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Quel Test for Two Linear Restrictions in the Nonlinear Models 
 

Krishna K. Saha 
Central Connecticut State University 

 
 
An alternative Wald type test called the quel test is developed for two linear restrictions by finding the 
critical region based on the quel utilizing the repeated values of estimated parameters of interest under the 
null. Simulation shows evidence that the full quel test performs best in that it holds nominal level well 
and shows monotonic increasing power properties. 
 
Key words: Bootstrap technique, nonlinear models, percentile confidence contour, power, quel, size. 
 
 

Introduction 
 
Considerable interest exists in testing linear 
restrictions in the nonlinear models such as logit, 
Tobit and exponential models. For testing such 
hypotheses in the context of nonlinear models, 
an asymptotic test such as the Wald test or the 
likelihood ratio test is usually employed. The 
Wald test has an advantage over the likelihood 
ratio test since the Wald test requires the 
maximum likelihood estimates of the parameters 
only under the alternate hypothesis.  

Unfortunately, for small samples the 
Wald test does not perform well in terms of size 
and power property. In some situations, the 
power of the Wald test first increases then 
eventually starts decreasing when alternative 
hypothesis parameters increase in distance from 
the null hypothesis. The Wald test behaves this 
way because, for certain parameter values, the 
estimated covariance matrix of the maximum 
likelihood estimator increases faster than the 
square of the distance between the parameter 
estimate and null value (see, for example, Hauck 
& Donner, 1977; Vaeth, 1985; Mantel, 1987; 
Nelson & Savin, 1988, 1990). Moreover, the 
biased estimates of the parameters being tested 
can cause the power of the Wald test to drop 
below its size at local alternatives (for example 
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see, Goh, 1998). These two types of behavior 
discussed above are usually known as non-
monotonicity in the power function and local 
biasedness respectively. 

Other important situations exist in which 
the estimated covariance matrix cannot be 
assessed and may not have an explicit form. For 
example, testing for the presence of first-order 
moving average disturbances in a linear 
regression model the information matrix is not 
well defined if the parameter of the moving 
average process is 1 or -1 (see Goh, 1998).  

This article introduces to construct the 
alternative Wald type tests that do not depend on 
the estimated covariance matrix, and use 
nonparametric ideas and computer simulation to 
judge whether the estimates observed are likely 
to have come from a null hypothesis data 
generating process. Applying the above 
concepts, we construct the bivariate 
generalizations of the boxplot based on  a 
generalized quel  introduced by Goldberg and 
Iglewicz (1992) which is defined as four 
separate quarter ellipses matched on their major 
and minor axes so that the quel is continuous 
and smooth. Previously, many authors including 
Turkey (1947), Scott (1985) and Becketti and 
Gould (1987) attempted to estimate the 
confidence contours of a bivariate density, but 
those approaches had serious shortcomings. 

The primary aim of this article is to 
construct new tests that solve the problem of 
non-monotonicity in the power function, but do 
not face the limitations discussed above in 
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practice. These new tests only require simulated 
estimates of the parameters of interest under the 
null hypothesis but do not involve estimating the 
covariance matrix. Moreover, these new tests 
require defining the rejection region based on 
the contour points of the percentile confidence 
limits of quels (half and full) of the values of 
estimated parameters of interest under the null 
hypothesis. Furthermore, the null hypothesis is 
rejected if the sample data estimates fall outside 
the percentile confidence limit of a quel (half or 
full). 
 

Methodology 
 
The Wald and LR Tests 

Let nyy ,,1   be n  independent 

observations distributed with density function 
),|( θtt xyf  , t=1,…,n, where tx  is a vector of 

covariates  and θ   is an unknown 1×k  
parameter vector. Let ),( ′′′= ηβθ , where 

′= )( 2,1 βββ  are two parameters of interest and 

η  is a 1)2( ×−k  vector of nuisance 
parameters. The log-likelihood function is given 

by ),|(ln)(
1

θθ t
n

t t xyfl  =
= . The interest 

lies in testing the composite hypotheses 
 

0 0 1 0:    against  : ,H Hβ β β β= ≠        (1) 

 
where 0β is a 12 ×  vector of known constants. 

Let )ˆ,ˆ(ˆ ′′′= ηβθ  be the maximum likelihood 

estimators of θ  under the alternative 
hypotheses. Then the Wald test statistic is 
 

),ˆ())ˆ(ˆ)(ˆ( 0
1

0 ββθββ −′−= −RVRW    (2) 

 
where )0:( 2IR = , 2I  is the 22 ×  identity 

matrix, )ˆ(ˆ θV  is a constant estimator of )ˆ(θV  

with replace θ  by θ̂  and 
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is the covariance matrix of θ̂ . Under the 
standard regularity conditions (see, for example, 
Godfrey, 1988), W  asymptotically follows a 

2χ  distribution with 2 degrees of freedom 
under the null hypothesis. The null hypothesis is 
rejected for large values of W  (for details see 
Goh, 1998). 

Neyman and Pearson (1928) first 
proposed the likelihood ratio (LR) test for 
testing a composite hypothesis. Note that the 
Wald and LR tests have the same first-order 
asymptotic properties and they are 
asymptotically equivalent (see Rao, 1973). 
Several authors have studied the asymptotic 
relationship between these two tests (see, for 
example, Gourieroux and Monfort 1995, 

Chapter 17; Hendry 1995, Chapter 13). Let 0θ̂  

be the maximum likelihood estimators of θ  
under the null hypotheses. Then the LR test for 
the hypothesis in (1) involves rejecting the null 
hypothesis for large values of 
 

[ ],)ˆ()ˆ(2 0θθ llLR −=                 (3) 

which, under the standard regularity conditions, 

follows a 2χ distribution with 2 degrees of 
freedom asymptotically under the null 
hypothesis.  
 
The Quel (Full or Half) Test 

As observed for some nonlinear models, 
the estimated covariance matrix is not always 
available. Thus, some new test procedures 
namely, full quel and half quel tests, for two 
linear restrictions, are outlined which do not 
require an expression of this matrix. As only the 
quel for a two-dimensional case can be 
constructed (see Goldberg & Iglewicz, 1992), 
attention is limited to testing problems involving 
only two restrictions. 
 
The Percentile Confidence Contour Points of a 
Quel (Full or Half) 

Let ,,,2,1),,( Nivu ii =  be a set of 

simulated maximum likelihood estimates of 
),( 21 ββ  for the ith sample under the null 

hypothesis. Specifically, ),,( 11 vu ),,( 22 vu …,
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),,( NN vu  are bivariate observations of size N  

for ),( VU . Following the method of an 
asymmetric plot provided by Goldberg and 
Iglewicz (1992), the two-dimensional 
confidence contour based on the standardized 
errors of each point of ),( VU can be found. To 
obtain these errors, requires first finding the 
location, scale, and correlation estimators for 

),( VU  as well as the two additional parameters 
represented by the proportions of the total 
standard deviation due to residuals in the 
positive direction of the major and minor axes of 
the asymmetric plot. Goldberg and Iglewicz 
(1992) introduced the estimation of those 
parameters by an extended biweight bivariate 
estimator (BIWT) and one-step biweight 
estimator (BIWT-1) as being efficient. Based on 
the extended BIWT and BIWT-1 method 
provided by Goldberg and Iglewicz (1992), the 
location, scale, and correlation estimators for 

),( VU  can be easily obtained, as well as the 
two additional parameters. 

Let q
ub
*μ , q

vb
*μ , q

ubσ , q
vbσ  and q

uvbr  be 

the location, scale, and correlation estimates of 
U and V respectively, and let 1γ  and 2γ  be the 
estimates of the two additional parameters. In 
order to find the boundary points of the 
confidence contour of a quel, regardless of size, 

define q
s

q
s VUG +=1  and q

s
q
s VUG −=2 , as 

the major and minor axes in this order, where 
q
sU  and q

sV  are the standardized values of U 

and V based on the location and scale estimators 

for a quel as q
ub

q
ubi

q
si uu σμ /)( *−=  and 

q
ub

q
ubi

q
si vv σμ /)( *−= , respectively. 

Note that )()( 21
q

uvbrsignGGsign =− . 

Therefore, the major and minor axes must be 
redefined with respect to the correlation 

estimator q
uvbr  as q

uvb
q
si

q
sii rvuG *

1
*
1 /)( +=  and 

q
uvb

q
si

q
sii rvuG *

2
*
2 /)( −= , where 

)1(2*
1

q
uvb

q
uvb rr +=  and )1(2*

2
q

uvb
q
uvb rr −= , 

respectively. In addition, the standardized errors 
for the construction of a quel whose percentile 
point approximately determines the percentile 
confidence contour of the rejection region for 

the quel (see Figure 1) must be computed. 

Compute the standardized errors, q
iξ , based on 

*
1iG  and *

2iG using the additional parameter 

estimates 1γ  and 2γ  as 
 

,,,2,1for ,2
2

2
1 Niii

q
i =∇+∇=ξ   (4) 

where for l = 1, 2, 
 







−

>
=∇

otherwise.)1(2/

0 if2/
*

**

lli

lilli
li G

GG
γ

γ
 

 
Note that these errors assess the distances of 
each point obtained from the observations of U 

and V to the center ( q
ub
*μ , q

vb
*μ ). Let q

percentileξ  be 

the percentile of the standardized errors q
iξ  (i = 

1, 2, …, N) in equation (4). 
The construction of a quel depends on 

two things, the percentile of the errors q
percentileξ  

and the estimators of two additional parameters 

1γ  and 2γ . As a result, options of different 

values of q
percentileξ , 1γ  and 2γ  create different 

kinds of quel. In this case, these values are 
chosen from two different options, which assess 
two different quels called full and half quels. 
These two options for constructing full and half 
quels are discussed in the Appendix. 

Upon acquiring the percentile of the 
standardized errors as well as the two additional 
estimators from either options for a full or half 
quel as shown in the Appendix, it is easy to find 
the boundary points of the percentile confidence 
limit for the full or half quel. In doing so, based 

on q
percentileξ  as well as fq

lγ  for l = 1, 2 from 

option-I in the Appendix, the lengths of the 
vertices in all four quadrants from the origin for 
the full quel are: 
 

[ ] ( ) 2/1)1(2 1
)1(

1
q

uvb
fqfq

percentile r+−=− γξφ
 

 

[ ] ( ) 2/1(2 1
)1(

1
q

uvb
fqfq

percentile r+=+ γξφ  
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)1(
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q

uvb
fqfq

percentile r+=+ γξφ  

 

[ ] ( ) .2/12 2
)1(

2
q

uvb
fqfq

percentile r−=+ γξφ  

 
Next, based on the parametric equations of an 
ellipse in terms of angle fqθ  with range 0 to 360 

degrees using )1(
1

−φ , )1(
1

+φ , )1(
2

−φ , and )1(
2

+φ  as 
 

fqsign fq

θφ θ cos)(cos
11 =Φ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 

,sin)(sin
22

fqsign fq

θφ θ=Φ               (5) 
 
the boundary points of the percentile confidence 
contour for the full quel are given by 
 

q
ub

q
ub

fqX σμ )( 21 Φ+Φ+=  

and 

1 2( ) .fq q q
vb vbY μ σ= + Φ − Φ              (6) 

 

Figure 1: Exact Percentile Confidence Contour of a Full or Half Quel for the 95th Percentile 

of the Standardized Errors q
iξ  (i = 1, 2, …, N) for a Full or Half Quel when N = 200.* 
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 (a) 94.5% C.L. of a Full Quel for the 
 95th Percentile of the Standardized Errors
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 (c) 93% C.L. of a Full Quel for the 
95th Percentile of the Standardized Error
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 (b) 94.5% C.L. of a Half Quel for the 
 95th Percentile of the Standardized Errors
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 (d) 94.5% C.L. of a Half Quel for the 
95th Percentile of the Standardized Error

 
*The scatter points represent the simulated ML estimates of ( )21, ββ  of size N. The 
underlying distribution was the two-regressor binary logit model of size n = 30 using 
design matrix 3X  [(a), (b)] and the three-regressor binary logit model of size n = 30 

using design matrix 2X  [(c), (d)]. 
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In a manner similar to the case of a full quel 
discussed above, the boundary points of the 
percentile confidence limit for a half quel can 
also be obtained as in equation (6) by using 

equation (5) with fq
percentileξ  and fq

lγ  for l = 1, 2 

replaced by hq
percentileξ  and hq

lγ  for l = 1, 2 from 

option-II in the Appendix. 
 
A Point on the Percentile Confidence Limit of a 
Quel for a Fixed Angle 

Consider the case of using a full quel to 
find the boundary point PH0

. In doing so, it is 

necessary to find a solution of an angle θ fq , 
based on the angle AH1

 so that the x and y 

coordinates of a point PH0
 using equations (5) 

and(6) for a particular solution of this θ fq  can 

easily be obtained. To solve this θ fq  based on 
the angle AH1

, define 

 

10
cos HH

fq ADX =  

10
sin HH

fq ADY =                    (7) 

 
Using equation (5), results in an updated 

equation for the solution of an angle θ fq  from 
equations (6) and (7) as given by 
 

1

(cos ) (sin )
1 2

(cos )
1

(sin )
2

cos sin

cos
tan

sin

fq fq

fq

fq

q sign fq sign fq q
vb vb

sign fq
q q
ub ub Hsign fq

A

θ θ

θ

θ

μ ϕ θ ϕ θ σ

ϕ θ
μ σ

ϕ θ

 + − 
  + = +   

    
 

(8) 

 

To obtain the solution of θ fq from (8), start with 
the combination of φ φ1 and 2 from the previous 
section, which depends on the sign of 

cos sinθ θfq fq and . Based on the values of 

cos sinθ θfq fq and , the solution for an angle 

θ fq  in four different cases is obtained as 
follows. 
 

Case I: Values of cos sinθ θfq fq and  are both 
positive 

(cos ) ( 1)
1 1

fqsign θϕ ϕ +=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ += .                 (9) 

 

Using (9), solve for the angle θ fq  from equation 
(8), which is 
 

,
)(2

)1(42
arcsin

2
1

2
1

2
1

2
1

2
11

ba
baabfq

+
+−±

=θ   (10) 

where 

q
vbH

q
ub

H
q
ub

q
vb

A
A

a
μμ

σσφ
−

−
=

+

1

1

tan

)tan()1(
1

1  

and 

1

1

( 1)
2

1

( tan )
.

tan

q q
vb ub H

q q
ub H vb

A
b

A
ϕ σ σ

μ μ

+ +
=

−
 

 

Case II: Values of cos sinθ θfq fq and  are 
positive and negative respectively 
 

(cos ) ( 1)
1 1

fqsign θϕ ϕ +=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ −=                 (11) 

 
Similar to Case-I, find the solution of an angle 

θ fq  from (8) using equation (11) as 
 

,
)(2

)1(42
arcsin

2
1

2
1

2
1

2
1

2
12

ba
baabfq

+
+−±

=θ   (12) 

 
where 

q
vbH

q
ub

H
q
ub

q
vb

A
A

b
μμ

σσφ
−

+
=

−

1

1

tan

)tan()1(
2

2 . 

 

Case III: Values of cos sinθ θfq fq and  are, 
respectively, negative and positive 
 

(cos ) ( 1)
1 1

fqsign θϕ ϕ −=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ +=                 (13) 
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Using equation (13), obtain the angle θ fq  from 
equation (8) as 
 

,
)(2

)1(42
arcsin

2
1

2
2

2
1

2
2

2
21

ba
baabfq

+
+−±

=θ   (14) 

where 

q
vbH

q
ub

H
q
ub

q
vb

A
A

a
μμ

σσφ
−

−
=

−

1

1

tan

)tan()1(
1

2 . 

 

Case IV: Values of cos sinθ θfq fq and  are both 
negative 

(cos ) ( 1)
1 1

fqsign θϕ ϕ −=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ −= .               (15) 

In this final case, evaluate the angle θ fq  from 
equation (8) by using equation (15), to get 
 

.
)(2

)1(42
arcsin

2
2

2
2

2
2

2
2

2
22

ba
baabfq

+
+−±

=θ   (16) 

 

Upon achieving the solutions of the angle θ fq  
from all four cases in equations (10), (12), (14) 
and (16), these solutions need to be adjusted by 
considering all four quadrants as 
 

* 0

*

0 0

180 , if 0

180 360 , otherwise.

fq fq

fq fq

and

and

θ θ θ
θ

θ θ

− >
=

− −





 

(17) 
 
Angle θ fq  has two solutions for each case but 
imposing equation (17) means there are four 

solutions for θ fq  for each case, which in turn 
gives sixteen solutions from all four cases. In 

practice, only one of the solutions of θ fq  is 
accountable for the angle AH1

. In order to 

obtain this particular solution, use all sixteen 
solutions in equation (5) to find the 
corresponding x and y coordinates for the 
boundary points based on equation (6). 
Consequently, find an angle for this boundary 

point for each solution of θ fq  deeming all four 

quadrants. Assume P X YH
fq fq fq
0
( , )  is a 

boundary point having an angle AH
fq

0
 for a 

specific value of θ fq . Now, finding this 

particular value of θ fq , which applies to AH1
 

requires finding which AH
fq

0
 is such that 

,0
01

≈− HH AA  that is, AH
fq

0
 is equal or close 

to AH1
. As a result, P X YH

fq fq fq
0
( , )  would be a 

boundary point of a full quel for angle AH1
 (see, 

Figures 2a and 2c). In a manner similar to the 

case for the full quel, the angle θ fq  may be 
solved for, which is responsible for an angle 

AH1
 and boundary point P X YH

fq fq fq
0
( , )  of a 

half quel for angle AH1
 found (see, Figures 2b 

and 2d) for the particular solution of θ fq . 
 
Outline of the New Tests 

An outline of the new test procedure is 
as follows: 
 
1. Estimate the parameter vector θ  for the 

given data set, )ˆ,ˆ(ˆ ′′′= ηβθ . Assume 
1HP  

is the sample point for ′= )ˆˆ(ˆ
2,1 βββ  and 

compute 21
ˆˆ

1
ββ +=HD  and 

)ˆˆarctan( 211
ββ +=HA . 

 
2. Utilizing the estimate of η  in step 1 and the 

null values of β , construct ( )′′′= ηβθ ˆ,ˆ
00 . 

Generate a sample of size n under the null 
from the density function ),|( θtt xyf  by 

setting 0θ̂θ =  and estimate ( )′= 21 , βββ  

for this sample. Repeat this process N times 
and let ,,,2,1),,( Nivu ii =  be the 

estimates of ( )′= 21 , βββ  for the ith sample 
under the null. 

 
3. Based on the values ( , ),i iu v  1, 2, , ,i N= 

in step 2, obtain the contour points of the 
100(1 - α )% confidence limit of the quel  
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Figure 2: Point A on 95% Confidence Contour of a Full or Half Quel for a Fixed Angle 
1HA  

Obtained from a Point B when N = 200, where the Points A and B Are the Points 
9HP  and 

1HP  as Defined so that 
9HD  = AO and 

1HD  = BO.* 
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 a Full Quel for a Fixed Angle
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 (b) A Point on 95% Confidence Limit of 
 a Half Quel for a Fixed Angle

A
B

O

 

 

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-0
.5

0.
0

0.
5

1.
0

(d) A Point on 95% Confidence Lim
 a Half Quel for a Fixed Angle

AB O

 
*The underlying distribution was the two-regressor binary logit model of size n = 30 using 
design matrix 3X  [(a), (b)] and the three-regressor binary logit model of size n = 30 using 

design matrix 2X  [(c), (d)]. 0H  is not rejected for [(a), (b)] and is rejected for [(c), (d)]. 
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(half or full) by considering fqfq
percentile αξξ −= 1  

or hqhq
percentile αξξ −= 1  for a full or half quel, 

respectively. 
 
4. Corresponding to the angle AH1

 in step 1, 

obtain a point ),(
1

YXPH  on the contour of 

the 100(1 -α )% confidence limit of the quel 
(full or half) following subsection 3.2 and 

compute 22

0
YXDH += . Reject 0H  if 

01 HH DD > . 

 
Examples 

Consider the problems of testing two 
linear restrictions associated with the two-
regressor binary logit and the three-regressor 
binary logit models. 

A binary logit model associated with 

two regressors ( )′= ttt xxx 21 ,  and errors tς  is 

given by 
 

[ ]

Pr( 1) ( )

1
, 1, 2, ,

1 exp( )

t t

t

y x

t n
x

ν θ

θ

′= =

= =
′+ −


 (18) 

where 



 >+′

=
otherwise,0

0xif1 t t
ty

ξθ
 

 
βθ =  and tξ  is a standard logistic distribution 

with [ ])exp(1)( uu −+=ν  being the standard 

logistic distribution function. Let θ̂  be the ML 

estimate of θ . The covariance matrix of βθ ˆˆ =  
for this model is given by 

[ ] 1
)1()ˆ()ˆ(

− ′−==
t tttt xxVV ννβθ , where 

)ˆ(ˆ θνν tt x′= . Thus, the Wald test statistic is 

similar to (2) with )ˆ(θV  and 2IR = . The LR 
test statistic for this model is given by (3), where 
ˆ ˆ,θ β=

 0 0θ̂ β=  and  

 

 −−+=
t tttt yyl )]1ln()1(ˆln[)( ννθ  

with 
)( θνν tt x′= . 

 
Also, consider the three regressors 

binary logit model having the same form as (18) 

but with ( )′= tttt xxxx 321 ,,  and ( )′′= ηβθ , . 

Here η  is a scalar nuisance parameter. Let 

( )′′= ηβθ ˆ,ˆˆ  be the ML estimate of θ  under the 
alternative hypothesis. In this three-regressor 
binary logit model, the Wald test statistic is 

defined in (2) with the covariance matrix of θ̂  
as, 

[ ] 1
)1()ˆ()ˆ(

− ′−==
t tttt xxVV ννβθ ,  

where )ˆ(ˆ θνν tt x′=  and ( )0:2IR = . The LR 

test statistic of this model is given by (3), where 

( )′′= ηβθ ˆ,ˆ
00  is the ML estimate of θ  under the 

null hypothesis. 
In these two linear restrictions testing 

problems, all the test statistics defined follow the 
asymptotic Chi-squared distribution with two 
degrees of freedom under the null and standard 
regularity conditions. 
 
Simulation Study 

The object of the simulation study is to 
investigate the small-sample properties of the 
Wald, LR, and quel (full or half) tests for 
hypothesis testing problems involving two linear 
restrictions in both models discussed in terms of 
size and power. For testing two linear 

restrictions, ( )′= 0,00β  was used so that the 

null hypothesis is 0: 210 == ββH  and the 

alternative hypothesis is :1H  at least one of 1β  

or 02 ≠β . In this case, four design matrices for 

tx  were used as follows: 1X : Two independent 

series of independent N(0, 1) random drawings   
( tx1  and tx2 ), 2X : Three independent series of 

independent N(0, 1) random drawings ( tt xx 21 ,  

and tx3 ), 3X : Quarterly Australian private 

capital movements ($'000 million) ( tx1 ) and 

government capital movements ($'00 million)     
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( tx2 ) beginning the first quarter of 1968, and 

4X : Quarterly Australian private capital 

movements ($'000 million) ( tx1 ), the same 

capital movements lagged one quarter ( tx2 ) and 

government capital movements ($'00 million)     
( tx3 ) beginning the first quarter of 1968. All 

tests were performed at the 5% nominal level 
using the sample sizes, n = 30 and 80. In the 
three-regressor binary logit model, value of the 
nuisance parameter was set at η  = 0.1. Each 
experiment was based on 1,000 replications. 
Empirical sizes and powers of the Wald and LR 
tests were estimated using asymptotic critical 
values. The empirical sizes and powers of the 
quel (full and half) test were also computed for 
both models. In each replication of the 
experiment, N = 200 samples were drawn from 
the data generating process under the null 
hypothesis to find the contour points of the 
percentile confidence limit of a quel (full or 
half). 

Empirical sizes and powers of the Wald, 
LR and quel (full or half) tests are reported in 
Tables 1-4 for the selected small-sample and 
experiments noted above. In the analysis of size, 
the rejection probabilities of the tests under the 
null, which are outside the range [0.0322, 
0.0678], were significantly different from 5% at 
the 0.01 level for 1,000 replications. Based on 
these rejection probabilities, Tables 1 and 2 
show that estimated sizes for the Wald and LR 
tests are significantly different from 5% at the 
0.01 level in both models for sample size n = 30 
and Table 3 shows that estimated sizes for the 
Wald test were significantly different from 5% 
at the 0.01 level in the two-regressor binary logit 
model for sample size n = 80. Of these tests, the 
LR test in general shows extreme liberal 
behavior, whereas the Wald test shows extreme 
conservative behavior in most data situations. 
Both proposed tests reported in Tables 1-4 
perform extremely well and hold nominal level 
reasonably well in all instances. However, the 
performance of the full quel test is uniformly 
best in that it holds nominal level well in all data 
distribution situations with no apparent anti-
conservative behavior. 

Empirical powers of all tests were 
computed for the parameter space around the 
null that divided into five different regions based 
on the signs of the parameter values. In both 
models, the powers of the Wald test are non-
monotonic at non-local alternatives in most of 
the regions (see, for example, regions 1 and 5 in 
Table 1). The Wald power function becomes 
almost flat at zero, for example, region 5 in 
Table 2. In the most serious case of region 4 in 
Table 2, the power for the Wald test is below 
26% whereas at the same point in the parameter 
space, our proposed tests attain a power of 
100%. The LR test, as well as the proposed new 
tests, has monotonic power functions in all the 
five regions of the parameter space in all cases 
for both of the models considered here. In some 
regions, the LR test perform better than all other 
tests, for example, region 2 in Table 2. However, 
power estimates of the LR test are erroneous 
because this test is liberal. The proposed quel 
tests show excellent power properties in most 
data situations. Of these new tests, power of the 
full quel test is better than that of the half quel 
test in all five regions except for a few points of 
some regions in the parameter space. Moreover, 
the full quel test has more balanced power 
compared to that of the half quel test at the same 
local alternatives in most of the regions. 

Overall, the full quel test has 
consistently higher power and holds its level 
quite well. In some situations, the half quel test 
showed good power property and well 
controlled level. Among the LR, half quel and 
full quel tests, the full quel test can be 
recommended for testing two linear restrictions 
in these nonlinear models. 
 

Conclusion 
 
The Wald test requires an analytical form of the 
variance-covariance matrix of the ML estimators 
of the parameters, and it shows extreme 
conservative and non-monotonic power behavior 
caused by inaccuracy of the estimated 
covariance matrix of the estimator. In this article 
an alternative Wald type test was proposed to 
resolve this problem of small-sample local 
biasedness and non-monotonic power behavior 
of the Wald test for two linear restrictions. The 
proposed new tests have desirable size with 
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Table 1: Estimates of Size and Power for the Wald, LR, Full Quel, and Half QuelTests 
at the α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-

Regressor Binary Logit Model Using Design Matrix 1X when n = 30. 

   Asymptotic Tests New tests 

Region 1β  2β  Wald LR Full Quel Half Quel 

0.00 0.000 0.015* 0.058 0.048 0.046 

1 

-0.30 0.000 0.068 0.114 0.135 0.131 
-0.60 0.000 0.221 0.313 0.354 0.356 
-0.90 0.000 0.504 0.633 0.690 0.688 
-1.50 0.000 0.875 0.949 0.965 0.965 
-2.00 0.000 0.890 1.000 0.994 0.994 
-3.50 0.000 0.467 1.000 1.000 1.000 

2 

0.30 0.000 0.067 0.146 0.154 0.149 
0.60 0.000 0.232 0.401 0.410 0.405 
0.90 0.000 0.504 0.691 0.704 0.697 
1.50 0.000 0.877 0.960 0.965 0.963 
2.00 0.000 0.859 0.994 0.998 0.998 
3.50 0.000 0.462 1.000 1.000 1.000 

3 

-0.30 -0.300 0.087 0.200 0.193 0.183 
-0.50 -0.500 0.231 0.405 0.415 0.416 
-0.90 -0.900 0.692 0.863 0.870 0.869 
-1.40 -1.400 0.802 0.986 0.990 0.991 
-1.90 -1.900 0.580 0.999 1.000 1.000 
-3.35 -3.350 0.118 1.000 1.000 1.000 

4 

0.30 0.300 0.097 0.202 0.209 0.204 
0.50 0.500 0.253 0.418 0.439 0.435 
0.90 0.900 0.659 0.847 0.863 0.859 
1.40 1.400 0.788 0.991 0.996 0.995 
1.90 1.900 0.561 0.999 1.000 1.000 
3.35 3.350 0.117 1.000 1.000 1.000 

5 

-0.30 0.300 0.097 0.176 0.183 0.178 
-0.50 0.500 0.268 0.418 0.425 0.425 
-0.95 0.950 0.779 0.915 0.924 0.917 
-1.55 1.550 0.815 1.000 0.998 0.998 
-2.25 2.250 0.535 1.000 1.000 1.000 
-3.35 3.350 0.230 1.000 1.000 1.000 

Note: * Size is significantly different from 5% at the 1% level. 
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Table 2: Estimates of Size and Power for the Wald, LR, Full Quel, and Half Quel Tests at 
the α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-Regressor 

Binary Logit Model Using Design Matrix 4X when n = 30. 

   Asymptotic tests New tests 

Region 
1β  2β  Wald LR Full Quel Half Quel 

0.00 0.00 0.019* 0.076* 0.053 0.044 

1 

-0.40 0.00 0.022 0.088 0.092 0.089 
-0.75 0.00 0.030 0.116 0.134 0.121 
-0.95 0.00 0.039 0.131 0.156 0.141 
-1.25 0.00 0.060 0.182 0.197 0.185 
-1.90 0.00 0.160 0.311 0.349 0.328 
-3.25 0.00 0.522 0.709 0.769 0.759 

2 

0.15 0.00 0.023 0.077 0.075 0.066 
0.55 0.00 0.037 0.109 0.097 0.082 
0.90 0.00 0.063 0.150 0.127 0.116 
1.55 0.00 0.125 0.253 0.237 0.229 
2.25 0.00 0.289 0.455 0.416 0.409 
3.10 0.00 0.502 0.689 0.667 0.645 

3 

-0.10 -0.10 0.017 0.077 0.060 0.051 
-0.35 -0.35 0.026 0.098 0.081 0.077 
-0.75 -0.75 0.085 0.201 0.170 0.153 
-1.15 -1.15 0.215 0.384 0.305 0.295 
-1.45 -1.45 0.355 0.538 0.460 0.442 
-2.25 -2.25 0.756 0.876 0.771 0.791 

4 

0.10 0.10 0.022 0.079 0.094 0.095 
0.35 0.35 0.046 0.114 0.774 0.775 
0.75 0.75 0.107 0.215 0.998 0.999 
1.15 1.15 0.259 0.415 1.000 1.000 
1.45 1.45 0.393 0.570 1.000 1.000 
2.25 2.25 0.751 0.881 1.000 1.000 

5 

-0.10 0.10 0.019 0.077 0.087 0.078 
-0.35 0.35 0.021 0.085 0.092 0.095 
-0.75 0.75 0.019 0.099 0.113 0.106 
-1.15 1.15 0.022 0.122 0.143 0.134 
-1.45 2.45 0.029 0.147 0.184 0.165 
-2.25 2.25 0.040 0.247 0.296 0.265 

Note: * Size is significantly different from 5% at the 1% level. 
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Table 3: Estimates of Size and Power for the Wald, LR, Full Quel, and Half Quel Tests at 
the α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-Regressor 

Binary Logit Model Using Design Matrix 3X when n = 80. 

   Asymptotic tests New tests 

Region 1β  2β  Wald LR Full Quel Half Quel 

0.00 0.00 0.015* 0.061 0.058 0.061 

1 

-0.40 0.00 0.427 0.573 0.600 0.590 
-0.75 0.00 0.905 0.983 0.976 0.975 
-0.95 0.00 0.983 0.997 0.999 0.999 
-1.25 0.00 1.000 1.000 1.000 1.000 
-1.90 0.00 1.000 1.000 1.000 1.000 
-3.25 0.00 1.000 1.000 1.000 1.000 

2 

0.15 0.00 0.060 0.144 0.154 0.142 
0.55 0.00 0.732 0.814 0.820 0.821 
0.90 0.00 0.986 0.995 0.997 0.996 
1.55 0.00 1.000 1.000 1.000 1.000 
2.25 0.00 1.000 1.000 1.000 1.000 
3.10 0.00 1.000 1.000 1.000 1.000 

3 

-0.10 -0.10 0.395 0.710 0.779 0.768 
-0.35 -0.35 0.998 1.000 1.000 1.000 
-0.75 -0.75 1.000 1.000 1.000 1.000 
-1.15 -1.15 1.000 1.000 1.000 1.000 
-1.45 -1.45 1.000 1.000 1.000 1.000 
-2.25 -2.25 1.000 1.000 1.000 1.000 

4 

0.10 0.10 0.369 0.691 0.694 0.694 
0.35 0.35 1.000 1.000 1.000 1.000 
0.75 0.75 1.000 1.000 1.000 1.000 
1.15 1.15 1.000 1.000 1.000 1.000 
1.45 1.45 1.000 1.000 1.000 1.000 
2.25 2.25 1.000 1.000 1.000 1.000 

5 

-0.10 0.10 0.200 0.454 0.492 0.492 
-0.35 0.35 0.985 1.000 0.999 0.999 
-0.75 0.75 1.000 1.000 1.000 1.000 
-1.15 1.15 1.000 1.000 1.000 1.000 
-1.45 2.45 1.000 1.000 1.000 1.000 
-2.25 2.25 1.000 1.000 1.000 1.000 

Note: * Size is significantly different from 5% at the 1% level. 
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Table 4: Estimates of Size and Power for the Wald, LR, Full Quel, and Half QuelTests at the 
α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-Regressor Binary 

Logit Model Using Design Matrix 2X when n = 80. 

   Asymptotic Tests New tests 

Region 1β  2β  Wald LR Full Quel Half Quel 

0 0 0.035 0.058 0.050 0.051 

1 

-0.30 0.00 0.192 0.244 0.275 0.271 
-0.60 0.00 0.668 0.732 0.754 0.749 
-0.90 0.00 0.948 0.968 0.973 0.973 
-1.50 0.00 0.999 1.000 1.000 1.000 
-2.00 0.00 1.000 1.000 1.000 1.000 
-3.50 0.00 1.000 1.000 1.000 1.000 

2 

0.30 0.00 0.215 0.258 0.263 0.257 
0.60 0.00 0.664 0.735 0.764 0.745 
0.90 0.00 0.936 0.956 0.968 0.960 
1.50 0.00 1.000 1.000 1.000 0.999 
2.00 0.00 1.000 1.000 1.000 1.000 
3.50 0.00 1.000 1.000 1.000 1.000 

3 

-0.30 0.30 0.358 0.437 0.460 0.453 
-0.50 -0.50 0.833 0.875 0.875 0.873 
-0.90 -0.90 1.000 1.000 1.000 1.000 
-1.40 -1.40 1.000 1.000 1.000 1.000 
-1.90 -1.90 1.000 1.000 1.000 1.000 
-3.35 -3.35 0.991 1.000 1.000 1.000 

4 

0.30 0.30 0.424 0.460 0.468 0.464 
0.50 0.50 0.842 0.842 0.859 0.865 
0.90 0.90 0.999 0.999 1.000 1.000 
1.40 1.40 1.000 1.000 1.000 1.000 
1.90 1.90 1.000 1.000 1.000 1.000 
3.35 3.35 0.988 1.000 1.000 1.000 

5 

-0.30 0.30 0.284 0.332 0.345 0.343 
-0.50 0.50 0.675 0.733 0.756 0.747 
-0.95 0.95 0.992 0.997 0.992 0.995 
-1.55 1.55 1.000 1.000 1.000 1.000 
-2.25 2.25 0.999 1.000 1.000 1.000 
-3.35 3.35 0.995 1.000 1.000 1.000 
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good power properties, which are developed 
defining the critical region based on constructing 
a quel (full or half) utilizing the bootstrap that 
are known as full and half quel tests. These new 
test procedures do not suffer from the non-
monotonic power and local biasedness behavior 
of the Wald test. More importantly, the full quel 
test performs uniformly best in that it holds 
nominal level quite well and shows comparable 
power in most instances. In addition, this full 
quel test can occasionally surpass the LR and 
half quel test in terms of power over most of the 
regions of the parameter space. Furthermore, in 
contrast to the Wald test, this new test does not 
require an analytical form of the variance-
covariance matrix of the ML estimators of the 
parameters. This adds to its practical advantage 
when this matrix causes the non-monotonic 
power of the Wald test or is difficult to obtain. 
In light of this, the full quel test is best applied 
with the use of the quel critical region via 
bootstrap. 
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Appendix: Options for a Quel 
 
The confidence contour points for full or half 
quel are computed by considering the following 
two options of the percentile of the standardized 

errors fq
percentileξ  and the estimators 1γ  and 2γ . 

 
Option I - Full quell: 

Constant ratio: In this case, the 

percentile of the standardized errors fq
percentileξ  

and the two additional estimators fq
1γ  and fq

2γ  
are taken into account to construct the full quel, 

respectively, the same as q
percentileξ , 1γ  and 2γ  

discussed in subsection 3.2, that is, fq
percentileξ  = 

q
percentileξ  and fq

lγ  = lγ  for l= 1, 2. 

 
Option II: Half quel 

Constant difference in the direction of 
the angle of the parametric equations: In this 
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option to find those values for the construction 
of the half quel, first compute the standardized 

errors as q
i
*ξ  based on equation (4) in 

subsection 3.2 with 1γ  and 2γ  replaced by a
1γ  

and a
2γ . Then define q

median
q

percentile
** ξξϑ =  and 

ϑϑγγ 2/)12( +−= l
a
l  for l = 1, 2, where 

q
percentile
*ξ  and q

median
*ξ  are the percentile and 

median of the errors q
i
*ξ . In this case, q

percentile
*ξ  

and a
lγ  are functions of each other. Thus, the 

solution of a
lγ  for l = 1, 2 can be simply found 

by the following iterative procedure: 
• Start with the initial value of ϑ , 0ϑ . 

• Using this initial value 0ϑ , compute a
lγ  

using the above formula for l = 1, 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Based on the above values of a
lγ , compute 

the standardized errors q
i
*ξ  from equation 

(4) in subsection 3.2. 
• Compute the percentile and median of the 

errors q
i
*ξ  and compute ϑ  from the above 

equation. 
• Stop if the convergence condition holds, that 

is, |ϑ - 0ϑ | < 0.01, ϑ  and 0ϑ  are the current 

and previous iteration's values, respectively. 

Store the final solution of a
lγ  as hq

lγ  for l = 

1, 2 and compute the percentile of the 
standardized errors obtained from equation 

(4) with these values, hq
lγ  for l = 1, 2, as 

hq
percentileξ  for the construction of a half quel. 
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