sustained level of 
recovery, the control charts generally perform 
worse when applied to the forecast errors arising 
from AR(1) processes. The worsening of 
performance was shown to be due to the sudden 
forecast recovery characteristics inherent in these 
processes. As a result of the phenomenon of 
forecast recovery and the behavior of recovering 
forecasts, recommendations were made in regards 
to a practitioner selecting the most appropriate 
control chart for various ARMA processes. 
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