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Beyond Kappa: Estimating Inter-Rater Agreement with Nominal Classifications 

 
Nol Bendermacher Pierre Souren 

Radboud University 
Nijmegen, The Netherlands 

 
 
Cohen’s Kappa and a number of related measures can all be criticized for their definition of correction for 
chance agreement. A measure is introduced that derives the corrected proportion of agreement directly 
from the data, thereby overcoming objections to Kappa and its related measures. 
 
Key words: Interrater agreement, Cohen’s Kappa, nominal data, reliability. 
 
 

Introduction 
 
The most popular measure of inter-rater 
agreement in the case of nominal classification 
is Cohen’s kappa (Cohen, 1960). Kappa is a 
member of a family of measures that are all 
defined by the same basic formula (Zwick, 
1988): 

( )
( )Ap1

Apf
A

c

c

−
−

=                     (1.1) 

 
where f = the observed proportion of agreement 
and pc(A) = the definition of chance agreement 
according to measure A. The measures of this 
family differ only in their definitions of chance 
agreement pc(A).  
 

Methodology 
 
A General Model 

Starting with n cases classified by two 
raters into c exhaustive and mutually exclusive 
categories, the population distribution of the c 
categories is given by the vector V. The joint 
distribution of the ratings is given by the c by c 
population matrix X. The model distinguishes 
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three types of classifications: (1) a correct 
observation, (2) a correct guess, and (3) a wrong 
guess. The second type is a correct 
classification, but not a correct observation. The 
model assumes a fixed probability pr that rater r 
makes a correct observation, i.e., a classification 
of type (1). Fixed means that pi is independent of 
the true category Vi of the case and of its 
classification by the other rater. Rater 
agreement, as far as it is not based on chance, 
arises if both raters make a correct observation. 
Assuming that raters act independently, the 
probability of such non-chance-agreement is 
p1p2. Therefore a measure of inter-rater 
agreement is defined as: s = p1p2.  

If rater r performs a correct observation, 
the probabilities of the categories are given by 
the population distribution V. However, if the 
rater does not, the classifications follow an error 
distribution Wr. The error distributions may 
differ from V and from each other. It is assumed 
that Wr is independent of the true category of the 
case. The model parameters are p1, p2, V, W1 
and W2 as defined above. In order to simplify 
the formulas qr = 1−pr and Dr = Wr−V are also 
defined. This article will show that s and V can 
be estimated directly from the observed sample 
of classifications by the raters, without any 
assumptions regarding the error distributions W1 
and W2. 
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Some Measures for Inter-rater Agreement 
In formula (1.1), f is the proportion of 

cases classified in the same way by both raters, 
and pc(A) is the correction for chance agreement 
according to measure A. The denominator is a 
scaling factor restricting the measure to a 
maximum of 1. 

Bennett, Alpert and Goldstein (1954) 
assumed that a rater who does not recognize the 
true category of a case draws from a uniform 
distribution, thus giving each category an equal 
chance. In terms of the general model, they 

assume W1 = W2 = 
1 1 1 1

, ,..., , .
T

c c c c
 
 
 

 If both 

raters draw from this common error distribution, 
the probability of chance agreement on one 

specific category is 
2c

1
 and the overall expected 

proportion of chance agreement is 
2c

c
 = 

c

1
. 

Therefore, Bennett, Alpert and Goldstein (1954) 
defined the correction for chance agreement as 

pc(A) = 
c

1
 for their measure S. 

At least two objections to this choice exist: 
1. In many situations it is plausible that the 

true distribution V of the cases deviates 
from uniformity and that the raters, 
knowing so, adjust their guessing 
distributions accordingly. 

2. Scott (1955) objected that if W1 and/or W2 
deviate from uniformity, the proportion of 
agreement by chance will always be greater 

than 
c

1
. In other words, 

c

1
 is a lower limit 

for the proportion of agreement by chance, 
meaning that S is an upper bound for inter-
rater agreement. 

 
S has been presented several times under 

different names and different notations. For the 
case of two categories S is equal to the random 
error RE (Maxwell, 1977). With only two 
categories, this measure is equal to the 
difference between the proportion of agreement 

and the proportion of disagreement:
f1

f

−
. For 

the general case, Brennan and Prediger (1981) 

reported the measure as κn, Zwick (1988) 
mentioned Guilford’s G, for the two categories 
case, and Janson and Vegelius’ C for the general 
case. 

Scott (1955) tried to overcome the 
second objection by introducing the assumption 
that both raters, when guessing, follow the true 
distribution. In terms of the general model, Scott 
assumed that W1 = W2 = V. Therefore he 
estimated the distribution by the average of the 
two marginal distributions. His measure is called 

π and pc(π) is defined as 
=








 +c

1i

2
i2i1

2

MM
, 

where M1i and M2i are the two observed 
marginal proportions of category i. 

Cohen (1960) objected to Scott that one 
source of disagreement is precisely the tendency 
of the raters to spread their ratings differently 
over the categories: "one source of disagreement 
between a pair of judges is precisely their 
proclivity to distribute their judgments 
differently over the categories." Therefore, 
Cohen dropped the assumption of equal 
marginal distributions and defined the 
proportion of chance agreement as 


=

c

1i
i2i1 MM . 

It can be seen, however, that the 
marginal distributions are a mix of the true 
distribution V and the error distributions W1 and 
W2, more precisely, Mr = prV + qrWr, so 
Cohen’s estimation of chance agreement is only 
correct under the null hypothesis that p1 and p2 
are both zero, or under the assumption that W1 = 
W2 = V. The latter assumption would mean that 
the two marginal distributions are equal, so 
Scott’s π could be used as well. As Brennan and 
Prediger (1981) stated: “For descriptive 
purposes, therefore, when marginals are free it 
seems questionable to reduce observed 
agreement by i..i PP    , which is directly 
dependent on agreement in the marginals” (p. 
692). Other objections and alternatives to Kappa 
have also been brought forward. For details, 
readers are referred to Perreault and Leigh 
(1989) and Brennan and Prediger (1981). 

The next section will elaborate on the 
formal model and investigate possibilities to 
identify and estimate the model parameters. 



BEYOND KAPPA 

112 
 

What is special to this approach is that the inter-
rater agreement is estimated without any 
assumptions regarding the rater distributions W1 
and W2. In addition, a short outline of an 
algorithm that performs the required calculations 
is provided and an extension for the case of three 
simultaneous raters is introduced. Two computer 
programs, called Raters2 and Raters3, that 
implement these ideas are available at 
http://www.ru.nl/socialewetenschappen/rtog 
/software/statistische/kunst/. 

Table 1 shows the two-way frequency 
distribution and the corresponding proportions, 
Cohen (1960, p. 45) used as an illustration. The 
proportion of joint judgments is the sum of the 
diagonal cells, here called f. In this example f = 
0.70. Cohen defined chance agreement as 


=

c

1i
i2i1 MM . In the example the correction is 

0.30 + 0.09 + 0.02 = 0.41, so the corrected 
proportion of joint judgments is: 


=

−
c

1i
i2i1 MMf = 0.29. 

If this value is rescaled by dividing it by its 
maximum, Cohen’s Kappa results: 

Kappa = 





=

=

−

−

c

1i
i2i1

c

1i
i2i1

MM1

MMf

 = 0.4915     (1.2) 

 
 
 
 
 
 
 
 
 
 
The General Model in Detail 

From the model parameters, the 
population distribution X of the simultaneous 
classifications can be derived. Any cell X(i,j) of 
X defines the probability of a joint classification 
in category i by rater 1 and category j by rater 2. 
X can be estimated from the two-way frequency 
matrix of the ratings in the sample, which will be 

indicated as X̂ . X can be interpreted as a 

weighted sum of four c by c matrices, 
corresponding to the behavior of the raters: 
X1: Both raters perform a correct observation. 

The probability of a score in a diagonal cell 
X1ii is the product of: (a) the probability Vi 
that the case belongs to category i, (b) the 
probability p1 that rater 1 performs a correct 
observation and (c) the probability p2 that 
rater 2 performs a correct observation. 
Thus, X1ii=p1p2Vi. The probability of a 
score in an off-diagonal cell is zero, so X1 is 
a diagonal matrix. 

X2: Only rater 1 performs a correct observation. 
The probability of a score in a cell X2ij is 
the product of: (a) the probability Vi that the 
case belongs to category i, (b) the 
probability p1 that rater 1 performs a correct 
observation, (c) the probability q2 that rater 
2 guesses and (d) the probability W2j that 
rater 2 guesses category j. Thus, X2ij = 
p1Viq2W2j. 

X3: Only rater 2 performs a correct observation. 
The probability of a score in a cell X3ij is 
the product of: (a) the probability Vj that the 
case belongs to category j, (b) the 
probability p2 that rater 2 performs a correct 
observation, (c) the probability q1 that rater 
1 guesses and (d) the probability W1i that 
rater 1 guesses category i. Thus, X3ij = 
p2Vjq1W1i. 

X4: Both raters are guessing. The probability of 
a score in a cell X4ij is the product of: (a) 
the probability q1 that rater 1 is guessing, 
(b) the probability q2 that rater 2 is 
guessing, (c) the probability W1i that rater 1 
guesses category i and (d) the probability 
W2j that rater 2 guesses category j. Thus, 
X4ij = q1q2W1iW2j. 

 
The matrix X is the sum of these 4 matrices and 
its content can be summarized as follows:  
 
For i ≠  j: 
 
Xij = p1q2ViW2j+q1p2W1iVj+q1q2W 1iW2j 

 = (1-p1p2)ViVj+q1VjD1i+q2ViD2j+q1q2D1iD2j, 
 

(2) 
and, for i = j: 
 

Table 1: Cohen’s Example Data 
Frequencies Proportions 

88 14 18 120 0.44 0.07 0.09 0.60 

10 40 10 60 0.05 0.20 0.05 0.30 

2 6 12 20 0.01 0.03 0.06 0.10 

100 60 40 200 0.50 0.30 0.20 1.00 
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Xii = p1p2Vi+p1q2ViW2i+q1p2ViW1i+q1q2W1iW2i 
 = 
p1p2Vi+(1-p1p2)Vi

2+q1ViD1i+q2ViD2i+q1q2D1iD2i. 
 

(3) 
The marginal distributions M1 and M2 of X are 
given by:  
 

Mr = pr.V + qrWr = V + qrDr, for r = 1, 2.   (4) 
 
A similar model is given by Klauer and 
Batchelder (1996). 
 
Comparing s to Cohen’s Kappa 

The measure s and Cohen's Kappa can 
be compared based on the following derivation: 
from (3) it is evident that 
 
Xii = sVi(1–Vi)+Vi

2+q1ViD1i+q2ViD1i+ q1q2D1iD2i 
 
and, from (4), 
 

M1iM2i = Vi
2+q1ViD1i+q2ViD2i+q1q2D1iD2i 

 
thus, 

Xii–M1iM2i = sVi(1-Vi),                (5) 
 
and, 

( )

( )

1 2

1 2
1

1

1 2
1

2

1

s
1

1

.
1

ii i i

i i

c

i i
i

c

i i
i

c

i i
i

c

i
i

X M M
V V

f M M

V V

f M M

V

=

=

=

=

−=
−

−
=

−

−
=

−









 

 
Comparing this result with the formula for 
Kappa in (1.2) it follows that Kappa and s are 

only equivalent if 
=

c

1i
i2i1 MM  = 

=

c

1i

2
iV . From 

(4) it becomes clear that such is the case only if 
p1 = p2 = 1, or if W1 = W2 = V. The p1 = p2 = 1 
assumption is very unrealistic. The assumption 
that both W-vectors equal the true distribution 

implies that the two marginal distributions M1 
and M2 are equal. This is a severe and 
unnecessary restriction that Cohen rejected when 
he introduced Kappa. In his example, as shown 
in Table 1, the two marginal distributions differ 
significantly (χ2 = 34.6959, df = 3, p = 0.0000). 
Table 2 shows Kappa as well as the results of an 
analysis of Cohen’s example according to the 
model presented herein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Identifiability of Model Parameters 

By the identifiability of the parameters 
is meant that their values can be uniquely 
derived from the joint distribution matrix X. If 
Bi = Xii – M1iM2i, then from (5): 

 
Bi = sVi(1 – Vi)                    (6) 

 
With at least 3 non-zero entries in V, the largest 
entry is the one closest to 0.5. Therefore, it 
corresponds to the largest entry in B. In other 
words: if Bm is (one of) the largest entry(s) in B, 
Vm is (one of) the largest entry(s) in V. From 
(6): 

( )
( ) m

j

mm

jj

B

B

V1V

V1V
=

−
−

 

 
and, as a consequence, for all j ≠ m,  
 

( )jV 0.5 0.25 1 j
m m

m

B
V V

B
= ± − −   

 
Because there can be only one entry in V greater 
than 0.5, the sign before the square root must be 
negative for all j ≠ m: 

Table 2: Parameter Estimates According to 
Proposed Model for Cohen’s Example 

V W1 W2 
Parameter 
Estimates 

0.6861 0.0000 0.0000 s = 0.6280
0.2347 0.7620 0.4683 p1 = 0.8696
0.0792 0.2380 0.5317 p2 = 0.7221

   kappa = 0.4915

model fit: χ2 = 2.0325, df = 1, p = 0.1540 
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( )jV 0.5 0.25 1 j
m m

m

B
V V

B
= − − −        (7) 

 
It can be proved that there is only one value Vm 
for which the sum of elements in V according to 
(7) becomes 1, provided that: X obeys to the 
model, c > 2 (and consequently Vm < 1), s > 0, 
and, by definition, the sum of the elements in V 
equals 1. Figure 1 shows an example of the sum 
g(Vm) = 

≠
+

mj
jm VV as a function of Vm and 

with Vj defined by (7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, there is only one vector V for which 
equation (7) holds and for which the elements of 
V add up to 1. So V can be identified.  

Once V has been identified, s can also 
be derived from (6): 

( )
s

1
i

i i

B
V V

=
−

                          (8) 

 
for any i, except those for which Vi = 0. 
 
Although the product p1p2 (i.e., s) can be 
identified, it is generally impossible to identify 
its components p1 and p2. From (4) it is known 
that qrDr = Mr – V, but looking at formulas (2) 
and (3) for the cells in X a multiplication of Dr 
by a constant h can be compensated by dividing 
qr by the same h. Thus, neither W1 and W2, nor 
p1 and p2 can be identified. 

The good news is that boundaries can be 
identified, within which these parameters are 
enclosed. The boundaries follow from the facts 
that: all cells of V, W1 and W2 represent 
probabilities and therefore must be in the range 
[0,1], and that V, W1 and W2 must add up to 1. 
Therefore, the following series of restrictions 
can be derived: 
1. s ≤ p1 ≤ 1 and s ≤ p2 ≤ 1. 
 
2. From (4) it is known that  

i2

i

M

V
s  = 

i22i2

i2
1 WqVp

Vp
p

+
, thus, 

 

i2

i

M

V
s  ≤ p1 and p2 ≤

i

i2

V

M
. 

 
3. Similarly, it is known that: 

i1

i

M

V
s  ≤ p2 and p1 ≤

i

i1

V

M

 
 
4. Since all values of W1 are between 0 and 1, 

it is known that: 
  q1(1-W1i) ≥ 0 
  q1(1-Vi) - q1(W1i - Vi) ≥ 0 
  p1(1-Vi) + q1(1-Vi) - q1(W1i - Vi) ≥ p1(1-Vi) 
  1-Vi - q1(W1i - Vi) ≥p1(1-Vi) 

  
( )

i

ii11i

V1

VWqV1

−
−−−

≥ p1 

  
i

i1

V1

M1

−
−

 ≥ p1, and consequently: 

  
i1

i

M1

V1
s

−
−

 ≤ p1. 

 
5. In the same way the following may be 

derived: 
 

i

i1

V1

M1

−
−

 ≥ p1 and 
i1

i

M1

V1
s

−
−

 ≤ p2. 

 
These restrictions can be summarized by the 
following boundaries for all i and k: 
 

p1.p2 ≤ p1 ≤ 1                        (9) 
 

p1.p2 ≤ p2 ≤ 1                      (10) 
 

Figure 1: Example of the Function g(Vm) 
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If M2i < 1 (and Vi < 1), then: 
 

i2

i

M

V
s  ≤ p1 ≤ 

k

k1

V

M
              (11) 

 
If M1i < 1 (and Vi < 1), then: 
 

k1

k

M

V
s  ≤ p2 ≤ 

i

i2

V

M
                   (12) 

 
If M2i < 1 (and Vi < 1), then: 
 

i2

i

M1

V1
s

−
−

 ≤ p1 ≤ 
k

k1

V1

M1

−
−

             (13) 

 
If M1i < 1 (and Vi < 1), then: 
 

k1

k

M1

V1
s

−
−

 ≤ p2 ≤ 
i

i2

V1

M1

−
−

              (14) 

 
These formulas are cross-linked: the minimum 
for p1 in (11) goes together with the maximum p2 
in (12) and the maximum for p1 in (11) 
corresponds to the minimum for p2 in (12). The 
link comes from the fact that their product must 
be s. The formulas in (13) and (14) are 
connected in a similar way. 

The limits from (11) through (14) all 
hinge upon the differences between the true 
distribution V and the rater error distributions 
W1 and W2. If W2 = V the lower limit for p1 is s 
and the maximum for p2 is 1. If W1 = V the 
lower limit for p2 is s and the maximum for p1 is 
1. From these formulas it is also observed that, 
for categories with V-values close to 0 or 1, even 
small differences between W1 or W2 and V will 
impose strong restrictions.  

It must be noted that this model cannot 
be applied if the number of categories is only 2. 
 
Reparametrization 

The parameters, as defined to this point, 
are neither all identifiable, nor are they 
independent. Wr and pr cannot be identified, 
only the combination qrDr = (1-pr)(Wr-V). 
Therefore, a reparametrization from the original 
set of parameters to the set [s, V, q1D1 and q2D2] 
is used in the estimations. Moreover, the vector 

V adds up to 1 and the vectors q1D1 and q2D2 
add up to 0, which means that their elements 
cannot be estimated independent. Therefore, 
following Klauer and Batchelder (1996) the 
model is reparametrized again as follows: 

*
iA  = 


−

=
−

1i

1j
j

i

A1.1

A
 for i = 1, c, 

 
where A = V, q1D1 and q2D2 respectively. The 
last element Ac is dropped. The back-translation 
to the original parameters is performed by the 
formula: 
 











−= 

−

=

1i

1j
j

*
ii A1.1AA , for i = 1, c 

 
Initial Parameter Estimations: V and s 

For the parameter estimations from an 

observed matrix X̂  one may proceed in two 
steps. The first step is a procedure directly 
derived from the model and uses only 
information from the diagonal and the marginal 
frequencies of the observed matrix. In the 
second step a general minimization algorithm is 
applied to minimize a criterion (for instance, the 
negative of the likelihood) based on all cells of 

X̂ . This algorithm starts from the estimations 
produced by the first step.  

For the first step define: 
 

g(x) = ( )
≠ 













−−−+

c

mj m

j

B̂

B̂
x1x25.05.0x

 
 
with iB̂  = i2i1ii M̂M̂X̂ −  and mB̂ = the largest 

value in B̂ . (Figure 1 shows an example of this 
function.) From (7) it is clear that Vm can be 
estimated by the value of x for which g(x) = 1 
with 0 < x < 1.  Starting with evaluations of g at 
1/c and a suitable maximum (for instance f), an 
estimate of Vm can be found by a simple 
iteration process using, for example, the 
bisection method. The remaining elements of V 
can be estimated by: 
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jV̂  =  ( )
m

j
mm

B̂

B̂
V̂1V̂25.05.0 −−−    (15) 

 
Once estimates of V are obtained, s can be 
estimated on the base of (8) as: 
 

ŝ  = ( )ii

i

V̂1V̂

B̂

−
 for any i (unless iV̂ = 0), 

 
or for a combination of the estimates for 
different i.  

However, with sampled data this direct 
method may easily fail. Therefore a numerically 
more robust algorithm to find the same initial 
estimates of V and s was designed, called the 
ping-pong algorithm, a detailed description of 
which is provided later. 
 
Initial Estimation of W1 and W2 

Although the parameters W1, W2, p1 and 
p2 are not identifiable, the inequalities (9) 
through (14) offer the possibility to set 
boundaries around them. These boundaries may 
define a very narrow area, especially for 
categories that are very frequent or very rare. 
But unfortunately it is the infrequent categories 
for which the analysis produces the least reliable 
estimations. The problem becomes most serious 
if there are many categories and relatively few 
observations, i.e., if n/c is small. If the limits 
given by (9) through (14) restrict the estimates 

1p̂  and 2p̂  to single values, as occurred when 
Cohen’s example was analyzed, W1 and W2 can 
also be estimated using (4) as: 
 

rŴ  = ( )V̂M
q̂

1
V̂ r

r
−+  

 
Final Estimations and Model Test 

The initial parameter estimates based on 
the considerations above are based completely 

on the diagonal and marginal distributions of X̂  
disregarding any information in the off-diagonal 
cells. In the final estimation procedure 
information from all cells will be used. A 
criterion is defined for the dissimilarity between 
the reconstruction X* of X from the parameter 

estimates and the observed matrix X̂ , and a 

powerful minimization technique like the 
Davidon-Fletcher-Powell algorithm is used to 
improve the initial parameter estimates. An 
attractive criterion is based on the negative of 
the likelihood ratio with a small adjustment, 
defined as: 

eij = Max(X*
ij,ε) 

 

Crit =  
= = 












c

1i

c

1j ij

ij
ij e

X̂
LN.X̂  + penalty 

 
The term ε is a small value to prevent division 

by zero and to avoid too exotic values of 
ij

ij

e

X̂
, 

for instance ε = 1.0e-20. The penalty serves to 
force the parameters within the restrictions of 
the model (for instance 0 ≤ s ≤ 1). 

The estimation procedure as designed 
starts with the ping-pong algorithm resulting in 

estimates V̂  and ŝ , after which the 
reparametrizations and the minimization 
procedure are applied. When the final parameter 
estimates are obtained, a model test can be 
performed based on the test statistic for the 
likelihood ratio: 
 

χ2 = 


























 
= =

c

1i

c

1j ij

ij
ij e

X̂
LN.X̂.n.2  

 
The associated number of degrees of freedom is 
c2-3.c + 1. 

The whole model as described above is 
based on the assumption that s is greater than 
zero. If p1 = 0 or p2 = 0, the value of any cell Xij 
is equal to the product of the corresponding 
marginal probabilities M1i and M2j, even if Xij is 
a diagonal cell. This assumption that s > 0 may 

be tested by the statistic t = 
=

−
c

1i
i2i1 M.Mf , 

which is (approximately) distributed as 
Student’s t with 1 degree of freedom. 
Confidence intervals for the parameters may be 
constructed by the use of the information matrix 
or, if the Hessian matrix is singular, by 
bootstrapping methods. 
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The Ping-Pong Algorithm 
The ping-pong algorithm is designed to 

simultaneously estimate s = p1.p2, and the largest 
element Vm in V. Once Vm is estimated, the 
entire vector V can be estimated according to 
(15). In order to grasp the basic idea of the 
algorithm, assume that the exact values for B 
and f are known. Then the logic is as follows. 
Define: ti = upper boundary for s in the ith 
iteration, and ui = lower boundary for Vm in the 
ith iteration. 

 

1. From (3) s ≤ f = 
=

c

1i
iiX , so choose t0 = f. 

2. From (7): 

1 = 
=

c

1i
iV  = 

( ) ( )
≠

− −−+−
mj m

j
mmm B

B
V1V25.0V1c

2

1

 
so, using (8)  

Vm =  ( ) 
≠

−+−−
mj

j

s

B
25.01c

2

1
1  

 
and as a consequence: 

Vm ≤ ( ) 
≠

−+−−
mj i

j

t

B
25.01c

2

1
1  for any 

step i 

3. From (8): s = ( )mm

m

V1V

B

−
 
, thus 

s ≤ ( )ii

m

u1u

B

−
 

 
Now the following procedure is applied: 
 
1) t0 = f  

2) ui = ( ) 
≠

−+−−
mj i

j

t

B
25.01c

2

1
1

 

3) ti = ( )1i1i

m

u1u

B

−− −
 

4) Repeat from 2) until convergence is reached. 
 

This algorithm converges to ti = ŝ and ui = mV̂ . 

When working with the sample estimators B̂
and f̂  it may be necessary to make some 
corrections during the iteration process:  
1. In the iteration process ti may exceed the 

value t0 = f̂ . In that case, force mB̂ to 

( )1i1i u1u.f̂ −− −  and set ti equal to f̂ . In 

order to keep the sum of B̂ unchanged, 

replace the other elements of B̂ according to 
the following rule: 

iB̂  ← ( )
BB̂

BB̂
BB̂B

m

*
m

i −
−

−+  

 

where B is the mean of the B̂ -values,  mB̂

the original estimate of Bm and *
mB̂  the 

corrected estimate. 
 
2. If the estimate ui becomes less than 1/c force 

it back to 1/c and adjust the B-values 
accordingly: 

ui < 
c

1
, 

so 

( ) 
≠

−+−−
mj i

j

t

B
25.01c

2

1
1  < 

c

1

 

 
Adjust the B-vector by a vector B*, such that 

( ) 
≠

−+−−
mj i

*
j

t

B
25.01c

2

1
1 = 

c

1
,
 

which means that 


≠

−
mj i

*
j

t

B
25.0  = 5.1

c

1
c5.0 −+

 

 
Make the adjustment by taking B* such that each 
term in the summation, except Bm, is multiplied 
by:  

a = 


≠

−

−+

mj i

j

t

B
25.0

5.1
c

1
c5.0

 = 
iu5.1c5.0

c

1
5.1c5.0

+−

+−
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This is realized by replacing each Bj, except Bm, 

by *
jB  = 0.25ti(1-a2) + a2Bj. 

 
 
Three Raters 

Under the given model, the expansion to 
three simultaneous raters is straightforward. 
Moreover, with three simultaneous raters, all 
parameters are identifiable if there are at least 
three categories. The notation must be extended 
to three p-values p1, p2 and p3, three q-values q1, 
q2 and q3, three W-vectors W1, W2 and W3, and 
three marginal distributions M1, M2 and M3. In 
addition the matrix X will now have three 
dimensions. The formulas for the probabilities in 
the cells of X are more complicated: Xijk is the 
sum of the corresponding cells in eight 
submatrices as shown in Tables 3a through 3c. 
 
 
Table 3a: Formulas for Two Parts of the Matrix 

X in Case of Three Raters 
Raters 
i, j, k 

123 
i = j = k i = k ≠ j 

Xijk Xijk 

X1 ccc p1p2p3Vi, 0 

X2 cci p1p2Viq3W3k 0 

X3 cic p1p3Viq2W2j p1p3Viq2W2j 

X4 cii p1Viq2W2jq3W3k p1Viq2W2jq3W3k 

X5 icc p2p3Vjq1W1i 0 

X6 ici p2Vjq1W1iq3W3k p2Vjq1W1iq3W3k 

X7 iic p3Vkq1W1iq2W2j p3Vkq1W1iq2W2j 

X8 iii q1W1iq2W2jq3W3k q1W1iq2W2jq3W3k 

 
Table 3b: Formulas for Two Parts of the Matrix 

X in Case of Three Raters 
Raters 
i, j, k 

123 
i = j ≠ k i ≠ j = k 

Xijk Xijk 

X1 ccc 0 0 

X2 cci p1.p2Viq3W3k 0 

X3 cic 0 0 

X4 cii p1Viq2W2jq3W3k p1Viq2W2jq3W3k 

X5 icc 0 p2p3Vjq1W1i 

X6 ici p2Vjq1W1iq3W3k p2Vjq1W1iq3W3k 

X7 iic p3Vkq1W1iq2W2j p3Vkq1W1iq2W2j 

X8 iii q1W1iq2W2jq3W3k q1W1iq2W2jq3W3k 

 
Table 3c: Formulas for One Part of the Matrix X 

in Case of Three Raters 
Raters 
i, j, k 

123 
i ≠ j ≠ k 

Xijk 

X1 ccc 0 

X2 cci 0 

X3 cic 0 

X4 cii p1Viq2W2jq3W3k 

X5 icc 0 

X6 ici p2Vjq1W1iq3W3k 

X7 iic p3Vkq1W1iq2W2j 

X8 iii q1W1iq2W2jq3W3k 

 
Submatrix X1 contains those ratings for 

which all three raters make a correct 
observation, as indicated by the code ccc, which 
means correct-correct-correct. The value in cell 
i, j, k depends on the equality of the three indices 
as indicated by the column headings. The other 
submatrices are organized in the same way: X2 
contains ratings where raters 1 and 2 made 
correct observations, but rater three did not (he 
guessed, correctly or not), indicated by the label 
cci (correct-correct-incorrect). 
 

Table 4: Frequency Matrix with Three 
Categories and Three Raters 

 Rater 3 = 1 Rater 3 = 2 Rater 3 = 3 

 Rater 2 Rater 2 Rater 2 

Rater 
1 

37 16 19 32 21 13 0 2 7 

19 11 7 30 103 38 9 11 16 

5 7 2 10 22 11 11 13 28 



BENDERMACHER & SOUREN 
 

119 
 

Table 4 shows an example of the three-
way distribution in a sample with size 500. The 
data were generated by random sampling from a 
theoretical distribution based on the probabilities 
given in tables 3a-3c, with the following 

parameters: p1 = 0.5, p2 = 0.4, p3 = 0.6, TV  = 

(0.3,0.5,0.2), T
1W  = (0.2,0.5,0.3), T

2W  = 

(0.3,0.4,0.3), and T
3W  = (0.1,0.7,0.2). Initial 

estimations for p1, p2, p3, V, W1, W2 and W3 can 
be derived from the three marginal planes, which 

can be computed from X̂  by summation over 
the categories of one rater:  

X12
ij = 

=

c

1k
ijkX  

X13
ij = 

=

c

1k
ikjX  

X23
ij = 

=

c

1k
kijX  

 
Tables 5, 6 and 7 show these planes for the 
example in table 4. 
 
 
 

Table 5: The Marginal Planes for Raters 1 
and 2 in the Example 

12X̂ : Rater 2 1M̂  

Rater 1 
0.138 0.078 0.078 0.294 
0.116 0.250 0.122 0.488 
0.052 0.084 0.082 0.218 

2M̂  0.306 0.412 0.282 1.000 

 
 
 

Table 6: The Marginal Planes for Raters 1 
and 3 in the Example 

13X̂ : Rater 3 1M̂  

Rater 1 
0.144 0.132 0.018 0.294 
0.074 0.342 0.072 0.488 
0.028 0.086 0.104 0.218 

3M̂  0.246 0.560 0.194 1.000 

 

Table 7: The Marginal Planes for Raters 2 
and 3 in the Example 

23X̂ : Rater 3 2M̂  

 0.122 0.144 0.040 0.306 
Rater 2 0.068 0.292 0.052 0.412 

 0.056 0.124 0.102 0.282 

3M̂  0.246 0.560 0.194 1.000 

 
Define: 

B12
i = X12

ii – M1i.M2i 
B13

i = X13
ii – M1i.M3i 

B23
i = X23

ii – M2i.M3i 
 
In the example above these values are estimated 
by: 
 

T12B̂  = [0.038036, 0.048944, 0.020524] 
T13B̂  = [0.071676, 0.068720, 0.061708] 
T23B̂  = [0.046724, 0.061280, 0.047292] 

Because B12
i = p1p2Vi(1 – Vi) and analogously 

B13
i = p1p3Vi(1 – Vi) and B23

i = p2p3Vi(1 - Vi): 
 

( )
( )ii

jj

V1V

V1V

−
−

 = 
12
i

12
j

B

B
 = 

13
i

13
j

B

B
 

= 
23
i

23
j

B

B
 = 

23
i

13
i

12
i

23
j

13
j

12
j

BBB

BBB

++

++
         (16) 
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i

13
j
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i

12
j

B

B

B

B

B

B

3

1
 

 
The largest value Vm in V can be estimated by 
setting it to the value of x for which the function 
g(x) = 1, where g is defined as: 
 
g(x) = 

( )
≠ 
































++

++
−−−+

c

mj
23
m

13
m

12
m

23
j

13
j

12
j

B̂B̂B̂

B̂B̂B̂
x1x25.05.0x  

or as 
 
g(x) = 

( )
≠ 































++−−−+

c

mj 23
m

23
j

13
m

13
j

12
m

12
j

B̂

B̂

B̂

B̂

B̂

B̂

3

1
x1x25.05.0x  
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In this function the index m refers to the largest 
value (or one of the largest values) in the B-
vectors. Because the three estimated B-vectors 
in a sample may have different orders, choose m 
as the index for which 
 

23
m

13
m

12
m B̂B̂B̂ ++  ≥ 23

i
13
i

12
i B̂B̂B̂ ++  

 
for all i. In the example, from (15), mV̂  = 
0.422659.  

From (14) follows that, for the other 
elements of V, 

Vj = ( )














++

++
−−−

23
m

13
m

12
m

23
j

13
j

12
j

mm
B̂B̂B̂

B̂B̂B̂
V1V25.05.0  

and it is found that: 
 

TV̂  = [0.348216, 0.422659, 0.229124] 
Once the initial estimate of V is made, the 
parameters p1, p2 and p3 can be estimated in the 
following way: from (8) it is known that, for all 
i, 

12s  = p1p2 = ( )ii

12
i

V1V

B

−
, 

 
so the product can be estimated by averaging 
over i-values: 

12ŝ  = ( )
12

1

ˆ1
.

ˆ ˆ1

c
i

i i i

B
c V V= −


 
 
In the same way s13 and s23 can be estimated and 
estimates of the parameters p1, p2 and p3 can be 
found by combining the three estimated s-
values. For any triple (i, j, k) raters: 
 

jk

ikij

s

ss
 = 

kj

kiji

pp

pppp
 = 2

ip , 

 
so the p-values can be estimated from their 
estimated products: 

ip̂  = 
ˆ ˆ

.
ˆ

ij ik

jk
s s
s  

 

In the example: 12ŝ  = 0.176141, 13ŝ  = 

0.315598, 23ŝ  = 0.241583 and 1p̂  = 0.479694, 

2p̂  = 0.367195, 3p̂  = 0.657915. Once initial 
estimates for V and the p-parameters are 
obtained, the estimation of the W-vectors is 
straightforward. From (4), it is known that, for 
rater r, Mr = prV + (1-pr)Wr, so Wr can be 
estimated by: 
 

Wr = ( )V̂p̂M
p̂1

1
rr

r
−

−
. 

 
In the example this results in the following 
initial estimates: 
 

T
1Ŵ  = [0.244016, 0.548241, 0.207744], 
T
2Ŵ  = [0.281504, 0.405815, 0.312682], 
T
3Ŵ  = [0.049413, 0.824141, 0.126448], 

but with sample data these formulas may lead to 
negative entries in the estimated W-vectors. If 
that occurs the initial estimate for the W-vector 
at hand can be set equal to the estimated V. 

Final estimates, using information from 

all cells in X̂ , can be computed by methods 
analogous to those described, minimizing the 
adjusted likelihood ratio. 
 

Conclusion 
 
When Cohen (1960) introduced his measure 
Kappa, he provided a good index to estimate 
inter-rater agreement in the case of a nominal 
category system that could be easily computed 
by hand. Cohen argued that differences in the 
marginal distributions must be taken into 
account, but, as shown, his measure Kappa does 
so correctly only if the marginal distributions are 
equal. For practical reasons, especially the fact 
that computers were mostly unavailable in 1960, 
Kappa could be considered the best available 
instrument at the time, but with modern 
computers advancements can be made. A model 
based on Cohen’s ideas and a procedure to 
correctly estimate its parameters was presented 
herein. The model allows - to a certain extent - 
to separately estimate the qualities of two raters 
by giving two measures p1 and p2. It also breaks 
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apart the rater characteristics (W1 and W2) on 
one hand and the true distribution of the 
categories (V) on the other. 

If the estimates pr and Wr are truly 
independent from the distribution V, it becomes 
possible first to assess these statistics for one 
rater (using a second rater) in a pilot study, and 
then to use them in order to find boundaries for 
the V-values in the main study without the need 
for a second rater. The formula to be used 

follows from (4): iV̂  = 
ˆˆ

.
ˆ

ri r ri

r

M q W
p
−
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