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Covariate-Adjusted Constrained Bayes Predictions 
of Random Intercepts and Slopes 

 
Robert H. Lyles Reneé H. Moore Amita K. Manatunga Kirk A. Easley 
Emory University University of Pennsylvania Emory University Emory University 

 
 
Constrained Bayes methodology represents an alternative to the posterior mean (empirical Bayes) method 
commonly used to produce random effect predictions under mixed linear models. The general constrained 
Bayes methodology of Ghosh (1992) is compared to a direct implementation of constraints, and it is 
suggested that the former approach could feasibly be incorporated into commercial mixed model 
software. Simulation studies and a real-data example illustrate the main points and support the 
conclusions. 
 
Key words: Mixed linear model, prediction, random effects, shrinkage. 
 
 

Introduction 
 
The standard mixed linear model (e.g., Laird & 
Ware, 1982) remains a popular practical tool for 
analyzing longitudinal, repeated measures, or 
otherwise correlated continuous data. In such 
analyses, the prediction of linear combinations 
of fixed and random effects can be of great 
interest. The typical approach implemented in 
commercial software is to obtain empirical best 
linear unbiased predictors (EBLUPs), which 
estimate the posterior mean of the linear 
combination given the response data (Littell, et 
al., 2006). The general acceptance of these 
empirical Bayes-like predictions stems from 
their   intuitive   appeal  and  their   theoretical 
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underpinnings as minimal prediction mean 
squared error estimates (Searle, et al., 1992). 
They are also referred to as shrinkage 
estimators, given their characteristic of pulling 
subject-specific predictions toward a population 
mean. 

Due to the shrinkage phenomenon, 
EBLUPs stemming from linear mixed models 
exhibit distributions that can be much narrower 
than those assumed to characterize the random 
variables being predicted. Several authors (e.g., 
Efron & Morris, 1971; Louis, 1984; Ghosh, 
1992) have suggested potential drawbacks to 
this general feature and proposed methods that 
reduce shrinkage and/or more closely match the 
predictor and underlying true distributions. 

One effect of overshrinkage in certain 
applications is that it can lead to a lack of 
sensitivity for identifying extreme experimental 
units relative to a fixed threshold (i.e., the 
probability that an EBLUP lies beyond a 
threshold given that the true random variable 
does can be quite small). To improve sensitivity 
in such a context, Lyles and Xu (1999) proposed 
constrained Bayes predictors of random 
intercepts and slopes aimed to minimize mean 
squared error of prediction (MSEP) given that 
the means and variances of the predictor 
distributions match those of the true random 
effects. Lyles, et al. (2007) introduced additional 
prediction criteria (e.g., regional bias and 
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MSEP) that are relevant when extreme subjects 
are of key interest and they suggested that the 
constrained Bayes approach can be an appealing 
alternative in such situations. Constrained Bayes 
prediction of random effects has not been widely 
advocated for use in the mixed linear model 
context. 

The models considered by Lyles and Xu 
(1999) are extended here to use fixed and/or 
time-dependent covariates, and their direct 
constrained Bayes strategy is compared with the 
general paradigm advocated by Ghosh (1992). 
This comparison is relevant for two reasons.  

First, while the criteria put forth by 
Lyles and Xu are specific to the mixed linear 
model, Ghosh’s approach originates from a more 
general and decidedly Bayesian point of view. 
Ghosh provides a paradigm for minimizing a 
mean squared error criterion subject to matching 
the posterior expectation of the first two 
moments of a parameter distribution to 
corresponding moments of the histogram of the 
set of estimates. It is therefore useful to assess 
the performance of Ghosh’s paradigm in the 
mixed model setting and to compare it against 
an approach that is directly rooted in that 
context.  

Second, Ghosh’s method is general, 
flexible, and implemented in a straightforward 
and consistent manner. Therefore its validation 
against an approach directly rooted in the mixed 
model setting could highlight, for practitioners 
and commercial mixed linear model software 
developers, the viability of an accessible 
alternative prediction method. 
 

Methodology 
 
Models and Posterior Mean Predictions 

Two familiar normal-theory mixed 
linear models are used for illustration: the 
random intercept and random intercept/slope 
models, respectively. 

The random intercept (or one-way 
random effects ANOVA) model is specified as 
follows (e.g., Searle, et al., 1992): 
 

ijiij ebμY ++=                (1) 

 

(i = 1,2,…, k; j = 1,2,…, ni), with i indexing the 
subject and j indexing the observation. Typical 
normality assumptions dictate that 

)σN(0,~b 2
bi  and )σN(0,~e 2

wij , with 

independence across subjects and between the 
random terms bi and eij. 

Under model (1), a common objective is 
to predict the ith subject’s random subject-
specific mean, i.e., ii bμμ +=  (i=1,…,k). The 
EBLUP, as provided by standard mixed model 
software, is an estimate of the posterior mean 
E(μi | Y) = E(μi | Yi), where Y and Yi denote the 
complete and ith subject-specific data vectors, 
respectively: 
 

μ)ν(1yν)|E(μμ~ iiiiiii −+=== yY   (2) 
 

where =
=

− in

1j
ij

1
ii yny  , and 

12
bi

2
wi )}σ/(nσ1{ν −+= . 

The parameter νi governs the extent to 
which the predicted value shrinks toward the 
population mean μ, with more excessive 
shrinkage occurring when νi is small (i.e., when 

)σ/(nσ 2
bi

2
w  is large). The BLUP is obtained by 

replacing μ in (2) by its best linear unbiased 
estimate (Searle, et al., 1992), whereas in 
practice the EBLUP also replaces the variance 
components in (2) by their estimates. 

Next, consider the random intercept/ 
slope model, also known as a randomized 
regression or linear growth curve model (e.g., 
Diggle, et al., 1994): 
 

ijijiiij et)b(β)a(αY ++++=   (3) 

 
(i = 1,2,…, k; j = 1,2,…, ni), where tij denotes 
the time at which Yij is measured. Typically this 
model assumes independence across subjects 
and normally distributed random effects as 
follows: 
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with ,σ,σ 2
2

2
1  2

12 σand,σ  denoting the 

variances of the subject-specific intercept and 
slope deviations, their covariance, and the 
random error variance, respectively. 

Under model (3), it is common to seek 
predictions of the ith subject’s random intercept 
(αi = α + ai) and slope (βi = β + bi). As with 
model (1) and most feasible mixed linear 
models, standard software provides EBLUPs for 
these quantities. In this case, they are estimates 
of the posterior means E(αi | Y) = E(αi | Yi) and 
E(βi | Y) = E(βi | Yi). The normality assumptions 
accompanying model (3) yield 
 

i i

i i i i
2 1

n n12 2 i i i i

β E(β | )

β (σ σ )Σ ( α β )−

= =
= + + − −′ ′

 Υ y

1 t y 1 t

    (4) 

 

where 
in

2
iiii σ)Var( IZZY +′== ΔΣ , Zi is 

the design matrix for the simple linear regression 
of Yi on time (ti) for subject i, and Δ = Var

)b,(a ii ′ . Assuming ni ≥ 2, Lyles and Xu (1999) 

showed that E(βi | Yi) takes an appealing form: 
 

i i i

i1 i2 i,ols i3 i,ols

β E(β | )

ˆˆγ γ α γ β

=

= + +

 Y
             (5) 

 

where olsi,α̂  and olsi,β̂  represent the ordinary 

least squares (OLS) intercept and slope from 
regressing Yi on ti. The coefficients in (5) are 
given by: 

iαβi
2
2βi122i /δ)cσv(σγ −= , 

iαβi12αi
2
23i /δ)cσv(σγ −= , 

and 

2i3i1i αγ)γβ(1γ −−= , 

with 

)cv(vδ 2
αβiβiαii −= , 

2 2 2 2
αi i,ols 1 i i i ti

ˆv Var(α ) σ σ [1/ n t /{(n 1)s }],= = + + −
 

2 2 2
βi i,ols 2 i ti

ˆv Var(β ) σ σ / {(n 1)s },= = + −  

 
2 2

αβi i,ols i,ols 12 i i ti
ˆˆc Cov(α ,β ) σ tσ / {(n 1)s },= = − −

 

and where it  and 2
tis  denote the sample mean 

and variance of the observation times 
)t,...,(t

iin1ii ′=t . Similarly, it can be shown 

that 

i i i i1 i2 i,ols i3 i,ols
ˆˆα E(α | ) τ τ α τ β= = + + Y    (6) 

 
with 

iαβi12βi
2
12i /δ)cσv(στ −= , 

iαβi
2
1αi123i /δ)cσv(στ −= , 

and 

3i2i1i βτ)τα(1τ −−= . 

 
Consider the problem of predicting the 

unknown response under model (3) for subject i 
at some clinically or otherwise significant point 

in time ( *
it ). In other words, seeking to predict 

the value of  
*
iii

*
iijiiij

*
it tβα)tt,β,α|E(YY +=== .  

The posterior mean of *
itY  is 

 
*
iiii

*
it

*
it tβ

~
α~)|E(YY

~ +== Y         (7) 

 

where ii α~andβ
~

 are as defined in (5) and (6), 

for ni ≥ 2. EBLUPs for ii α~andβ
~

 are obtained 

by inserting parameter estimates into the general 
expressions for E(βi | Yi) and E(αi | Yi), where 

ni=1 is permissible. The EBLUP for *
itY  inserts 

the EBLUPs for ii α~andβ
~

 into (7). 

 
Constrained Bayes Predictions 

The constrained Bayes (CB) approach 
(Louis, 1984) was extended by Ghosh (1992) 
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into a flexible paradigm. Lyles and Xu (1999) 
suggested that this general idea provides a 
natural alternative to the EBLUP in the mixed 
linear models context when overshrinkage could 
detract from the desired application of predicted 
values. They applied a slight adaptation of the 
CB concept under models (1) and (3) by 
minimizing prediction mean squared error 
(MSEP) among unbiased candidates whose 
variances match that of the assumed random 
effects distribution. While this necessarily 
results in some sacrifice in overall MSEP 
relative to the posterior mean, it provides a set of 
predictions that more faithfully reproduce the 
underlying distribution of interest and are less 
likely to under-represent the extremeness of 
experimental units in the tails. 

Under model (1), the CB predictor for μi 
recommended by Lyles and Xu is obtained 
directly by forcing the first two moments of the 

iμ
~  and μi distributions to match: 
 

μ)ν(1yνμ~ iiiLXi, −+=           (8) 

 
The square root is indicative of the reduction in 
shrinkage relative to the posterior mean in (2). 
Under model (3), use of a Lagrangian multiplier 
to enforce equality of the second moments while 
minimizing MSEP yields a constrained Bayes 
alternative to the posterior mean in (5): 
 

olsi,3iolsi,2i1iLXi, β̂γα̂γγβ
~ ++=      (9) 

 
The coefficients in (9) are defined as  
 

γi1 = β(1−γi3) −αγi2 ,  
 

2 1/2
i2 i 2 βi i αβi i αiγ η [σ /{v η (2c η v )}] ,= ± + +  

 
and 

 i2i3i /ηγγ =  , 

where 
 

1
αβi12

2
2αiαβi

2
212βii )cσσ)(vcσσ(vη −−−= . 

 
The ± sign in front of γi2 is needed because there 
are two roots, although the positive root is 

usually correct. The positive or negative root is 
taken for γi2 depending on which yields the 
lower value of the MSEP criterion: 
 

2
i i

2 2 2 2
i2 αi i3 βi i2 i3 αβi i2 12 i3 2 2

MSEP E(β β )

(γ v γ v 2 γ γ c ) 2(γ σ γ σ ) σ

= −

= + + − + +



 
(10) 

 
The definitions of ηi and γi2 serve to 

correct a subtle error in the result originally put 
forth by Lyles and Xu (1999). The Appendix 
provides analogous constrained Bayes predictors 

for iα  and *
itY , which are both new to the 

literature. Empirical constrained Bayes (ECB) 
predictions are obtained for practical use by 
replacing unknown parameters by their estimates 
in equations (8), (9), (A1), and (A3), and when 
calculating the MSEP criterion in (10). 

In contrast to the preceding direct 
model-specific CB predictors, consider the 
general CB paradigm provided by Ghosh (1992). 

Using βi under model (3) to illustrate, Bi,β
~

 is 

first taken to indicate the posterior mean (or 
Bayes) predictor for subject i. An algebraic 

expression for Bi,β
~

 was given in (5). Ghosh’s 

approach defines the CB estimate ( Gi,β
~

) as 

follows: 

BBi,Gi, β
~

w)(1β
~

wβ
~ −+=       (11) 

where 

=
=

− k

1h
Bh,

1
B β

~
kβ

~
, w = (1 + H1/H2)

1/2, 

 

 −=
=

k

1h

2
BBh,2 )β

~
β
~

(H ,  

and 

−=−=
=

− k

1h
hh

1
k1 )|Var(β)k(1)}|βtr{Var(H YY1β  

(12) 
 
with β representing the k-vector 

)β,...,β,(β k21 ′ . 
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The latter equality is supplied in (12) as 
a result of assumed independence across 
experimental units for the class of mixed models 
under consideration here. Note that in addition 
to the posterior means, this paradigm requires 
only the corresponding posterior variances. 
Using the previous notation (see equation (4) 
and Appendix), results in: 
 

i i

i i

2 2 1 2
2 12 n 2 i i 12 n 2 i

Var(β | )

σ {σ σ } {σ σ } ,

Y

1 t Σ 1 t−

=
′ ′ ′ ′ ′− + +

 (13) 

i i

i i

2 2 1 2
1 1 n 12 i i 1 n 12 i

Var(α | )

σ {σ σ } {σ σ } ,

Y

1 t Σ 1 t−

=
′ ′ ′ ′ ′− + +

 (14) 

 
and 
 

i i

*
it i

* 1
it i1 n i2 i i i1 n i2 i

Var(Y | )

Var(Y ) {ψ ψ } {ψ ψ } .−

=
′ ′ ′ ′ ′− + +

Y

1 t Σ 1 t

  (15) 
 
ECB predictions for practical use can be 
obtained by replacing unknown parameters by 
their estimates when computing the posterior 
means and variances, and the building blocks for 
these calculations are already built into standard 
software for mixed linear models. 
 
Incorporating Fixed or Time-Dependent 
Covariates 

Consider the following extensions of 
models (1) and (3) to include a set of T 
covariates, some of which may be time-
dependent: 

ij
T

1t
ijttiij ecθbμY  +++=

=
  (16) 

 
T

ij i i ij t ijt ij
t 1

Y (α a ) (β b ) t θ c e
=

= + + + + +    (17) 

 
where cijt represents the observed value of the tth 
covariate for subject i at time point j (t=1,..,T; 

i=1,..,k; j=1,..,ni). Let )c,...,c,(c ijT2ij1ijij =′c  

and form the ni×T matrix Ci by stacking the row 

vectors ′
ijc  in order. Next, define the 

transformed observed data vector 

θCyy iii −=• , where )θ,...,θ,(θ T21 ′=θ . 
The extension to the posterior mean formula in 
(2) is 
 

μ)ν(1yν),|E(μμ~ iiiiiii −+== •CY  (18) 
 
with μi and νi defined exactly as before and 

=
=

•−• in

1j
ij

1
ii yny . In practice, predicting 

θcC ′+== ijiiiijij μ),b|E(YY
~

 may be more 

likely. Standard mixed linear model software 
typically provides the EBLUP for bi, from which 

EBLUPs for μi and ijY
~

 are easily obtained. 

Similarly, extensions to (4) and (5) 
under the randomized regression model (17) are 
 

i i

i i i i

2 1
12 n 2 i i i n i

β E(β | , )

β (σ σ ) ( α β )− •

=
′ ′= + + − −

 Y C

1 t Σ y 1 t
 

 
and 

i i i i

i1 i2 i,ols i3 i,ols

β E(β | , )

ˆˆγ γ α γ β

=

= + +

 Y C
      (19) 

 
where βi, γi1, γi2, and γi3 are defined as before, 

but with olsi,olsi, β̂andα̂  now representing the 

OLS intercept and slope from regressing •
iy  on 

ti. The algebraic expression in (19) requires ni ≥ 
2. Standard software typically provides EBLUPs 
for ai and bi, from which EBLUPs for αi and βi 
follow directly. In turn, the analogue to equation 
(7) becomes 

*

* *
it it i i

*
i i i i,t

Y E(Y | , )

α β t

=

= + +




Y C

c θ
         (20) 

 
which can arguably be defined only for non-
time-dependent covariates unless the values of 
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any time dependent ones are known at time *
it  

(as indicated by the notation *ti,
c ). 

Extensions of the CB predictors 

LXi,LXi,LXi, α~and,β
~

,μ~  in equations (8), 

(9), and (A1) with covariate adjustment 
according to models (16) and (17) require no 
changes to the coefficients already given, once 

the transformation θCyy iii −=•  is made. The 

same is true for *
LXit,Y

~
 in equation (A3), except 

the term θc *ti,
 is added as in (20). ECB 

predictions for practical use follow, once 
estimates of the mixed linear model parameters 
are inserted. 

In adapting the paradigm of Ghosh 
(1992) as in (11) and (12), ECB predictions 
appear straightforward for a broad class of 
general linear mixed models because (i) 
EBLUPs accounting for covariates come directly 
out of standard software, and (ii) the required 
conditional variances [e.g., (13)-(15)] are 
unchanged by the addition of covariates. In the 

case of *
itY

~
, Ghosh’s paradigm requires a 

separate application of posterior mean and 
variance calculations analogous to those in (11) 

and (12) for each unique value of *
it  (Moore, 

2006). 
 
Example 

Consider longitudinal data on CD4 cell 
counts collected for the Pediatric Pulmonary and 
Cardiovascular Complications of Vertically 
Transmitted (P2C2) HIV Infection Study (The 
P2C2 Study Group, 1996). This National Heart, 
Lung, and Blood Institute-funded study enrolled 
infants born to HIV-positive women during the 
years 1990-1993, and followed them 
prospectively during the first few years of life. 
Specifically, data was analyzed on 59 vertically 
infected infants who contributed a total of 539 
CD4 counts over time, with the number of 
measurements per child ranging from 3 to 19. 
Initial CD4 counts were typically observed at or 
within a few weeks of birth. The length of 
follow-up on children ranged from 1 to 6 years, 
with a median of 3.5 years. Also recorded for 

each child was the age at which he or she was 
determined to have reached Class A (mildly 
symptomatic) HIV status (Centers for Disease 
Control and Prevention, 1994). Across the 59 
subjects, this age ranged from 0.4 to 16 months. 

A mixed linear model was fit to these 
data, with age as the longitudinal metameter. 
While there was some indication of right 
skewness in the CD4 counts, standard 
transformations tended to overcorrect this and 
for the sake of clarity the untransformed CD4 
counts were analyzed. For an illustration with 
covariate adjustment, the child’s gender (1 for 
male, 0 for female) and the concurrent CD8 cell 
count were accounted for via the following 
model: 
 

ij

1 2i i ij i ij ij

CD4

(α a ) (β b )AGE θ GENDER θ CD8 e

=
+ + + + + +

 

(21) 
 
The primary objective was to compare EBLUP 
and ECB predictions of the random intercepts 
(αi = α+ai) and random slopes (βi = β+bi). For 
this purpose, both the direct ECB approach 
patterned after Lyles and Xu (1999; ‘LX ECB’) 
and the general ECB method following Ghosh 
(1992) were investigated. 

Next, EBLUP and Ghosh ECB 

predictions of *
itY  were compared, where *

itY  = 

i2i1
*
iii 8CDθGENDERθtβα +++  represents 

the unknown model-based CD4 count at  time 
*
it . For this latter purpose, *

it  was defined as 
the age at which the child was diagnosed with 
Class A HIV disease, and model (21) was re-fit 
with the initial CD8 count (CD8i) in place of the 
time-dependent version in light of the fact that 

CD8 was unrecorded at the times *
it . Table 1 

provides the coefficient and variance component 
estimates from fitting both versions of model 
(21) by maximum likelihood via SAS PROC 
MIXED (SAS Institute, Inc., 2004a). The table 
indicates a highly significant average decline of 
approximately 400 CD4 cells per year, little 
effect of gender, and a significant positive 
association with the CD8 count, regardless of 
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whether the latter was measured only initially or 
treated as time-dependent. 

In Figure 1A, EBLUPs are plotted for 
the random intercepts αi  against the 
corresponding Ghosh ECB predictions, based on 
the model treating CD8 as time-dependent. The 
EBLUPs were obtained directly from the mixed 
linear model software, and the Ghosh ECBs 
were computed readily using the EBLUPs and 
posterior variance calculations with variance 
components replaced by their MLEs (see e.g., 
eqns. 11-15). The reduction in shrinkage 
afforded by the CB method is evidenced by the 
characteristic tilting in the pattern of plotted 
points. 

Figure 1B plots the LX ECB predictions 
of αi  versus the Ghosh ECBs. To obtain the LX 
ECBs, the MLEs for variance components were 
inserted into the formulae provided herein, with 
covariate adjustment as described in Section 2.3. 
With a few exceptions, the two approaches 
produce essentially identical results. The sample 
means of the 59 EBLUP, Ghosh ECB, and LX 
ECB predicted values were 1675.5, 1675.5, and 
1675.3, respectively. The corresponding sample 
variances were 365470, 475026, and 473752. 
Comparing these to 5.1675α̂ =  and 

468832σ̂2
1 = (Table 1) highlights the moment 

matching characteristics of the CB approaches, 
as well as the overshrinkage of the EBLUP. 

Figure 2 is the counterpart to Figure 1, 
for the predicted random slopes (βi ). The tilting 
remains prominent in Figure 2A, while Figure 
2B reveals somewhat more pronounced 
discrepancies between the Ghosh and LX ECB 
point predictions than in the case of the 
intercepts. The sample means of the EBLUP, 
Ghosh ECB, and LX ECB predicted values were 
−388.2, −388.2, and −395.3, respectively, with 
sample variances of 27904, 48316, and 49401. 

Comparing these to 2.388β̂ −=  and 

47843σ̂2
2 = (Table 1) again highlights the ECB 

moment-matching properties in action. 
Figure 3 illustrates the reduction in 

shrinkage of the Ghosh ECB predictions (open 
circles) of CD4 cell counts at the time of Class 

A disease ( *
itY ), relative to the EBLUPs (closed 

circles). Separate plots are presented for females 

and males, with overlays of the population 
average regression lines calculated at the overall 
mean of the 59 initial CD8 counts (1294.7 cells). 
The lines provide a relevant visual reference 
based on the fit of model (21) (Table 1), 
although the plotted points were not expected to 
directly follow these linear trends given that 
subjects with less rapidly declining CD4 counts 
theoretically reach Class A disease at later ages. 
 

Results 
 
While the close agreement of the sample means 
and variances of the ECB predictions to the 

corresponding estimated moments ( α̂  and 2
1σ̂ , 

β̂  and 2
2σ̂ ) in the real-data example is 

indicative, simulation studies are required to 
further assess the quality of the variance match 
and to compare the performances of the Ghosh 
and LX ECB methods in practical settings. 
Several combinations of covariates and true 
parameter values were examined and 
qualitatively similar results were found. In the 
interest of brevity and relevance to the 
application presented in the previous section, 
simulations designed to mimic the conditions 
observed in the example are summarized. 
Simulations were carried out using matrix 
manipulations and standard random number 
generating functions available in the SAS IML 
package (SAS Institute, Inc., 2004b). 
 
Performance comparison: LX vs. Ghosh CB 
predictors 

Data was generated according to model 
(21) for 20,000 hypothetical subjects, with true 
parameter values equal to the estimates listed in 
the top half of Table 1. The fabricated CD4 data 
were unbalanced with ni ranging randomly 
between 2 and 10, and measurements were 
unequally timed over approximate 2 month 
intervals. Simulated subjects were male or 
female with probability 0.5. For simplicity, time-
varying CD8 counts were generated at each visit 
from a normal distribution mimicking the 
sample mean and variance of the initial CD8 
counts in the actual example. To illustrate results 

for predicting *
itY , the same simulation exercise 

was repeated except with a time independent  
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Table 1: Summary of mixed linear models fit to CD4 cell count data * 

Model † Coefficient 
Estimate 

(standard error) 
Variance 

Component 
Estimate 

CD8 as time-
dependent 

α 
1675.50 
(138.27) 

2
1σ  468832 

β 
−388.17 
(38.06) 

2
2σ  47843 

θ1 
−163.41 
(146.61) 12σ  −103226 

θ2 
0.26 

(0.03) 
2σ  477810 

CD8 as time-
independent 

(initial value) 

α 
1735.88 
(188.60) 

2
1σ  429957 

β 
−417.51 
(40.57) 

2
2σ  55206 

θ1 
−105.28 
(146.61) 12σ  −102537 

θ2 
0.27 

(0.10) 
2σ  529062 

* Data from P2C2 HIV Infection Study (The P2C2 Study Group, 1996) 
† ij i i ij 1 i 2 ijCD4 (α a ) (β b )AGE θ GENDER θ CD8 e= + + + + + +  

Figure 1: EBLUP (panel A) and LX ECB (panel B) vs. Ghosh ECB predictions for random intercepts 
(αi) based on the fit of model (21) with CD8 count as time-dependent 
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Figure 2: EBLUP (panel A) and LX ECB (panel B) vs. Ghosh ECB Predictions for Random Slopes 
(βi) Based on the Fit of Model (21) with CD8 Count as Time-Dependent 

Figure 3: EBLUP (dark circle) vs. Ghosh ECB (open circle) Predictions of 
* *
it i i i 1 i 2 iY α β t θ GENDER θ CD8= + + +  for Females (panel A) and Males (panel B), with Initial 

CD8 Count as a Time-Independent Covariate 
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initial CD8 count in place of the time-varying 

version. The time point of interest ( *
it ) was 

taken to occur at 2 years for each simulated 
subject. 

Table 2 summarizes the simulation 
results for predicting the αi’s and βi’s, and Table 

3 summarizes the results for predicting *
itY . In 

each case, the sample means of the BLUPs and 
the two CB predictors closely match the true 
mean of the random variable being predicted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sample variances over 20,000 simulated 
subjects for both the LX and Ghosh CB methods 
are very close to the corresponding true 
variances in each case, while the overshrinkage 
of the BLUPs is evident by their notably tighter 
sampling distributions. As a final note, the 
empirical prediction MSEs of the LX and Ghosh 
methods are similar, though predictably 
somewhat larger than those for the 
corresponding BLUPs. In each case, the Ghosh 
method achieved a small MSE advantage 
relative to the LX approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Simulation Results for Random Intercept and Slope Predictions*† 

 True αi’s BLUPi,α~  LXi,α~  Gi,α~  

Mean 1675.5 1680.8 1681.2 1680.8 

Variance 468832 376252 475834 474736 

Prediction MSE -- 98600 105400 104469 

 True βi’s BLUPi,β
~

 LXi,β
~

 Gi,β
~

 

Mean −388.2 −389.4 −386.2 −389.4 

Variance 47843 16115 48693 48134 

Prediction MSE -- 31593 40375 40125 

*Data simulated to mimic model (21) with parameters equal to estimates in 
Table 1 (top) 
†Predictions computed assuming parameter values that generated the data 

Table 3: Simulation Results for *
itY  Predictions*† 

 True s'Y*
it  *

BLUPit,Y
~

 *
XLit,Y

~
 *

Git,Y
~

 

Mean 1156.4 1158.4 1158.3 1158.4 

Variance 289054 177184 289249 288880 

Prediction MSE -- 110636 128884 124112 

*Data simulated to mimic model (21) with parameters equal to estimates in 
Table 1 (bottom) 
†Predictions computed assuming parameter values that generated the data 
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Flexibility of Ghosh’s Approach under More 
General Covariance Structures 

The LX approach, while presentable in 
closed form for the models considered thus far, 
relies upon a strict form for candidate predictors 
and may be cumbersome or infeasible to extend 
to arbitrary mixed linear models. For example, 
consider an extension of model (17) to 
incorporate serially correlated random errors, 

e.g., via an AR(1) structure. Rather than 
i

2
nσ ,I  

the covariance matrix of the ith vector of random 
errors )( ie  now takes the form 
 

i

i

n 12

n 2

2 2

i AR(1)

1 ρ ρ ... ρ

1 ρ ... ρ

1 ρ .
Var( ) σ σ

.

.

1

−

−

= =

 
 
 
 
 
 
 
  
 

e Ρ  

 
The structured error covariance makes it less 
reasonable to restrict to the class of predictors 

that are linear combinations of olsi,α̂  and olsi,β̂  

[see eqn. (5)] in order to develop a CB predictor 
via the LX approach. Further, the MSEP 
becomes a much more difficult objective 
function to work with analytically. 

Fortunately, the general paradigm of 
Ghosh (1992) encounters no difficulty with such 
an extension. In particular, the EBLUP remains 
available via common mixed linear model 
software, and the MVN theory-based posterior 
variance remains straightforward, with the only 
adjustment necessary to equations (13) and (14) 
being that the matrix 

in
2

iiii σ)Var( IZZY +′== ΔΣ  becomes 

AR(1)
2

i σ ΡZΔZΣ ii +′= . 

Table 4 displays the results of an 
additional simulation under the AR(1) error 
model. Data were generated under model (21) 
using the same true parameter values as for the 
simulation summarized in the top half of Table I, 
except with an AR(1) error structure for the 
covariance matrix of the random errors. The 
value ρ=0.30 was assumed. There were 5,000 

simulated subjects, each with ni=8 observations. 
The model was fit via SAS PROC MIXED and 

the ECB versions of Gi,α~  and Gi,β
~

 were 

computed as in (11) and (12), by incorporating 
the EBLUPs produced by the software together 
with the estimated posterior variances as in (13) 
and (14). 

As Table 4 shows, excellent matches 
were achieved between the sample means and 
variances of the ECB predictions, and the 
corresponding estimated population moments 

)σ,σβ,,( 2
2

2
1α . Figure 4 displays histograms of 

the ECBs, which almost perfectly match the 
overlaid estimated theoretical normal 
distributions. In contrast, histograms of the 
EBLUPs (not shown) are characterized by 
markedly narrow spread as expected, thus 
dramatically failing to match the underlying 
theoretical distribution. Potential drawbacks of 
this overshrinkage in certain applications have 
been discussed at length in the literature (e.g., 
Louis, 1984; Ghosh, 1992; Shen & Louis, 1998; 
Stern & Cressie, 1999). The current example 
further highlights the flexibility of the Ghosh 
paradigm as a general approach to ECB 
prediction under the mixed linear model. 
 

Conclusion 
 
Louis (1984) and Ghosh (1992) discussed the 
motivation and potential benefits of constrained 
Bayes estimation, which seeks to optimize a 
traditional MSE criterion subject to matching the 
posterior expectation of the first two moments of 
a parameter distribution to the corresponding 
true moments. In particular, the known overall 
MSE advantage of the traditional posterior mean 
approach (which underlies the BLUP in the 
mixed linear model setting) is sometimes worth 
sacrificing to obtain a set of predictions with a 
histogram more closely matching a true 
distribution of random effects. For specific 
discussions of contexts in which constrained 
Bayes and related approaches offer tangible 
appeal, see Shen and Louis (1998), Lyles and 
Xu (1999), Stern and Cressie (1999), and Lyles, 
et al. (2007). 
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Table 4: Simulation Results for Random Intercept and Slope Predictions Under 
AR(1) Error Model*† 

Parameter 
Estimates‡ 

ECB Sample 
Moments Gi,α~  Gi,β

~
 

818994σ̂

4.06831α̂
2
1 =

=
 Mean 1683.04 −389.21 

53551σ̂

1.2938β̂
2
2 =

−=
 Variance 481961 53556 

*Data simulated to mimic model (21) with k=5000, ni=8 (∀ i), true parameters 
set equal to estimates in Table 1 (top), and ρ=0.30 
†Ghosh ECB predictions computed by inserting MLEs of parameters 

‡MLEs; Other parameter estimates: 1 2 12
ˆ ˆ ˆθ 172.30,θ 0.23,σ 112073,= − = = −  

2 ˆσ̂ 510618,ρ 0.29= =  

Figure 4: ECB Histograms Using Simulated Data from AR(1) Model (Table IV) 
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The purpose of this article has been to outline 
and compare in detail the application of a direct 
(LX) CB approach considered by Lyles and Xu 
(1999) for certain mixed linear models, as 
opposed to the general method of Ghosh (1992). 
Both approaches were explored in the presence 
of covariates (possibly time-dependent), and it 
was concluded based on simulations and a real-
data example that both may be effectively 
applied to achieve the moment-matching goals 
of the CB paradigm. 

The LX approach, while presentable in 
closed form for the models considered herein, 
relies upon a strict form for candidate predictors 
and may not be straightforward to extend to 
arbitrary mixed linear models. However, as 
highlighted previously, the general method of 
Ghosh (1992) appears remarkably flexible and 
consistent in its application. In practice, it 
requires only EBLUPs and estimates of the 
posterior variances of the random effects being 
predicted, with the latter readily obtainable 
under normal-theory mixed models. It thus 
seems natural to compare the performance of the 
Ghosh method versus the LX approach in mixed 
model settings where the latter is available. The 
simulation studies summarized (and others, 
unreported) consistently show the Ghosh 
approach to be as effective as the direct LX 
method at matching moments, and also suggest 
slight prediction MSE gains via its use for 
unbalanced data. 

Because the primary aim was to serve as 
proponents of the ECB approach under the 
mixed linear model, the results of the current 
study are encouraging. The CB paradigm of 
Ghosh (1992) relies on building blocks that are 
available in commercial software for mixed 
linear models (e.g., SAS PROC MIXED and 
similar procedures in other packages such as 
Splus, R, SPSS, STATA or BMDP). It was 
shown that it performs well relative to a direct, 
but far less flexible, CB approach developed 
expressly for mixed linear models. Although 
further assessments will be necessary, it is hoped 
that these results will encourage software 
developers to consider the possible inclusion of 
options to produce the Ghosh ECB predictions 
in future releases. This software advance would 
be welcome, for the purpose of allowing 
practitioners the freedom to select a validated 

alternative to the traditional EBLUP when 
overshrinkage could run counter to the objective 
at hand. 
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Appendix 
 
A constrained Bayes predictor for the ith 
subject’s random intercept (αi) may be obtained 
via calculations similar to those leading to 

LXi,β
~

 in equation (8), as follows: 

olsi,3iolsi,2i1iLXi, β̂τα̂ττα~ ++= ,   (A1) 

 
where  

τi1 = α (1−τi2) −βτi3, 
 

2/1
βiiαβiiαi

2
12i )}]vκc(2κ/{v[στ ++±= , 

 
and 

2ii3i τκτ = , 

with 
1

αβi12
2
1βiαβi

2
112αii )cσσ)(vcσσ(vκ −−−= . 

Specifically, iα
~  defined in this way minimizes 

MSEP among predictors of the form (A1) 

subject to the constraints that i iE(α ) E(α ) α= =  

and 2

i i 1Var(α ) Var(α ) σ= = , where the MSEP 

criterion is 
 

2

i i

2 2 2 2

i 2 αi i3 βi i 2 i3 αβi i 2 1 i3 12 1

E(α α )

(τ v τ v 2 τ τ c ) 2(τ σ τ σ ) σ

− =

+ + − + +


 

(A2) 
 
In an analogous manner, constrained Bayes 

predictor for *
itY  is defined as 

olsi,3iolsi,2i1i
*

LXit, β̂φα̂φφY
~ ++= ,  (A3) 

where 

1iφ  = α (1− 2iφ ) −β( 3iφ − *
it ), 

 
2/1

βiiαβiiαi3i2i )}]vωc(2ω/{v[ψφ ++±= , 

 
and 

2ii3i φωφ =  , 

with 
1

i αi i2 i1 αβi βi i1 i2 αβiω (v ψ ψ c )(v ψ ψ c ) ,−= − −  

 

12
*
i

2
11i σtσψ += , 2

2
*
i122i σtσψ += , 

 
and 

12
*
i

2
2

*2
i

2
13i σt2σtσψ ++= . 

 
This minimizes MSEP for predictors of the form 
(A3), subject to the constraints 
 

*
i

*
it

*
it βtα)E(Y)Y

~
E( +==  

and 
 

αβi3i2iβi
2
3iαi

2
2i

*
it

*
it cφφ2vφvφ)Var(Y)Y

~
Var( ++==

 
As with γi2 in equation (9), technically 

the choice of the positive or negative root to 
define τi2 and 2iφ  should be based on which 
minimizes the corresponding MSEP criterion. 
However, it has been observed that the negative 
roots have never applied except in the case of γi2. 
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