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A Note on Hypothesis Tests after Correction for Autocorrelation: 
Solace for the Cochrane-Orcutt Method? 

 
Terry E. Dielman 

Texas Christian University 
 

 
The behavior of the t test in small samples for coefficient significance in time-series regressions is 
examined after using the Prais-Winsten (PW) and Cochrane-Orcutt (CO) corrections for autocorrelation. 
Results are compared to ordinary least squares and generalized least squares. 
 
Key words: First-order autocorrelation generalized least squares, ordinary least squares, Prais-Winsten, 
time series regression. 
 
 

Introduction 
 
The Prais-Winsten (PW) and Cochrane-Orcutt 
(CO) methods are popular procedures for 
correcting for autocorrelation in time-series 
regression models. Both methods transform the 
data using a differencing transformation to 
remove autocorrelation. Ordinary least squares 
(OLS) applied to the transformed observations 
will yield estimators that are asymptotically 
more efficient than OLS applied to the original 
data.  

The PW and CO methods are essentially 
equivalent except for the treatment of the first 
observation in the data set. The CO method 
simply omits the first observation, while the PW 
method transforms the observation and retains it. 
Asymptotically, there is no difference in the 
efficiency of estimators produced by the two 
methods. In previous studies of small sample 
behavior, however, the superior performance of 
the PW procedure has been documented. Using 
the CO procedure results in estimators that are 
less efficient in small samples. Under certain 
conditions, the CO estimator can even be less 
efficient than OLS applied to the original data. 
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Due to the inefficiency of the CO estimator, 
comparisons of hypothesis testing results from 
models estimated by PW and CO have not been 
considered. This article examines the behavior 
of the t test in small samples for coefficient 
significance in time-series regressions. Tests are 
compared using four estimation procedures: 
OLS, CO, PW and generalized least squares 
estimation (GLS) using the true value of the 
autocorrelation coefficient. 

The results suggest that the PW and CO 
methods perform similarly when testing 
hypotheses, but in certain cases, CO outperforms 
PW. This does not, however, mean that either 
method performed particularly well. Both had 
levels of significance that were much higher 
than desirable in certain circumstances. The poor 
performance of these procedures in situations 
when they are intended to correct for 
autocorrelation suggests the need for either 
better estimates of the autocorrelation 
coefficient, better procedures for correcting for 
autocorrelation, or alternative approaches that 
will result in improved hypothesis tests. 
 

Methodology 
 
The following simple regression model is 
considered: 
 

εββ tt10t  + x +  = y  with ηερε t1-tt  +  =   (1) 

 
for t =1,2,...,T. In equation (1), yt and xt are the 
tth observations on the dependent and 
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explanatory variables, respectively, and εt is a 
random disturbance for the tth observation and 
may be subject to autocorrelation. The ηt 
represents disturbance components that are 
assumed to be independent and identically 
distributed. The parameters β0 and β1 are 
unknown and must be estimated. The parameter 
ρ is the autocorrelation coefficient, with |ρ|<1. 
Using matrix notation, the model can be written 
as: 

εXβY +=                          (2) 
where 
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Two procedures to correct for 

autocorrelation are examined. These are the 
Prais-Winsten (1954) and Cochrane-Orcutt 
(1949) procedures. Both procedures transform 
the data using the autocorrelation coefficient, ρ, 
after which the transformed data are used in 
estimation. The procedures differ in their 
treatment of the first observation, (x1, y1). The 
PW transformation matrix is: 
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Pre-multiplying the model in (2) by MPW yields 
 

εMXβMYM PWPWPW +=             (5) 

or 

ηβXY ** +=                         (6) 

where Y* contains the transformed dependent 
variable values and X* is the matrix of 
transformed independent variable values, so 
 

[ ]1121
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          (8) 

 
In (6), η is the vector of serially uncorrelated ηt 
errors. 

The CO transformation matrix is the 
(T−1) x 1 matrix obtained by removing the first 
row of the MPW transformation matrix. The use 
of the CO transformation means that (T−1) 
observations, rather than T, are used to estimate 
the model. In the CO transformation, the first 
observation is omitted, whereas it is transformed 
and included in the estimation in the PW 
transformation. Asymptotically, the loss of this 
single observation is probably of minimal 
concern. However, for small samples, omitting 
the first observation has been shown to result in 
an estimator inferior to that obtained when the 
first observation is retained and transformed. See 
Dielman & Pfaffenberger (1984), Maeshiro 
(1979), and Park & Mitchell (1980) for 
simulation studies demonstrating the efficiency 
gains of PW, and Doran (1981), Magee (1987), 
Taylor (1981), and Thornton (1987) for 
analytical results. 

In practice the value of ρ will be 
unknown and it must be estimated from sample 
data. The estimators of ρ used will be as follows: 
 





=

=
−

= T

t
t

T

t
tt

PW

2

2

2
1

ˆ

ˆˆ
ˆ

ε

εε
ρ                         (9) 

 
 



HYPOTHESIS TESTS AFTER CORRECTION FOR AUTOCORRELATION 

102 
 

when all T observations are used, and 
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when T−1 observations are used, where the tε̂  

represent OLS residuals. Park and Mitchell 
(1980) showed that these two estimators 
minimize the error sum of squares conditional 
on β when T and T−1 observations are used, 
respectively, in the estimation process. 

The actual estimation procedures for 
both PW and CO are iterative procedures. OLS 
is run to obtain estimates of the regression 
coefficients and, subsequently, the tε̂ . The 

estimator of the autocorrelation coefficient, ρ, is 
computed, the data are transformed, and new 
estimates of the regression coefficients are 
obtained. The autocorrelation coefficient 
estimate is recomputed and compared to the 
previous estimate. In the results, if these 
estimates differ by less than 0.000001, the 
iterative procedure stops. The procedure also 
stops when it reaches 25 iterations. If boundary 
conditions are encountered the estimate of ρ is 
set at ±0.999999. 

The model considered in this article is 
described in equation (1). The explanatory 
variable values are generated as follows: 
 
1. u + x = x t1-tt λ  for t = 1, 2, …, T with the ut 

chosen from the N(0,2) distribution. The 
values of λ used were 0.0, 0.4 and 0.8. 

 
2. A stochastic time trend is used. In this case 

u + t = x tt λ  for t = 1, 2, ..., T and ut is chosen 
from the N(0,2) distribution for λ = 0.4 and 
0.8. 

 
Once generated, these values are held fixed 
throughout the experiment for each sample size. 
The disturbances, ηt, are chosen from the N(0,1) 
distribution. After generating the ηt, the εt values 

are created as ηρεε ttt  +  = 1−  where 
2

0
0

1 ρ
ηε
−

=  

and η0 is an initial draw from the disturbance 

distribution. The explanatory variable values 
were generated independently of the 
disturbances. 

The parameter β0 was set equal to zero 
(without loss of generality). The parameter β1 
was set equal to zero to examine the level of 
significance. For each factor combination in the 
experimental design, ten thousand Monte Carlo 
trials were used to assess levels of significance. 
A sample size of T = 20 was used. The values of 
ρ were 0.0, 0.2, 0.4, 0.6, 0.8, and 0.95. The null 
hypothesis H0: β1 = 0 is tested using the t test 
and the number of rejections of the null 
hypothesis was recorded to assess the level of 
significance. 

The hypothesis tests were also 
conducted with β1 = 0.2, 0.3, 0.4, 0.5, and 1.0. 
When H0 is rejected, the proportion of correct 
rejections can be used to construct empirical 
power functions. Power comparisons based on 
the original simulations are complicated by the 
differences in the observed significance levels. 
A valid power comparison can be made only if 
the true significance levels of the tests are 
similar, which is clearly not the case based on 
our results. 

The power comparison was 
accomplished using a procedure suggested by 
Zhang and Boos (1994). From the original 
10,000 simulations with β1 = 0, the test statistics 
were sorted and the critical values producing a 
5% level of significance were chosen for each 
design point. These values represent estimates of 
the critical values under the null hypothesis that 
produce an exact 5% level of significance. The 
simulation was repeated with the non-zero 
values of β1, using the empirically determined 
critical values. The test statistics from the 
second set of simulations will have similar levels 
of significance, making their powers 
comparable. Zhang and Boos (1994) suggested 
using a larger number of Monte Carlo trials to 
estimate the correct critical value under the null 
hypothesis if possible. In this experiment 10,000 
trials under the null and 5,000 under the 
alternative hypotheses were used. 

Results are reported for four estimation 
procedures: OLS (assuming ρ = 0), PW and CO 
and GLS (which is the PW procedure using the 
true value of ρ). All random numbers were 



DIELMAN 
 

103 
 

generated using IMSL subroutines and the 
simulation was written in FORTRAN. 
 

Results 
 
Consider Tables 1 and 2. These tables show the 
number of rejections of the true null hypothesis 
that the slope is zero for all factor combinations 
in the Monte Carlo simulation. Table 1 shows 
the results for the autoregressive independent 
variable; Table 2 for the stochastic trend 
variable. The most striking results are for the 
autoregressive case when λ is 0.8 and the 
stochastic trend case for λ equal to both 0.4 and 
0.8. As the level of autocorrelation increases, the 
observed levels of significance become very 
high for OLS, but this is not unexpected. OLS is 
not expected to perform well when disturbances 
are autocorrelated.  

However, the two methods that correct 
for autocorrelation do not perform well either. 
PW has very high rejection rates with some 
cases approaching 50%. The rejection rates for 
CO are high as well, but often not as high as 
PW. This is particularly evident when the 
independent variable is autoregressive. These 
results suggest that correcting for autocorrelation 
does not guarantee reliable inferences about the 
slope coefficient. 

Selected power comparisons using 5,000 
Monte Carlo trials are shown in Table 3 for the 
autoregressive independent variable with λ = 0.8 
and in Table 4 for the stochastic trend variable 
with λ = 0.8. When the independent variable is 
autoregressive, CO generally has power equal to 
or slightly higher than PW. Figures 1 and 2 plot 
the empirical power curves for ρ = 0.0 and ρ = 
0.95 from Table 3. When ρ = 0.0 there is little 
difference in adjusted power; when ρ = 0.95 CO 
has higher power than PW. 

When the independent variable is a 
stochastic trend, there is little difference between 
PW and CO as evidenced in the empirical power 
curves in Figures 3 and 4 for ρ = 0.0 and ρ = 
0.95, respectively. In this case, when ρ = 0.95, it 
is especially troublesome that OLS has higher 
adjusted power than either PW or CO, which 
supposedly adjust for autocorrelation. This result 
is driven by the very high levels of significance 
for OLS of course. 
 

Conclusion 
 
Previous studies have shown that the PW 
method is superior to CO as a correction for 
autocorrelation in terms of estimator efficiency. 
However, these results do not hold up in an 
examination of inference results. CO generally 
performs as well and in many cases better than 
PW in terms of observed level of significance 
and adjusted power. This should not be taken as 
a suggestion that the PW method should be 
abandoned and CO resorted to, however. 
Perhaps both methods should be abandoned and 
a better approach sought for handling 
autocorrelation in regression models. In terms of 
inference, a bootstrap approach as Rayner 
(1991) suggested might be preferred to either the 
PW or CO method. Alternatively, as suggested 
by Mizon (1995), perhaps another approach to 
correcting for autocorrelation should be 
considered. Bayesian estimators (see Ohtani, 
1990, and Kennedy & Simons, 1991) also hold 
promise for improvements. 
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Table 1: Empirical Significance Level: Number of Rejections of True Null Hypothesis H0: β1 = 
0 Using Autoregressive Independent Variable (10,000 Trials) 

 

Lambda = 0.0 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 508 601 623 531 342 226 
PW 754 757 716 637 523 462 
GLS 508 500 516 514 526 530 
CO 699 716 697 617 471 424 

Lambda = 0.4 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 516 712 870 852 700 491 
PW 808 819 826 755 640 546 
GLS 516 516 501 503 508 493 
CO 744 771 764 694 566 447 

Lambda = 0.8 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 521 865 1307 1848 2658 3613 
PW 806 942 1048 1232 1442 1679 
GLS 521 512 512 506 505 496 
CO 726 877 995 1057 949 822 

 

Table 2: Empirical Significance Level: Number of Rejections of True Null Hypothesis H0: β1 = 0 
Using Stochastic Trend Independent Variable (10,000 Trials) 

 

Lambda = 0.4 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 453 936 1685 2848 4537 6111 
PW 842 1026 1291 1815 2965 4496 
GLS 453 458 475 482 477 494 
CO 805 1008 1307 1860 2955 4419 

Lambda = 0.8 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 467 1013 1822 3087 4812 6352 
PW 831 1039 1347 1941 3181 4711 
GLS 467 456 453 459 484 487 
CO 819 1036 1399 2038 3288 4706 
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Table 3: Adjusted Power Comparisons Using Autoregressive Independent Variable with 
Lambda = 0.8 (5,000 trials) 

Rho = 0.0 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 3006 4572 4961 4998 5000 
PW 250 3107 4535 4922 4988 5000 
GLS 250 3006 4572 4961 4998 5000 
CO 250 3108 4550 4920 4992 5000 

Rho = 0.2 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 2476 4079 4819 4976 5000 
PW 250 2332 3856 4695 4944 5000 
GLS 250 2361 4043 4817 4978 5000 
CO 250 2457 3991 4731 4953 5000 

Rho = 0.4 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 2039 3407 4429 4845 5000 
PW 250 1737 3003 4175 4749 5000 
GLS 250 1860 3420 4507 4907 5000 
CO 250 1932 3254 4346 4795 5000 

Rho = 0.6 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1684 2711 3659 4364 5000 
PW 250 1286 2313 3359 4252 5000 
GLS 250 1526 2925 4120 4729 5000 
CO 250 1655 2771 3749 4490 5000 

Rho = 0.8 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1478 2153 2849 3475 4906 
PW 250 1089 1808 2656 3497 4967 
GLS 250 1424 2771 3935 4637 5000 
CO 250 1651 2430 3287 3970 4977 

Rho = 0.95 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1430 1874 2361 2852 4473 
PW 250 973 1526 2235 3048 4821 
GLS 250 1532 2911 4072 4686 5000 
CO 250 1726 2307 3025 3626 4835 
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Figure 1: Power Curve for Testing Slope Equal Zero:  
Autoregressive With Lambda = 0.8; rho = 0.0
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Figure 2:  Power Curve for Testing Slope Equal Zero: 
Autoregressive With Lambda=0.8, rho=0.95
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Table 4: Adjusted Power Comparisons Using Stochastic Trend Independent Variable with 
Lambda = 0.8 (5,000 trials) 

Rho = 0.00 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 4866 4999 5000 5000 5000 
PW 250 4785 4983 4998 5000 5000 
GLS 250 4866 4999 5000 5000 5000 
CO 250 4666 4959 4993 4996 5000 

Rho = 0.20 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 4475 4990 5000 5000 5000 
PW 250 4124 4873 4988 5000 5000 
GLS 250 4494 4994 5000 5000 5000 
CO 250 3900 4788 4959 4989 5000 

Rho = 0.40 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 3591 4817 4992 5000 5000 
PW 250 2860 4389 4869 4984 5000 
GLS 250 3768 4882 4998 5000 5000 
CO 250 2656 4207 4752 4931 5000 

Rho = 0.60 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 2268 3856 4712 4959 5000 
PW 250 1520 2963 4176 4714 5000 
GLS 250 2673 4294 4916 4996 5000 
CO 250 1440 2840 3964 4540 4997 

Rho = 0.80 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1133 2124 3209 4022 5000 
PW 250 715 1406 2295 3193 4962 
GLS 250 1713 3143 4291 4841 5000 
CO 250 701 1371 2232 3049 4880 

Rho = 0.95 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 685 1161 1766 2446 4661 
PW 250 415 713 1112 1608 4074 
GLS 250 1294 2457 3634 4450 5000 
CO 250 442 733 1164 1660 4024 
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Figure 3:  Power Curve for Testing Slope Equal Zero: 
Stochastic Trend With Lambda = 0.8; rho = 0.0
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