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On The Expected Values of Distribution of the Sample Range of Order Statistics 
from the Geometric Distribution 
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Firat University, Turkey Inonu University, Turkey Firat University, Turkey 
 

 
The expected values of the distribution of the sample range of order statistics from the geometric 
distribution are presented. For n  up to 10, algebraic expressions for the expected values are obtained. 
Using the algebraic expressions, expected values based on the p and n  values can be easily computed. 
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Introduction 
 
Let nXXX ,,, 21   be a random sample of size 

n from a discrete distribution with a probability 
mass function ( pmf ) ( )xf  ( ),2,1,0=x  and 

a cumulative distribution function ( )xF . Let 

nnnn XXX ::2:1 ≤≤≤   be the order statistics 

obtained from the above random sample by 
arranging the observations in increasing order of 
magnitude. When spacing is denoted as 

ninjnji XXW :::, −= , and 1=i  and nj = , that 

is, in the case of the sample range nW , then 

nnnn XXW :1: −= . Denote the expected values 

of distribution of the sample range ( )nWE  by 
( )k
Wn

μ  ( )2≥n . For convenience, denote ( )1

nWμ  

simply by
nWμ . 

Order statistics from the geometric 
distribution have been studied by many authors, 
for example, see Abdel-Aty (1954) and 
Morgolin and Winokur (1967).   In  particular, 
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characterizations of the geometric distribution 
using order statistics have received great 
attention; for example, see Uppuliri (1964), 
Ferguson (1965, 1967), Crawford (1966), 
Srivastava (1974), Galambos (1975), El-Neweihi 
and Govindarajulu (1979), and Govindarajulu 
(1980). Expressions for the first two single 
moments of order statistics have been obtained 
by Morgolin and Winokur (1967). 

The calculation of the exact sampling 
distribution of ranges from a discrete population 
was obtained by Burr (1955). The distribution of 
the sample range from a discrete order statistics 
were given by Arnold, et al. (1992). Additional 
details on discrete order statistics can be found 
in the works of Khatri (1962), David (1981), 
Nagaraja (1992), and Balakrishnan and Rao 
(1998). In this study, for n  up to 10, algebraic 
expressions for the expected values of the 
distribution of the sample range of order 
statistics from the geometric distribution are 
obtained. 
 

Methodology 
 
Marginal Distribution of Order Statistics 

If ( ) ( )nrxF nr ,,2,1: =  denotes the 

cumulative distribution function ( cdf ) of nrX : , 

then the following results: 
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for - ∞<<∞ x . 

For a discrete population, the probability 
mass function ( pmf ) of nrX :  may be obtained 

from (1) by differencing as 
 

 

 
(Arnold, et al., 1992; Balakrishnan, 1986). 
 
Order Statistics from the Geometric Distribution 

To explore the properties of the 
geometric distribution order statistics, begin by 
stating that X  is a Geometric ( p ) random 

variable. Note that it’s pmf  is given by

( ) 1−= xpqxf , and it’s cdf  is ( ) xqxF −= 1 , 

for ,...,2,1=x . Consequently the cdf  of the r
th order statistic is given by 
 

,...,2,1=x . 

 
Joint Distribution of Order Statistics 

The joint distribution of order statistics 
can be similarly derived. For example, the joint 
cumulative distribution function of niX :  and 

njX :  ( nji ≤≤≤1 ) can be shown to be 

 

 for  

 

For ji xx < , 

 

 

 
(2)

 

 
This expression holds for any arbitrary 
population whether continuous or discrete. 

For discrete populations, the joint 
probability mass function of niX : and njX :  

 may be obtained from (2) by 
differencing as: 
 
 

 

 
Theorem 1. For niii k ≤≤≤≤≤ 211 , the 

joint pmf  of ninini k
XXX ::: ,,,

21
  is given by 

 

 
where 0i = 0, 0u = 0, 

 

 

 
and D  is k-dimensional space given by 
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(Nagaraja, 1986; Arnold, et al., 1992; 
Balakrishnan & Rao, 1988). Khatri (1962) 
presented this result for  but only proved 

it for 2≤k  for the case of no ties. 
 
Distribution of the Sample Range 

Starting with the pmf  of the spacing

ninjnji XXW :::, −= , and using Theorem 1, 

results in 
 

(3) 
 
Substantial simplification of the expression in 
(3) is possible when 1=i  and nj = , that is, in 

the case of the sample range nW , this results in: 

 

 

 
Thus, the pmf  of nW  is given by 

 

(4) 
 
and, for 0>w , from Arnold, et al., 1992, 
 

(5) 
 

Expressions (4) and (5) can also be 
obtained without using the integral expression 
from Theorem 1, and a multinomial argument 
can also be used to obtain an alternative 
expression for the pmf of nW . 

 
Expected Values of the Sample Range 

The  moments of nW  can be written 

as 

   (6) 

 
where )( wWP n =  is as given in (5). 

When X  is a geometric ( p ) random 
variable, as in the case of the expected values of 
the sample range, (6) yields 
 

         (7) 

 
where )( wWP n =  is as given in (7). 

 
Distribution of the Sample Range from the 
Geometric Distribution 

The distribution of higher order statistics 
is not as simple for the geometric distribution. 
For the sample range nW , from (2), 
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and from (3) the following is obtained: 
 

(7) 
for . 
 
In particular, 
 

 

 
for , thus 
 

 

for . 
 
Using the above pmf , the moments of nW  can 

be determined. For example, when 2=n , 
using the pmf  in (7), the following results: 

 

 
For n  up to 10, algebraic expressions for the 
expected values of the distribution of the sample 
range of order statistics from the geometric 
distribution are obtained; these are shown in 
Table 1. 
 

Conclusion 
 
Algebraic expressions are presented for n  up to 
10 for the expected values of distribution of the 
sample range of order statistics from the 
geometric distribution. Using the obtained 
algebraic expressions, these expected values can 
be computed. As it is shown in Table 1, different 
values can be obtained for q and n . For 
example, for q=0.50, using the value n =2 in 

Table 1, 
2Wμ ≈ 0,011765 is obtained. Further 

studies may focus on a software program for 
estimating the expected values found in this 
study. 
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Table 1: The expected values of distribution of the sample range of order statistics 
from the geometric distribution 
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