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Multiple Regression in Pair Correlation Solution 
 

Stan Lipovetsky 
GfK Custom Research North America 

 
 
Behavior of the coefficients of ordinary least squares (OLS) regression with the coefficients regularized 
by the one-parameter ridge (Ridge-1) and  two-parameter ridge (Ridge-2) regressions are compared. The 
ridge models are not prone to multicollinearity. The fit quality of Ridge-2 does not decrease with the 
profile parameter increase, but the Ridge-2 model converges to a solution proportional to the coefficients 
of pair correlation between the dependent variable and predictors. The Correlation-Regression (CORE) 
model suggests meaningful coefficients and net effects for the individual impact of the predictors, high 
quality model fit, and convenient analysis and interpretation of the regression. Simulation with three 
correlations show in which areas the OLS regression coefficients have the same signs with pair 
correlations, and where the signs are opposite. The CORE technique should be used to keep the expected 
direction of the predictor’s impact on the dependent variable. 
 
Key words: multiple regression, ridge regression, multicollinearity, net effects, simulation modeling. 
 
 

Introduction 
 
Regression analysis is one of the main tools of 
statistical modeling. It is efficient for prediction 
but often produces poor results in the analysis of 
the individual predictors importance due to 
multicollinearity (Dillon & Goldstein, 1984; 
Weisberg, 1985; Grapentine, 1997). 
Multicollinearity among predictors makes 
parameter estimates fluctuate uncontrollably 
with only a minor change in the sample, 
produces signs of coefficients in regression 
opposite to the signs of pair correlations, and 
yields theoretically important variables with 
insignificant coefficients. Multicollinearity also 
causes a reduction in statistical power that leads 
to wider confidence intervals for the 
coefficients, leaving some to be incorrectly 
identified as insignificant, while the ability to 
determine the difference between parameters is 
also degraded (Mason & Perreault, 1991).  To 
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overcome the deficiencies of multicollinearity, a 
ridge regression technique was developed (Hoerl 
& Kennard, 1970, 1988, 2000; Brown, 1994). 
However, compared to the ordinary least squares 
(OLS) regression, the quality of fit of the one-
parameter ridge, or Ridge-1, is worse. This 
quality decreases with an increase of the ridge 
parameter used to attain interpretable signs of 
the regression coefficients. 

Other approaches include regularization 
methods based on the principal components, on 
the quadratic L2-metric, lasso regression based 
on the linear L1-metric, and other Lp-metrics 
used for modeling (Frank & Friedman, 1993; 
Wildt, 1993; Tibshirani, 1996; Hawkins & Yin, 
2002; Efron, et al., 2004; Lipovetsky, 2007). A 
useful two-parameter ridge model is considered 
in (Lipovetsky, 2006) where it is shown that the 
quality of fit of the Ridge-2 model is much 
better than that of the regular Ridge-1 regression 
and is close to the OLS model. With an increase 
of the profile parameter, the quality of the 
Ridge-2 model stays high, and its solution 
becomes proportional to the coefficients of pair 
correlations of the dependent variable with the 
predictors. The quality of fit can be very similar 
for the models with rather different coefficients 
(Ehrenberg, 1982; Weisberg, 1985). 
 



LIPOVETSKY 
 

123 
 

Methodology 
 
Ordinary Least Squares Regression and Ridge-1 
Regression 

Consider the ordinary least squares 
(OLS) regression and some of its features. For 
the standardized (centered and normalized by 
standard deviation) variables, a multiple linear 
regression is iinnii xxy εββ +++= ...11 , or in 

the matrix form: 
 

εβ += Xy                          (1) 
 
where X is N by n matrix with elements xij of ith 
observations (i=1,...,N) by jth independent 
variables (j=1,...,n), y is the vector of 
observations for the dependent variable, β is the 
nth order vector of beta-coefficients for the 
standardized regression, yX ~=β  is the 
theoretical predicted by the model vector of the 
dependent variable, and ε  is a vector of 
deviations from the theoretical relationship. The 
Least Squares (LS) objective for the regression 
corresponds to minimizing the sum of squared 
deviations: 
 

2 2|| ||

( ) ( )

1 2

S
y X y X

r C

ε
β β

β β β

=
′= − −

′ ′= − +
            (2) 

 
where prime denotes transposition, variance of 
the standardized y equals one, 1=′yy , and 
notations C and r correspond to the correlation 
matrix XXC ′=  and vector of the correlations 

with the dependent variable yXr ′= . The first 

order condition of minimization 0/2 =∂∂ βS  
yields a system of equations with the 
corresponding solution: 
 

rCrC 1, −== ββ             (3) 
The vector of standardized coefficients of 
regression β  in the OLS solution (3) is defined 

via the inverse correlation matrix 1−C . The 
quality of the model is estimated by the residual 
sum of squares (2), or by the coefficient of 
multiple determination: 

2 21 '(2 )R S r C= − = β − β             (4) 
 
The Pythagorean connection between the unit of 
the original standardized empirical sum of 
squares with the sum of squares explained (R2) 
and non-explained (S2) by the regression, is 

122 =+ SR . 
          The minimum of the objective (2), when 
the equation rC =β  (3) is satisfied, 
corresponds to the maximum of the coefficient 
of multiple determination which reduces to: 
 

2 ' 'R C r= β β = β                    (5) 
 
The items jr)(β ′  of the scalar product in (5) 

define the net effects, jNetEff , which can be 

used to estimate the individual contribution of 
each jth regressor: 
 

 
= =

≡=′=
n

j

n

j
jyjj NetEffrrR

1 1

2 ββ     (6) 

 
where yjr  are the pair correlations of y with the 

regressors jx . 

If any regressors are highly correlated or 
multicollinear, correlation matrix C (3) becomes 
ill-conditioned, its determinant is close to zero, 
and the inverse matrix in (3) produces a solution 
with highly inflated values of the coefficients of 
regression. The values of these coefficients often 
have signs opposite to the corresponding pair 
correlations of regressors with the dependent 
variable, so the net effects (6) become negative. 
Such a model can be used for prediction, but it is 
useless for analyzing and interpreting the 
predictors’ role in the model. 
          The one-parameter ridge model (Ridge-1) 
is widely used for overcoming the difficulties of 
multicollinearity. Adding a regularization of the 
squared norm for the vector of regression 
coefficients (that prevents their inflation) to LS 
objective (2) yields a conditional objective: 
 

2 2 2|| || || ||

1 2
rd

rd rd rd rd rd

S k
r C k

ε β
β β β β β

= +
′ ′ ′= − + +

    (7) 
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where βrd denotes a vector of the ridge 
regression estimates for the coefficients in (1), 
and k is a positive profile parameter. Minimizing 
the objective (7) by vector βrd yields a system of 
equations and its corresponding solution as: 
 

1( ) , ( )rd rdC kI r C kI rβ β −+ = = +     (8) 

 
where I is the identity matrix of nth order. The 
solution (8) exists even for a singular matrix C. 
If k = 0 the Ridge-1 model (7)-(8) reduces to the 
OLS regression model (2)-(3).  

The eigenproblem for the matrix of 
correlations among the regressors is aCa λ= , 
(9) so the matrix can be presented as 

AdiagAC j ′= )(λ , where A is the matrix of 

eigenvectors aj in its columns, and )( jdiag λ  is 

a diagonal matrix of the eigenvalues jλ . By the 

eigenproblem results, the Ridge-1 solution (8) 
can be represented as follows: 
 

( ) rAkdiagA jrd ′+= −1)(λβ        (10) 

 
Increasing the profile parameter k drives the 
Ridge-1 solution (10) to zero at a rate of 1/k. The 
coefficient of multiple determination (4) for the 
Ridge-1 model can be presented as: 
 

2
2

2

2

( )

2

( )

j
rd

j j

j

j

R r A diag A r
k k

k
r A diag A r

k

λ
λ λ

λ
λ

 
′ ′= −  + + 

 +
′ ′=   + 

 

(11) 
 
So the quality of fit for the Ridge-1 model also 
reaches zero in a proportion reciprocal to k. This 
means that increasing the profile parameter k 
could yield coefficients with interpretable signs, 
but small values, and poor quality of fit for the 
model. 
 
 
 
 

Two-Parameter Ridge and Correlation-
Regression Model 

Consider a generalization of the 
regularization (7) with several positive 
parameters k: 
 

2 22 2 2
1 2 3

1

2 3

|| || || ( ) ||

(1 2 ) ( )
.

( 2 ) (1 2 )

S y Xb k b k X y b k y y Xb

b r b Cb k b b
k r r b r b b k b r b rr b

′ ′= − + + − + −

′ ′ ′− + + + 
=  ′ ′ ′ ′ ′ ′− + + − + 

 

(12) 
 
The vector b is an estimator of the coefficients 
of regression (1) by the multiple objective (12), 
where the first two items coincide with those in 
the Ridge-1 objective (7). The next item with k2 
pushes the estimates b to be closer to the pair 
correlations r with the dependent variable, which 
helps us obtain a solution with interpretable 
coefficients. The last item with k3 expresses the 

relation 21 Ry −=′ε , so its minimum 
corresponds to the maximum coefficient of 
multiple determination (more details are given in 
Lipovetsky, 2006). Minimization (12) yields a 
matrix equation 
 

rkrkrbrrkbkbkCb 32321 ++=′+++ . 

 
The scalar product br′  can be considered as 
another constant and combined with the 
parameter k3, so this item at the left-hand side is 
proportional to vector r and can be transferred to 
the right-hand side of this equation. By 
combining constants at each side of this 
equation, it is easy to reduce it to the following 
system with the corresponding solution: 
 

1( ) , ( )C kI b qr b q C kI r−+ = = +   (13) 
 
where k and q are two new constant parameters. 
It is the Ridge-2 model that is proportional to the 
Ridge-1 (8) with the term q. 

For a current profile ridge parameter k, 
the value of the second parameter q can be found 
by a criterion of maximum quality of fit. 
Substituting solution (13) into the coefficient of 
multiple determination (4) yields: 
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2 1

2 1 1

2 [ ( ) ]

[ ( ) ( ) ]

R q r C kI r
q r C kI C C kI r

−

− −

′= + −
′ + +


  (14) 

 

The coefficient of multiple determination 2~R  
for the Ridge-2 model is a concave quadratic by 
q function, and it reaches its maximum at the 
value: 

1

1 1

( )
,

( ) ( )

r C kI rq
r C kI C C kI r

−

− −

′ +=
′ + +

      (15) 

 
so the parameter q is uniquely defined as a 
quotient of two quadratic forms dependent on 
the profile parameter k. While the term k serves 
for regularization of an ill-conditioned matrix, 
the term q is used for tuning the quality of the 
model fit. 

Using the term (15) in (13) presents the 
Ridge-2 solution in the explicit form: 
 

rkIC
rkICCkICr

rkICrb 1
11

1

)(
)()(

)( −
−−

−

+
++′

+′
=  

(16) 
 
Substituting q (15) into (14) yields the 
maximum coefficient of multiple determination 
in two following equivalent forms: 
 

brCbb
rkICCkICr

rkICrR ′=′=
++′

+′
= −−

−

11

21
2

)()(

])([~

(17) 
 
Both Ridge-2 (17) and OLS (5) coefficients of 
multiple determination can be presented 
similarly as scalar products of the vectors of 
regression coefficients and pair correlations. The 
coefficient of multiple determination for Ridge-2 
(17) is smaller than that of the OLS (5) but 
larger than that of Ridge-1 (11). 

Consider the behavior of the Ridge-2 
solution with the parameter k increasing. In the 
limit of large k, the matrix kIC +  gets a 
dominant diagonal, so the inverse matrix 

1)( −+ kIC  reduces to the scalar matrix Ik 1− , 
and the term (15) becomes: 
 

1

2
, ,

k r r r rq k
k r Cr r Cr

γ γ
−

−

′ ′
= = =

′ ′
       (18) 

 
so q is linearly proportional to k with a constant 
γ  defined by the positive ratio of two quadratic 
forms. Similarly, in the limit of large k, the 
Ridge-2 solution (16) eventually converges to 
the independent of k asymptote: 
 

rr
Crr
rrr

Crrk
rrkb γ≡








′
′

=
′
′

= −

−

2

2

    (19) 

 
where γ  is a constant from (18). Thus, in 
contrast to diminishing to zero Ridge-1 
coefficients (8), the coefficients of the Ridge-2 
solution (19) become proportional to the vector r 
of the pair correlations of y with each regressor. 
It is a model which can be called Correlation-
Regression (CORE) model. It can also be 
described in terms of the pair-wise regressions 
of y by each jx  separately, where a beta-

coefficient equals the pair correlation yjr  of y 

with the variable jx . 
The signs of CORE coefficients b (19) 

coincide with the signs of the pair correlations r. 
It guarantees the clear interpretability of this 
solution, and the positive net effect contributions 

2
jjj rrb γ=  (6) of the regressors into the 

coefficient of multiple determination (17). With 
k increasing, the coefficient of multiple 
determination (17) reaches the limit: 

 

)(
)()(~ 2

2

22
2 rr

Crr
rr

Crrk
rrkR ′=

′
′

=
′
′

= −

−

γ    (20) 

 
Thus, eventually, while k increases, the 
coefficient of multiple determination becomes a 
constant independent of k. 

Numerical runs support the features of 
the eventual ridge regression. With increasing 
parameter k, the Ridge-2 coefficient of multiple 

determination 2~R  (17) stays consistently close 
to the maximum R2 (5) of the OLS model, while  
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the Ridge-1 coefficient 2
rdR  (11) quickly 

diminishes to zero. In Ridge-2 modeling k can 
be increased without losing the quality of 
regression fit and prediction, until reaching the 
asymptotic solution (19) of interpretable 
coefficients of multiple regression proportional 
to pair correlations of y with the x-s, with the 
coefficients of multiple determination (20). 

The constant γ  (18) used in the CORE 
solution (19)-(20) can be obtained in a simpler 
approach. If the vector r of the pair correlations 
of y with regressors is taken for the coefficients
β  in a multiple regression (1), then the vector 
of theoretical values of the dependent variable is 

rXy =~ . Consider a pair regression of the 
observed values y on the theoretical aggregate 
y~ , so a model yy ~γ= , with a slope coefficient 

γ . As in any pair regression, this coefficient is 
defined as follows: 

 

Crr
rr

XrXr
rXy

yy
yy

′
′

=
′′

′
==

)~,~cov(

)~,cov(γ     (21) 

 
where C and r are defined as in (2)-(3). The 
slope (21) coincides with the coefficient γ  in 
(18). Then the model is 

bXrXyy === )(~ γγ , with the same 
coefficients b as in (19). Also, the coefficient of 
pair correlation between y and the aggregate y~  
is: 

cov( , )
( , )

cov( , ) cov( , )

y ycor y y
y y y y

r r
r Cr

=
⋅

′
=

′


 

   (22) 

 
with 1=′yy  as in (2). This coefficient (22) 
squared yields the same expression (20), as a 
regular pair correlation squared equals the 
coefficient of multiple determination in the 
model by only one predictor. 

A simple solution for the coefficients of 
regression can also be based on the relation 
between the coefficients of multiple 

determination 2R  (5) and 2
).( jyR −  in the 

regressions of y by all n and by n-1 predictors 

without xj variable, respectively. The increment 

jU  from 2
).( jyR −  to 2R  is defined by the jth 

coefficient of regression (1) and by the multiple 

determination 2
).( jjR −  of the regression xj by all 

the other n-1 predictors: 
 

jjjjjj VIFRU /)1( 22
).(

2 ββ =−= −       (23) 

 
where jVIF  is the so-called variance inflation 

factor (Weisberg, 1985). The VIF value for each 
regressor equals the diagonal elements of the 
inverse correlation matrix of predictors, 

jjjjj CRVIF )()1( 112
).(

−−
− =−= . The measure 

(23) of predictor importance is considered in 
(Darlington, 1968; Harris, 1975; Lipovetsky & 
Conklin, 2005). 

A criterion of proportionality 

jj NetEffgU =  (where g is a constant) 

between the increments (23) and net effects (6) 
for each predictor can be used to estimate the 
coefficients of regression by the relation 

yjjjj rgVIF ββ =/2 , which yields the solution: 

)( jyjj VIFrg=β . The constant g is estimated 

by the same expression (21) up to using the 
vector with elements jyjVIFr  in place of the 

vector r with the elements yjr . However, the 

numerical simulations show that the results 
based on this approach are very close to those 
obtained in a simple pair correlation CORE 
solution (19)-(20). This means that in the 
eventual ridge solution (19) the coefficients of 
regression yield the increments in (23) 
approximately proportional to the net effects (6) 
in the coefficient of multiple determination. 

Another way to obtain CORE-type 
model consists in the rearranging the OLS 
objective by opening parentheses and squaring 
the items in (2) explicitly: 
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n
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n
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n

β β

β β

β

β β

β

β
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=

=

=

>

= =
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  − +  
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 − + 
 =
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1

.
1n N

i k ik
j k i

y x
n

β
> =

 
 
 
    −   

    


 
(24) 

 
so the LS objective (2) can be presented as the 
total of squared deviations ijji xny β−/  in the 

pair-wise regressions of 1/nth portion of y by 
each xj separately, plus double cross-products of 
such deviations from each two pair-wise 
regressions by variables xj and xk. If the cross-
products of deviations are small in comparison 
with squared deviations, the result (24) reduces 
to the total of least squares objectives by each 
variable separately: 
 


== =

≡





 −=

n

j
j

n

j

N

i
ijjipair Sxy

n
S

1

2

1 1

2
2 1 β    (25) 

 
Minimizing (25) yields coefficients nryjj /=β  

equal to the pair correlations of y/n with the 
variables jx . This multiple regression’s 

coefficients are proportional to the pair 
correlations (similarly to the solution (19) of 
CORE model), and each predictor explains 1/nth 
portion of the dependent variable. The constant 
γ  in (19) is also used for sharing the regressors 
influence on the dependent variable, and it 
approximately equals 1/n as well. 
 In place of skipping cross-products in 
reducing LS objective to (25), it is possible to 
use them with a diminished influence by 

inserting a varying parameter g into the result 
(24): 
 

2
2

1 1

1

1

1 1
2

n N

multi i j ij
j i

n N

i j ij i k ik
j k i

S y x
n

g y x y x
n n

β

β β

= =

> =

 = − + 
 

   ⋅ − −   
   




(26)

 

 

For g = 0 the multi-objective 2
multiS  reduces to 

the pair objective (25), for g=1 (26) coincides 
with the regular LS objective (2), and for 
intermediate g values from 0 to 1 it corresponds 
to a model between the pair-wise CORE and 
regular OLS regressions. The objective (26) is 
identical to the expression: 
 

2
2

1 1

1

2

1 1

2 2

1

1 1
2

1
(1 )

(1 ) ,

n N

multi i j ij
j i

n N

i j ij i k ik
j k i

n N

i j ij
j i

pair

S g y x
n

g y x y x
n n

g y x
n

g S g S

β

β β

β

= =

> =

= =

 = ⋅ − + 
 

   ⋅ − −   
   

 + − ⋅ − 
 

= ⋅ + − ⋅







(27) 
 

where 2S  and 2
pairS  are OLS and CORE 

objectives defined in (24)-(25). Minimizing the 
objective (27) yields a system of equations and 
its corresponding solution as in (13), with the 
parameters ggk /)1( −=  and nkq /1+= . 
Further results can be derived as in the relations 
(14)-(20). 
 
Numerical Simulation 
 All pair correlations in vector r can be 
positive, or the scales of the predictors with 
negative correlations with y can be reversed to 
make all correlations positive. The positive 
regression solution (or of the same signs as pair 
correlations) can be obtained if the system 

rC =β  of normal equations (3) satisfies the 
conditions of the Farkas lemma (Craven, 1978). 
In practice, it is convenient to use more explicit 
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criteria, for instance, a criterion proposed by 
Redheffer (2000), which can be written in terms 
of correlations: for the satisfied conditions 
 


≠≠

+≤<
ij

ijiiyj
ij

ij rrrr )0,min()0,max(  

(28) 
 
the system rC =β  has a positive solution 

0>β . In (28) ijr  and yjr  are the elements of 

correlation matrix C and vector r, respectively, 
and the diagonal elements 1=iir . The criterion 

(28) is a sufficient but not a necessary condition 
for positive regression coefficients. 

Consider an example of a regression by 
two predictors, 2211 xxy ββ += , when the 
normal system and its solution (3) explicitly are: 
 

1 2 12 2 1 12
1 22 2

12 12

,
1 1

y y y yr r r r r r
r r

β β
− −

= =
− −

    (29) 

 
If 12r  reaches one, the OLS coefficients (29) are 
becoming inflated, and of different signs, 
although 1yr  becomes close to 2yr , so it could 

be more reasonable to have both coefficients 
(29) of the same impact on the dependent 
variable y. At the same time, the eventual ridge 
regression solution (19) in this case of two 
predictors is: 

2 2
1 2

1 12 2
1 2 1 2 12

2 2
1 2

2 22 2
1 2 1 2 12

,
2

2

y y
y

y y y y

y y
y

y y y y

r r
b r

r r r r r

r r
b r

r r r r r

+
=

+ +

+
=

+ +

         (30) 

 
so the coefficients of regression have the same 
signs as the pair correlations of the predictors 
with the dependent variable, and their values are 
not inflated. 

For the model 2211 xxy ββ += , the 
correlation matrix of all three variables is a non-
negatively definite matrix, so its determinant can 
be presented in the following inequality: 
 

0)()1)(1(

1

1

1
2

2112
2
2

2
1

21

212

112

≥−−−−= yyyy

yy

y

y

rrrrr
rr

rr
rr

 
(31) 

 
so for any two given correlations, 1yr  and 2yr , 

the third one 12r  can have values within the 
range satisfying the inequality (31). 

Numerical simulation results of the OLS 
solution (29) for the set of 1yr  and 2yr  in the 

wide range of their values, and several values of 

12r  are given in Tables 1-6. Each table presents 

the coefficients 1β , and the other coefficient 2β  
can be obtained in the transposed across the 
second diagonal of the matrix location. Table 1 
shows the results for 012 =r , Table 2 – the 

results for 2.012 =r , etc., through the last Table 

6 for 99.012 =r . The tables for the negative 

values of 12r  can be obtained from the given 
tables by their reflection across the vertical axis 
of the central column for 02 =yr  in Tables 1-6. 

Tables 1-6 have filled cells only at the 
locations where the condition (31) is satisfied. 
The bold font in the tables marks those cells 
where the OLS coefficients (29) have the signs 
of pair correlations, )()( 11 yrsignsign =β  and 

)()( 22 yrsignsign =β . The tables show that 

with the parameter 12r  increasing from zero to 
one the shape of the feasible solutions area 
changes from anisotropic circular to a straight 
line direction, corresponding to the regression as 
the expectation of the dependent variable 
conditioned on the independent variables in their 
tri-variate normal distribution. What is more 
interesting – the proportion of the cells where 
one or two coefficients 1β  and 2β  have signs 

opposite to the signs of the pair correlations 1yr  

and 2yr  is rather high (the solutions non-marked 

by bold font). The frequency to obtain hardly 
interpretable regression coefficients is 
substantial, and there is no way to reduce the 
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occurrence of such a solution in regular 
regression modeling. However, the CORE 
solution (30) yields coefficients of regression 
that are always of the same signs as the pair 
relations: )()( 11 yrsignbsign =  and 

)()( 22 yrsignbsign = , in each feasible cell of 

Tables 1-6 where the condition (31) is satisfied. 
 

Conclusion 
 
The two-parameter ridge regression model and 
its solution proportional to the pair correlation 
coefficients are considered. The results of the 
eventual ridge regression are robust, not prone to 
multicollinearity effects, and are easily 
interpretable. The suggested approach is useful 
for theoretical consideration of regression 
models and for the practical needs of regression 
analysis. 
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Table 1: OLS solutions for 1β , when 012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99      0.99      
0.80    0.80 0.80 0.80 0.80 0.80    
0.60   0.60 0.60 0.60 0.60 0.60 0.60 0.60   
0.40  0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40  
0.20  0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20  
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-0.20  -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20  
-0.40  -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40  
-0.60   -0.60 -0.60 -0.60 -0.60 -0.60 -0.60 -0.60   
-0.80    -0.80 -0.80 -0.80 -0.80 -0.80    
-0.99      -0.99      

 

Table 2: OLS solutions for 1β , when 2.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99       0.99     
0.80    0.92 0.88 0.83 0.79 0.75 0.71   
0.60   0.75 0.71 0.67 0.63 0.58 0.54 0.50 0.46  
0.40  0.58 0.54 0.50 0.46 0.42 0.38 0.33 0.29 0.25  
0.20  0.38 0.33 0.29 0.25 0.21 0.17 0.13 0.08 0.04 0.00 
0.00  0.17 0.13 0.08 0.04 0.00 -0.04 -0.08 -0.13 -0.17  
-0.20 0.00 -0.04 -0.08 -0.13 -0.17 -0.21 -0.25 -0.29 -0.33 -0.38  
-0.40  -0.25 -0.29 -0.33 -0.38 -0.42 -0.46 -0.50 -0.54 -0.58  
-0.60  -0.46 -0.50 -0.54 -0.58 -0.63 -0.67 -0.71 -0.75   
-0.80   -0.71 -0.75 -0.79 -0.83 -0.88 -0.92    
-0.99     -0.99       

 

Table 3: OLS solutions for 1β , when 4.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99        0.99    
0.80     1.05 0.95 0.86 0.76 0.67 0.57  
0.60    0.90 0.81 0.71 0.62 0.52 0.43 0.33  
0.40   0.76 0.67 0.57 0.48 0.38 0.29 0.19 0.10 0.00 
0.20  0.62 0.52 0.43 0.33 0.24 0.14 0.05 -0.05 -0.14  
0.00  0.38 0.29 0.19 0.10 0.00 -0.10 -0.19 -0.29 -0.38  
-0.20  0.14 0.05 -0.05 -0.14 -0.24 -0.33 -0.43 -0.52 -0.62  
-0.40 0.00 -0.10 -0.19 -0.29 -0.38 -0.48 -0.57 -0.67 -0.76   
-0.60  -0.33 -0.43 -0.52 -0.62 -0.71 -0.81 -0.90    
-0.80  -0.57 -0.67 -0.76 -0.86 -0.95 -1.05     
-0.99    -0.99        
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Table 4: OLS solutions for 1β , when 6.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99         0.98   
0.80       1.06 0.88 0.69 0.50  
0.60     1.13 0.94 0.75 0.56 0.38 0.19 0.01 
0.40    1.00 0.81 0.63 0.44 0.25 0.06 -0.13  
0.20   0.88 0.69 0.50 0.31 0.13 -0.06 -0.25 -0.44  
0.00   0.56 0.38 0.19 0.00 -0.19 -0.38 -0.56   
-0.20  0.44 0.25 0.06 -0.13 -0.31 -0.50 -0.69 -0.88   
-0.40  0.13 -0.06 -0.25 -0.44 -0.63 -0.81 -1.00    
-0.60 -0.01 -0.19 -0.38 -0.56 -0.75 -0.94 -1.13     
-0.80  -0.50 -0.69 -0.88 -1.06       
-0.99   -0.98         

 

Table 5: OLS solutions for 1β , when 8.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99          0.97  
0.80        1.33 0.89 0.44 0.02 
0.60       1.22 0.78 0.33 -0.11  
0.40     1.56 1.11 0.67 0.22 -0.22 -0.67  
0.20    1.44 1.00 0.56 0.11 -0.33 -0.78   
0.00    0.89 0.44 0.00 -0.44 -0.89    
-0.20   0.78 0.33 -0.11 -0.56 -1.00 -1.44    
-0.40  0.67 0.22 -0.22 -0.67 -1.11 -1.56     
-0.60  0.11 -0.33 -0.78 -1.22       
-0.80 -0.02 -0.44 -0.89 -1.33        
-0.99  -0.97          

 

Table 6: OLS solutions for 1β , when 99.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99           0.50 
0.80          0.40  
0.60         0.30   
0.40        0.20    
0.20       0.10     
0.00      0.00      
-0.20     -0.10       
-0.40    -0.20        
-0.60   -0.30         
-0.80  -0.40          
-0.99 -0.50           
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