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Effects of Population Distribution, Sample Size and Correlation Structure 
on Huberty’s Effect Size R 

 
James B. Hittner 

College of Charleston 
 

 
Huberty’s (1994) R2 is derived by subtracting the expected value of R2 from an adjusted R2, and the 
square root of Huberty’s R2 is Huberty’s effect size R. The present study examined the effects of 
population distribution, sample size and population correlation structure on the statistical power of 
Huberty’s R. 
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Introduction 
 
In the context of multiple regression analysis, it 
is often standard practice to examine whether the 
squared multiple correlation coefficient, R2, is 
statistically significant. The intent of such a test 
is to determine whether R2 differs significantly 
from zero, and the null hypothesis may be stated 
as Ho: ρ

2 = 0. Although this test is widely used, 
it is misleading because the expected value of R2 
is not zero when ρ = 0. Rather, as Morrison 
(1990) pointed out, the expected value, or 
expected long-run mean, of R2 is equal top / N – 
1, where p is the number of predictor variables. 
The implication of this equation is that R2 should 
be examined in relation to the expected value of 
R2, E(R2), because the latter quantity is the value 
of R2 that can be expected simply by chance.  

In light of this realization, it seems more 
appropriate for researchers to test the null 
hypothesis, Ho: ρ

2 = ρo
2, where ρo

2 = E(R2). 
Darlington (1990) gave an F statistic for testing 
this null hypothesis and Huberty (1994) 
presented an adjusted R2 index that takes into 
account the value of E(R2). The formula for 
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Huberty’s adjusted R2 index is: 
 

R2
adj = (R2 - E(R2)) / (1 - E(R2)). 

 
Huberty (1994) also presented an effect size 
measure for multiple regression studies that is 
calculated by subtracting E(R2) from Huberty’s 
adjusted R2 index. This effect size measure 
seems more appropriate than either R2 or the 
adjusted R2 given that it simultaneously accounts 
for both shrinkage and the sample size-to-
predictor ratio. 

Despite the apparent appropriateness of 
Huberty’s effect size measure, standard 
statistical software packages, such as SPSS and 
Minitab, report only R2 and adjusted R2 values. 
Furthermore, although fourteen years have 
passed since the article was first published, very 
little, if any, quantitative research has been 
conducted on Huberty’s proposed effect size 
measure. Due to this omission from the 
statistical literature, the present study generated 
simulated data and examined Huberty’s effect 
size measure under different population 
distributions, sample sizes, and population 
correlation structures. 
 

Methodology 
 
Random variables were generated from the 
following three population distributions: Normal 
(µ = 0, σ = 1), Weibull (λ = 0.5, k = 1.2), and 
Poisson (µ = λ = 0.5). These distributions differ 
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in shape and are representative of the types of 
data distributions often encountered in applied 
research. The Weibull distribution, for example, 
is commonly used to model failure 
characteristics such as infant mortality, random 
failures, product wear-out, and the breaking 
strength of materials; it is also appropriate for 
lifetime modeling/survival analyses. Although 
similar in form to the exponential distribution 
the Weibull distribution can accommodate 
hazard changes over time, unlike the exponential 
which assumes a constant hazard rate (Heo, 
Faith, & Allison, 1998). The Poisson 
distribution is a discrete distribution that is often 
used to model counts, such as the number of 
arrivals, deaths, or failures in a given time 
period, and it can also be used to model the 
number of times a random event occurs over a 
given distance or across a particular spatial area. 
Such modeling of frequency count data per unit 
time, distance or area is tantamount to modeling 
rate data. 

For each of the three population 
distributions, four random variables were 
generated for three different sample sizes (N’s of 
50, 100, 200) and three different population 
correlation structures (ρ’s of 0.15, 0.30 and 0.65, 
representing low, moderate and high levels of 
correlation, respectively). This data generation 
process resulted in a total of 27 sets of four 
random variables (i.e., 3 distributions x 3 sample 
sizes x 3 correlation structures). For each set of 
four random variables, the specified correlation 
structure was induced by adding a multiple of a 
random variable, U, from the same population 
distribution to each randomly generated variable 
(X1, X2, X3, and Y). For each variable set, the 
value of the multiplicative constant, c, was 
chosen to produce the desired correlation. The 
specific algorithm was as follows: 
 

X1new = (X1 + cU) / (1 + c2) 
X2new = (X2 + cU) / (1 + c2) 
X3new = (X3 + cU) / (1 + c2) 
Ynew = (Y + cU) / (1 + c2) 

 
In generating the new, correlated, 

variables the choice as to which variable 
constituted Y was arbitrary. For consistency, the 
fourth correlated variable was always designated 
as Y. An important point concerning this 

methodology is that the algorithm produces 
variables that correlate, on average, at the 
specified level of correlation. By generating 
variables that demonstrate approximate rather 
than exact and unvarying levels of correlation, 
the above algorithm produces sets of correlated 
variables that more closely mirror real-world 
datasets. For example, in the case of the Weibull 
distribution with N = 200 and a population 
correlation structure of 0.30, the mean empirical 
correlation for the four variables was 0.303 and 
the 95% confidence interval for the mean r 
ranged from 0.272 to 0.334. All of the variables 
in the present study were generated using the 
Statistical Package for the Social Sciences 
(SPSS, version 14). 

For each of the 27 simulated datasets, a 
simultaneous multiple regression analysis was 
conducted (using SPSS) whereby Y was 
regressed onto the three predictor variables (X1, 
X2 and X3). The resulting R2 value, along with 
the sample size, N, and the number of predictors, 
p, was then entered into a SAS data step 
program to calculate the expected value of R2, 
Huberty’s adjusted R2 index, and Huberty’s 
effect size measure (the SAS data step program 
is available from the author upon request). For 
each of the 27 datasets, the square root of 
Huberty’s R2 effect size measure - hereafter 
referred to as Huberty’s effect size R - was 
examined to determine whether, given a 
specified sample size (50, 100, 200), number of 
predictors (3), level of statistical power (0.80) 
and alpha level (0.05), the value of R would be 
large enough to attain statistical significance at  
p ≤ 0.05. The relevant power calculations were 
carried out using a FORTRAN program written 
by Dunlap, Xin, and Myers (2004). This 
program calculates power using the random, or 
unconditional, approach recommended by 
Gatsonis and Sampson (1989). Monte Carlo 
simulation results reported by Dunlap, et al. 
(2004) indicate that the random approach is 
more accurate than the more commonly used 
fixed approach. For each generated dataset, 
Huberty’s effect size R was evaluated against the 
minimally detectable population R given the 
specified sample size, power = 0.80, alpha = 
0.05, and p = 3 predictors. Based on Dunlap et 
al.’s power program, the minimally detectable 
population R values under these conditions for 
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N’s of 200, 100, and 50 are 0.231, 0.323, and 
0.448, respectively. Considering the above R 
values as comparative benchmarks, the objective 
of this study was to examine the effects of 
population distribution, sample size, and 
population correlation structure on the power of 
Huberty’s effect size R, where power is defined 
as being adequate (≥ 0.80) when Huberty’s R 
exceeds the minimally detectable population R. 
 

Results 
 
For all cases with a correlation structure of ρ = 
0.65, Huberty’s effect size R estimates exceeded 
the minimally detectable population R, thereby 
demonstrating adequate levels of statistical 
power. For cases with a correlation structure of ρ 
= 0.30, six of the nine Huberty R estimates 
demonstrated adequate power, two demonstrated 
inadequate power, and one could not be 
calculated. The two underpowered cases were 
the Weibull distribution at N = 100 and the 
Poisson distribution at N = 100. The incalculable 
estimate was for the Weibull distribution at N = 
50. Huberty’s effect size R could not be 
computed for this case because the value of 
Huberty’s adjusted R2 index (0.030) was less 
than the expected value of R2 (0.061). The 
difference between these two values equals 
Huberty’s effect size measure, R2, which in this 
case amounted to −0.031 (i.e., 0.030 - 0.061). 
Because the square root of a negative number 
cannot be computed, the value of Huberty’s 
effect size R for this case is incalculable. For 
cases with a correlation structure of ρ = 0.15, six 
of the nine Huberty R estimates were 
underpowered and the remaining three could not 
be calculated (for the same reasons as noted 
above). The Huberty effect size R estimates and 
other relevant data for each case examined in 
this study are presented in Table 1. 

One finding of interest concerns the two 
underpowered cases with a correlation structure 
of ρ = 0.30 (the Weibull and Poisson 
distributions at N = 100). In an effort to explain 
these findings, the mean empirical correlations 
and the coefficients of variation (CV; standard 
deviation of the empirical correlations divided 
by the mean correlation) for the Weibull and 
Poisson cases were compared against the 
corresponding, adequately powered, Normal 

distribution case. All of the mean correlation 
comparisons were statistically nonsignificant (all 
Fisher Z-tests < 0.50, all p-values > 0.60). By 
contrast, all pairwise likelihood ratio tests on the 
CV’s were statistically significant (p’s < 0.005), 
with the Weibull and Poisson CV’s being 
significantly larger than the Normal distribution 
CV. These data suggest that, relative to the 
Normal case, the greater noise-to-signal ratio in 
the empirically generated correlations for the 
Weibull and Poisson cases may have contributed 
to their compromised levels of statistical power. 

Another finding of interest was the 
negative value for Huberty’s R2 (and 
corresponding incalculable value for Huberty’s 
effect size R) for the Weibull distribution at N = 
50 and correlation structure of ρ = 0.30. 
Although the reason for this finding is not 
entirely clear, one possible explanation is that 
the small sample size (50) and relatively large 
CV (0.326) interacted with the shape (i.e., 
moments) of the Weibull distribution to produce 
an insufficiently large R2 value. With respect to 
the cases with a correlation structure of ρ = 0.15, 
the fact that all six of the calculated Huberty R 
estimates were underpowered (three were 
incalculable) suggests that such a low level of 
intercorrelation among predictors and criterion 
generated a regression model that lacks adequate 
statistical power. It is important to note, 
however, that the data generation algorithm used 
in this study produced empirical correlations for 
the ρ = 0.15 cases that were noticeably more 
variable, as evidenced by the CV’s, than were 
the correlations for the 0.30 and 0.65 cases. This 
heightened level of variability could have 
contributed to the underpowered estimates for 
the ρ = 0.15 cases. These same two factors (low 
level of intercorrelation, greater variability in 
estimated correlations), more so than sample 
size and distribution type, are the likely reasons 
underlying the incalculable Huberty R estimates. 

One point worth mentioning about 
statistical power analysis in the context of 
multiple regression is that the algorithms used to 
compute integrals from the distribution of R2 
assume that the joint distribution of predictors 
and criterion is multivariate normal (Dunlap et 
al., 2004; Gatsonis & Sampson, 1989). When 
the multivariate distribution deviates from  
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Table 1: Huberty’s Effect Size R and Related Statistics 
 

Distrib N rstruct ExpRsq HuberRsq HuberES HuberESR Meanr Sdr CVr 

Weib 200 0.15 0.015 0.038 0.023 0.152 0.145 0.031 0.214 
Weib 200 0.30 0.015 0.164 0.149 0.386 0.303 0.030 0.099 
Weib 200 0.65 0.015 0.554 0.539 0.734 0.655 0.022 0.034 
Poiss 200 0.15 0.015 0.033 0.018 0.134 0.139 0.048 0.345 
Poiss 200 0.30 0.015 0.168 0.153 0.391 0.321 0.040 0.125 
Poiss 200 0.65 0.015 0.557 0.542 0.736 0.665 0.022 0.033 
Norm 200 0.15 0.015 0.023 0.008 0.089 0.156 0.064 0.410 
Norm 200 0.30 0.015 0.140 0.125 0.354 0.321 0.058 0.181 
Norm 200 0.65 0.015 0.519 0.504 0.710 0.659 0.034 0.052 
Weib 100 0.15 0.030 0.001 -0.030  0.146 0.092 0.630 
Weib 100 0.30 0.030 0.099 0.068 0.261 0.295 0.078 0.264 
Weib 100 0.65 0.030 0.496 0.465 0.682 0.643 0.043 0.067 
Poiss 100 0.15 0.030 0.012 -0.018  0.153 0.063 0.412 
Poiss 100 0.30 0.030 0.123 0.093 0.305 0.312 0.060 0.192 
Poiss 100 0.65 0.030 0.508 0.478 0.691 0.651 0.034 0.052 
Norm 100 0.15 0.030 0.056 0.026 0.161 0.145 0.061 0.421 
Norm 100 0.30 0.030 0.244 0.214 0.463 0.357 0.051 0.143 
Norm 100 0.65 0.030 0.594 0.563 0.750 0.672 0.030 0.045 
Weib 50 0.15 0.061 -0.054 -0.115  0.165 0.118 0.715 
Weib 50 0.30 0.061 0.030 -0.031  0.304 0.099 0.326 
Weib 50 0.65 0.061 0.491 0.430 0.656 0.668 0.043 0.064 
Poiss 50 0.15 0.061 0.113 0.051 0.226 0.152 0.171 1.125 
Poiss 50 0.30 0.061 0.315 0.254 0.504 0.390 0.128 0.328 
Poiss 50 0.65 0.061 0.651 0.589 0.767 0.693 0.074 0.107 
Norm 50 0.15 0.061 0.076 0.015 0.122 0.161 0.104 0.646 
Norm 50 0.30 0.061 0.274 0.212 0.460 0.369 0.090 0.244 
Norm 50 0.65 0.061 0.608 0.547 0.740 0.688 0.042 0.061 

 
Notes: Distrib = Population distribution (Weibull, Poisson, Normal); N = Population sample size; 
rstruct = Population correlation structure; ExpRsq = Expected value of R2; HuberRsq = Huberty’s 
adjusted R2; HuberES = Huberty’s adjusted R2 minus the expected value of R2; HuberESR = The 
square root of HuberES; Meanr = Arithmetic average of empirically generated correlations (i.e., 
correlations among X1, X2, X3, and Y); Sdr = Standard deviation of empirically generated 
correlations; CVr = Coefficient of variation for empirically generated correlations (i.e., Sdr / 
Meanr). Blank entries for HuberESR indicate incalculable values (see text for details). 
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normality, then power estimates may become 
biased. However, the extent of bias is difficult to 
quantify and represents an important topic for 
future research. Another point worth noting is 
that the present investigation focused solely on 
factors affecting the power of Huberty’s overall 
multiple regression coefficient. Factors affecting 
the power of individual predictors within the 
context of a larger regression model were not 
considered (for a treatment of this topic, the 
reader is referred to Maxwell, 2000). Though it 
is commonplace in multiple regression to test the 
partial contribution of a single predictor in the 
context of other predictor variables, such a 
practice is not without interpretive problems 
(Dunlap & Landis, 1998). A final point is that, 
in the present study, datasets with known a 
priori properties, in terms of population 
distribution, sample size and correlation 
structure, were generated and the obtained 
power of Huberty’s effect size R was examined 
for each generated dataset. The present 
investigation was not a Monte Carlo simulation 
study in which the empirical properties of one or 
more statistical tests were examined. Such 
Monte Carlo work designed to investigate the 
power and efficiency (Type I error rate) of a 
significance test of Huberty’s R represents an 
important direction for future research. 
 

Conclusion 
 
This study examined the power of Huberty’s 
effect size R under three different population 
distributions (Weibull, Poisson, Normal), 
sample sizes (N’s of 50, 100, 200), and 
population correlation structures (ρ’s of 0.15, 
0.30, and 0.65). For all conditions with a 
correlation structure of 0.65, Huberty’s R 
demonstrated adequate statistical power. For 
cases with a correlation structure of 0.30, six of 
the eight estimated Huberty R values maintained 
adequate power (one value could not be 
calculated). For cases with a correlation 
structure of 0.15, the Huberty R values were 
either underpowered (six cases) or incalculable 
(three cases). 

These results suggest that - in the 
context of multiple regression research - 
Huberty’s effect size R maintains adequate 
statistical power under a variety of distributional 

shapes, samples sizes and correlation structures. 
The notable exception to this rule concerns cases 
with a correlation structure of 0.15, in which all 
of the estimated Huberty R values (six of nine 
cases) were underpowered. Such low power 
estimates suggest that practitioners of multiple 
regression analysis should restrict their attention 
to variables that correlate above 0.15 if they 
hope to maintain adequate statistical power for 
Huberty’s effect size R (at least for models with 
3 predictors and sample sizes ≤ 200). The 
precise magnitude of correlation needed to 
maintain adequate power for Huberty’s R under 
various distributional shapes and sample size 
conditions is a topic for future research. It is 
hoped that the present study fosters a greater 
appreciation of Huberty’s R and that the findings 
motivate additional research into factors that 
influence the statistical power of Huberty’s 
effect size R. 
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