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A time-modulated frailty model is proposed for analyzing multivariate failure data. The effect of frailties, 
which may not be constant over time, is discussed. We assume a parametric model for the baseline hazard, but 
avoid the parametric assumption for the frailty distribution. The well-known connection between survival 
times and Poisson regression model is used. The parameters of interest are estimated by generalized 
estimating equations (GEE) or by penalized GEE. Simulation studies show that the procedure is successful to 
detect the effect of time-modulated frailty. The method is also applied to a placebo controlled randomized 
clinical trial of gamma interferon, a study of chronic granulomatous disease (CGD). 
 
Key words: Frailty models; multivariate failure data; generalized linear models. 
 
 

Introduction 
 
In the analysis of failure time data, one of the 
common assumptions made is that the life 
histories for subjects under study are statistically 
independent (at least conditionally on the observed 
fixed-time covariates). This assumption may be 
violated when individuals within some subgroup 
(e.g. siblings or parents in the same family, litter 
mates in animal study) share common unmeasured 
factors. Frailty models have been widely used for 
correlated survival data after Vaupel et. al. (1979) 
introduced the concept of frailty for making 
adjustments for the over-dispersion 
(heterogeneity) in their mortality study. 
 A frailty is an unobserved random effect 
shared by subjects within a subgroup. These 
include shared frailty (Hougaard, 1986a), bivariate 
frailty (Xue, 1998) as well as correlated frailty 
(Yashin, et. al. 1995), but few of them deal with 
time-dependent frailty (Self, 1995; Yau and 
McGilchrist, 1998). Most papers in the literature 
assume  that  individuals  in  the  same  cluster  are 
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born at a certain level of relative frailty and stay at 
this level through out life. As mentioned by 
Vaupel et. al. (1979), this may not be true in 
reality, for example, in human population 
mortality study, the frailty of an individual is large 
during an early period of life, after which it 
stabilizes, followed by an increasing frailty due to 
the natural aging process. For univariate frailty 
model, there are several limitations, for example, 
the model only allows positive correlations within 
the cluster, and the unobserved factor (frailty) is 
the same within the cluster (Xue, 1998). 

Typically we assume that the frailty acts 
multiplicatively on each individual's hazard rate. 
We propose a time-modulated frailty model to 
analyze multivariate failure time data. The 
proposed model is more general than other frailty 
models, having as special members regular frailty 
models, such as shared frailty and bivariate frailty 
models if we ignore the time-modulated 
component in the model. Using the well-known 
connection to Poisson regression (Aitkin and 
Clayton, 1980), the derived model is a generalized 
linear mixed model (glmm). We adopt a robust 
approach for estimating some parameters using the 
generalized estimating equations (GEE) in this 
Poisson regression setting. For other parameters, 
the estimating procedures are equivalent to a 
generalized penalized estimating equations 
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(GPEE). Under this approach, we do not specify 
the exact distribution of frailty and in this sense, 
our approach is robust. 
 
Model construction 

Self (1995) introduced a time-dependent 
frailty model  

 
)),(exp()()()()( 0 txtttYt iiii βλςλ ′=  

 
where Yi(t) and xi(t) are predictable scalar and p-
vector value processes, respectively, )(tiς  is a 
stationary stochastic process with positive, 
continuous sample paths, ),...,,( 21 pββββ = and 

)(0 tλ  are unknown parameters. Instead of putting 
a stochastic process )(tiς , a time-dependent frailty 
process, in the hazard function, we introduce an 
“interaction" term between the frailty and time as 
a time-modulated frailty. In the following sections, 
we will give the model formulation in two 
different settings. 
 
Single-level of clustering 
 The most common situation in the 
multivariate survival data is the time to the 
recurrence of some chronic disease for a patient, 
for example, breast cancer, or survival of litters of 
rats, survival of twins, etc. All these can be 
thought to consist of single-level clustering of 
data. The survival times in each cluster (patient, 
litter, twins) are correlated and the survival times 
between the clusters are assumed independent. Let 
the triple (Tik, δik, xik) represent the data, where i is 
the cluster index (i = 1, …, n) consisting of 
correlated survival times Tik (k = 1, … , ni). Thus, 
the kth individual in the ith group is modeled as 
  
           ),exp()()()( 0 ikiik xttwt βλλ ′=  
 
where ii ttw ξθ=)( and θ is unknown parameter. 
Here ξi are realizations of a nonnegative random 
variable with density function g (ξ).  

Assume E (ξi)= 1 (see Nielsen et. al., 
1992) and 2)var( σξ =i for the distribution of the 
frailty ξi. When θ = 0, the model is a shared frailty 
model, ).exp()(0 iki xt βλξ ′  The above model can 
also be easily generalized to the correlated 

individual frailty model studied by Yashin et. al. 
(1995) by specifying iii ttw ηξ θ+=)( and letting 
ni = 2 and θ = 0. 
 
Multiple-levels of clustering 

In some studies it may be reasonable to 
expect more than one level of within-cluster 
association. For example, the association between 
a parent and child versus that two siblings in 
studies of familial disease aggregation, or the 
durations inside and outside of hospitals for a 
patient who is admitted into a hospital several 
times for the same disease (Xue, 1998). The 
single-level clustering model can be extended to 
allow for grouping defined by multiple nested 
factors. 

Again, suppose the data consists of the 
usual triple (Tijk, δijk, xijk), using i to index the 
clusters (litters, families) (i = 1, 2, …, n). Each 
cluster contains two distinguishable subgroups (j = 
1, 2). Within each cluster, individuals have 
correlated survival times Tijk for k = 1, …, nij. 
When nij = 1, then (Ti11, Ti21) is bivariate survival 
time, for example, as used in the adult Danish 
twins study (Hougaard et. al., 1992). We will 
assume the frailty acts multiplicatively on the 
individual's hazard with following form 

 
            ),exp()()()( 0 ijkijijk xttwt βλλ ′=  
 
where ijij ttw ηθ=)( and ηi1, ηi2 are the realizations 
of two correlated random variables with 
nonnegative values (with joint density function h 
(u, v)). The ηij is the frailty for the ith cluster and 
jth subgroup. The frailties can be characterized by 
a parametric bivariate distribution, for example,  
 
           ).,,;0,0(~))log(),(log( 12

2
2

2
121 σσσηη N  

 
We also assume E (ηij) = 1, i = 1, …, n, j = 1,2, 

2)var( jij ση = and .),cov( 2121 ρσσηη =  If θ = 
0, then it is a case studied by Xue (1998); if θ > 0 
or θ < 0, then we can see that the effect of frailty 
increases or decreases as time increases. 

As we can see from the model 
construction in both single-level and multiple-
level of clustering cases, given the frailty, its effect 
on the hazard changes over time.  
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For the exponential model, the baseline 
cumulative hazard is ,)(0 tt =Λ and the hazard 

function becomes ).exp()|( ijkijijijk xtwt βηλ θ ′=  

For the Weibull model, ,)(0
νtt =Λ  and the 

hazard function is 
 
    ).exp()|( 1

ijkijijijk xttwt βνηλ νθ ′= −  
 
We assume that observations between different 
clusters are independent and given the frailty wij 
(namely ηi1 and ηi2), the observations in each 
cluster are conditionally independent. It can be 
shown that, approximately,  
 

 ),(~),(| 21 ijkiiijk Poisson µηηδ  
 
where 
 

  .)()()( 00
duuuwet

t

ij
x

ijk
ijk λµ β ∫
′=  

 
The details are given in Appendix 1. 
 
Robust estimation procedures 

As described in Appendix 1, we can treat 
the censoring variable as a correlated Poison 
random variable with degree of over-dispersion 
depending on its mean. Since the full likelihood 
method is not feasible without numerical 
integration, and because of the intractability of the 
marginal likelihood function, we may apply the 
generalized estimating equations (GEE) approach 
(Liang and Zeger, 1986), which only requires the 
specification of the first two moments of the 
responses for each individual. 

As mentioned by Hougaard (1984), the 
choice of the frailty distribution is crucial since the 
results for the survival population will be rather 
different with different frailties. In the following 
section, we will examine this robust approach, 
which only requires up to second-order of 
moments of the frailty distribution. It is robust in 
the sense that the full likelihood is not required 
and a fully parametric assumption for the frailty is 
avoided. The following procedures are for the 
single-level of clustering case, but they can be 
easily generalized to the multiple-level clustering 
case. 

Exponential case 
Estimation of coefficients 

We assume that the baseline hazard is 
from exponential distribution. Given the frailty ξi 
as mentioned before, ),~(~| iikiik Poisson ξµξδ  

where .
1

~
1

+
=

+
′

θ
µ

θ
β ikx

ik
t

e ik  It is easy to get 

following quantities from the formulae for the 
multiple-level of clustering case (see Appendix 1). 
 

1
~)(

1

+
==

+
′

θ
µδ

θ
β ikx

ikik
t

eE ik , 

 
 22~~)~var()~()var( σµµξµξµδ ikikiikiikik E +=+=  
 
and the unconditional covariance 
 

ik il ik i il i
2

ik il

cov( , ) cov( , )
,k l,

δ δ = µ ξ µ ξ

= µ µ σ ≠
 

.,0)~,~cov(),cov( iiiiliikliik ′≠== ′′ ξµξµδδ  
 
In order to get the estimates of the regression 
parameters, we apply the quasi-likelihood score 
equations in spirit of GEE, i.e. 
 

 ,0)~()()
~

(),( 1

1
=−′

∂
∂

= −

=
∑ iii

n

i

i YYVarU µ
β
µ

θββ     

                                            (1) 

where ),...,( 1 iiniiY δδ=′ and ).~,...,~(~
1 iinii µµµ =′  

Note that ),;()( θβii YVarYVar = , which depends 
on β and θ in the above equations. Thus, we need 
the estimating procedure for θ. 
 
Estimation of time-modulated frailty parameters 

The estimate of the variance component 
2σ  is treated as nuisance parameter, which is 

estimated by a method of moments defined as 
 

i i

i i

2

2
ik ik ik ik i1 i1 i1i,n 1 k k i,n 1

2
ik ik i1i,n 1 i,n 1

ˆ
( )( ) [( ) ]ˆ ˆ ˆ ˆ

.
ˆ ˆ ˆ

′′ ′′> ≠ =

′> =

σ =

δ −µ δ −µ + δ −µ −µ

µ µ + µ
∑ ∑ ∑

∑ ∑
 
The conditional likelihood function has form: 
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0ik i ik ik

ik

ik i

i ik ik
i ik t

i 00

L ( | )
w (t ) (t )

( ) e [ ]
w (u) (u)du

δ −ξ µ δ

β ξ =

λ
ξ µ

λ∫
 

 
the second term in the above equation equals to 

.])1([ ik

ikt
δθ +

Thus, the log of the likelihood 

function can be approximated as 
 

)],log()1[log(),(
,

ik
ki

ikQ tll −++≈ ∑ θδθβ    (2) 

 
where ),( θβQl is the log of the quasi-likelihood 
function for correlated Poisson variates.  

We then introduce the penalized score 
equation for the θ, 

 

,0
1

)()~()()
~

(
,

1

1
=

+
+−′

∂
∂ ∑∑ −

= ki

ik
iii

n

i

i nYYVar
θ
δ

κµ
θ
µ

 

               (3) 
 
the equation (3) can be viewed as a regularized 
generalized estimating equation with a penalty 

term ∑ +ki

ikn
, 1

)(
θ
δ

κ , where τκ −= nn)( with 

.0>τ When the tuning parameter 1)( =nκ , the 
left hand side of equation (3) is the partial 

derivative
θ∂
∂l

. The estimators for β and θ 

can be obtained by iterating between (1) and (3). 
 
 
Weibull case 

When the baseline hazard is assumed to 
have a Weibull distribution, the model is more 
flexible by introducing an additional scale 
parameter ν. 
 
Estimation of coefficients 
As before, given the frailty,  
 
                 ),~(~| iikiik Poisson ξµξδ  

where ..~ νθβ

νθ
νµ +′

+
= ik

x
ik te ik  Similarly, we have 

 

     νθβ

νθ
νµδ +′

+
== ik

x
ikik teE ik~)( , 

 
 22~~)~var()~()var( σµµξµξµδ ikikiikiikik E +=+=  
 
and the unconditional covariance 
 

ik il ik i il i
2

ik il

cov( , ) cov( , )
,k l,

δ δ = µ ξ µ ξ

= µ µ σ ≠
 

.,0)~,~cov(),cov( iiiiliikliik ′≠== ′′ ξµξµδδ  
 
The estimate of the regression parameters can be 
obtained by the following generalized estimating 
equations, i.e. 
 

,0)~()()
~

(),,( 1

1
=−′

∂
∂

= −

=
∑ iii

n

i

i YYVarU µ
β
µ

νθββ  

                                     (4) 
 

where ),...,( 1 iiniiY δδ=′ and ).~,...,~(~
1 iinii µµµ =′  

Note that ),,;()( νθβii YVarYVar =  which 
depends on β, θ and ν in the above equations, as 
mentioned in exponential case, we have to get the 

2/1n -consistent estimates for ν and θ. 
 
Estimation of other parameters 

The estimate of the variance component 
2σ is defined the same way as the exponential 

case: 
 

i i

i i

2

2
ik ik ik ik i1 i1 i1i,n 1 k k i,n 1

2
ik ik i1i,n 1 i,n 1

ˆ
( )( ) [( ) ]ˆ ˆ ˆ ˆ

.
ˆ ˆ ˆ

′′ ′′> ≠ =

′> =

σ =

δ −µ δ −µ + δ −µ −µ

µ µ + µ
∑ ∑ ∑

∑ ∑
 

 
The conditional likelihood function in this case 
has a form 
 

0ik i ik ik

ik

ik i

i ik ik
i ik t

i 00

L ( | )
w (t ) (t )

( ) e [ ]
w (u) (u)d u

δ − ξ µ δ

β ξ =

λ
ξ µ

λ∫
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with the second term in the above equation equals 

to .])([ ik

ikt
δνθ +

 Thus, the log of the likelihood 

function can be approximated as 
 

)],log()[log(),,(
,

ik
ki

ikQ tll −++≈ ∑ νθδνθβ  

       (5) 
 
where ),,( νθβQl is the log of the quasi-
likelihood function for correlated Poisson variates.  
If we re-parameterized νθ +  as φ, then 
 

ikxik
ik ik ik2

ik ik

e [ t t log(t )]

1[log(t ) ],

′β ϕ ϕ∂µ ν ν
= − +

∂ϕ ϕϕ

= µ −
ϕ

 

and  
 

                  
ν
µ

ϕν
µ ϕ

β ikikxik t
e ik

~~
==

∂
∂ ′  

 
Thus, we introduce the penalized score equations 
for φ as we did in the exponential case, 
 

n
1i

i i i
i 1

ik

i ,k

U ( ) Var(Y ) (Y )

(n) 0,

−
ϕ

=

∂µ ′= − µ
∂ϕ

δ
+ κ =

ϕ

∑

∑
               (6)    

                 
where the tuning parameter τκ −= nn)( , 

0>τ and when 0=τ , the left hand side of 

equation (6) is .
ϕ∂
∂l

 Because ν is unidentifiable 

from the score equations, we use plug-in estimate 
for it. Notice that, if we have estimates of φ and β, 

then, from equation ..~ ϕβ

ϕ
νµ ik

x
ik te ik′=  we can 

obtain the estimate of ν by following formula, 
 

           ∑ ′=
ki ik

x
ik

teN ik
,

~1ˆ
ϕβ

ϕµ
ν  ,                                (7) 

 

which is moment estimate if we replace ikµ~ by its 
sample mean. 

 In summary, we propose following 
algorithm for the estimates of β, φ, ν and θ, 

 
1. Given initial values of φ, ν:  φ (0), ν (0), 

and fit Poisson regression by generalized 
estimating equations (4) using log link 
function with offset equals to 

)log(
)0(

)0(

)0(
ϕ

ϕ
ν

ikt , and obtain )0(β   

     and get (update) .~̂ )0(
ikµ  

        2. Update )0(ϕ  from equation (6). 
        3. Update ν by following formula: 

               ∑ ′
=

ki ik
x

ik

teN ik,
ˆ

)1()0(
)1(

)1()0(

~̂1ˆ
ϕβ

ϕµ
ν . 

        4. Go to step 1, 2, and 3 again until the 
convergence criteria is satisfied. 

 
Because θ̂  is consistent and )ˆ(var θJ is 
asymptotically unbiased (see the results in 
Appendix 2 and 3), we can use statistic 

2/1)]ˆ([var

ˆ

θ
θθ

J

−
, which is asymptotically )1,0(N for 

inference; thus, the null hypothesis 0=θ can be 
tested. If we reject the null hypothesis from the 
test, then we claim that the effect of time-
modulated frailty exists. In the following sections, 
we examine our method by simulation followed by 
analyzing CGD dataset. 
 
Simulations 

There is a difficulty with conducting 
simulations in this setting, since it's difficult to 
generate correlated survival times with time-
modulated frailties as we can see it in the 
specification of the hazard function which 
involves time-modulated frailties.  
 We generate datasets of correlated 
Weibull (without time-modulated frailty, i.e. 

0=θ ) by using positive mixing distributions 
(Hougaard, 1986a) along with the random effects 
approach. Let Tik be the survival times of 
observation k of individual (cluster) i conditional 
on an observed covariate Zi. In this setup we 
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assume that the Tik's in different clusters are 
independent.  Now assume Z to be positive stable 
with index α. The Laplace transform for Z 
is )exp())(exp( αssZE −=− .  If we now define 
another random variable Yik to be Weibully 
distributed with scale parameter )exp( ikxβ ′ and 

shape parameter a, then a
iikik ZYT /−= .  Thus the 

Tik's within a cluster are multivariate Weibull with 
Weibull margins having scale )exp( ikxβα ′  and 
shape αa. The correlation between )log( ikT and 

)log( ilT is then just 21 α−  for lk ≠ . The 
generation of positive stable variates iZ can be 
done using Splus which employs Chambers et. 
al.'s (1976) algorithm.   

Instead of choosing different values of 
index of positive stable random variable, different 
cluster size and different percentage of censoring, 
we just generate two datasets with clusters 50 and 
150. In each cluster, there are 5 observations and 
the index of positive stable random variable 

6.0~ =α , the coefficient of the linear predictor 
3~

=β  and the shape parameter of the 
Weibull ,2~ =ν thus, the marginal distribution of 
the correlated Weibull is still Weibull with shape 
parameter 2.1=ν and the scale 
parameter 8.1=β  (actually )exp( βx′ ) where x is 
from the design matrix which is 1 or 0 depending 
whether a random number from standard normal is 
nonnegative or negative. The survival times are 
censored at fixed value to achieve 10% censoring. 
The estimates of parameters interested are the 
means of 100 replicates. The tuning parameter in 
the penalized score equation is 1)( =nκ  and 

30/1)( −= nnκ which is arbitrarily picked. We 
understand that the optimal choice of the tuning 
parameter may be selected by many methods, for 
example, the cross validation approach. 

In this correlated Weibull case, as we 
know, there is no time-modulated frailty in it.  We 
still assume the time-modulated frailty model, and 
the frailty term is in the form of iikik ttw ηθ=)( , 

and 1
0 )( −= ννλ tt is the baseline hazard from the 

Weibull distribution. 
As we can see from Table 1, the parameter 

estimate of θ is not significant from 0 for two 

different values of tuning parameter which means 
we can not reject null hypothesis 0=θ  based on 
asymptotic Wald type test. Thus, there does not 
appear to be a time-modulated frailty effect in this  
dataset. The estimates of β and ν are very close to 
the true values. 
 
Table 1: Results of fitting the correlated Weibull 
by time -dependent frailty model with two values 
of )(nκ in the penalized score equation, number 
of clusters = 50 and 100 simulations. 
_____________________________________________ 
 
                 BC (no BC)   GJ Standard 
Parameter     Estimate         error       t Value     Pr > |t|| 
------------------------------------------------------------------- 

:1)( =nκ  
β                1.783 ( 1.827)    0.2718     6.560    < 0.0001 
θ                0.001 (-0.097)    0.3463     0.001       0.9998  
ν                1.208 ( 1.316)    0.4406     2.742       0.0061 
φ               1.208 ( 1.219)     0.1094   11.042    < 0.0001 
------------------------------------------------------------------- 

:)( 30/1−=nnκ  
β               1.645 ( 1.696)    0.2578      6.381    < 0.0001 
θ               0.150 ( 0.093)    0.1704      0.879        0.3793 
ν               0.936 ( 1.016)    0.2605      3.593       0.00033 
φ               1.086  (1.109)    0.1012    10.73      < 0.0001 
------------------------------------------------------------------- 
β (SN, 1993)   1.781           0.3852     4.624      < 0.0001 
_____________________________________________ 
Note: The true value of β is 1.8 and 1.2 for ν. BC 
stands for bias corrected, GJ for grouped 
jackknife, and SN for Segal and Neuhaus. 
 

The estimate of β by our procedure is 
consistent with other two approaches. From the 
variance estimates of β, there is small gain in term 
of efficiency although there is no time-modulated 
frailty effect in this case. 

The biased estimates (values in the `no 
BC' column) overestimated the parameters when 
the tuning parameter 1)( =nκ , and underestimated 
when .)( 30/1−= nnκ  The optimal tuning 
parameter τ may be a positive value that is very 
close to zero. We can do further simulation for 
large number of clusters and for different values of 
τ, as well as other parameters, such as different 
percentage of censoring, different value of index 
in the positive stable distribution. The results from 
Table 2 are more close to the true values, this is 
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because we have larger number of clusters (150 
clusters) and the estimates of β, φ and θ are 
consistent. 
Table 2: Results of fitting the correlated Weibull 
by time-dependent frailty model with two values 
of )(nκ in the penalized score equation, number 
of clusters = 150 and 100 simulations. 
________________________________________ 
 
  BC (no BC)    GJ Standard 
Parameter  Estimate         error         t Value   Pr > |t|| 
------------------------------------------------------------------ 

:1)( =nκ  
β             1.808 ( 1.822)     0.1526    11.85    < 0.0001 
θ             0.000 (-0.013)    0.1166     0.004    0.9968  
ν             1.205 ( 1.215)     0.1783     6.758    0.0001 
φ            1.205 ( 1.203)     0.0644     18.71   < 0.0001 
------------------------------------------------------------------ 

:)( 200/1−=nnκ  
β            1.779 ( 1.792)      0.1508      11.8      < 0.0001 
θ            0.034 ( 0.014)      0.1017      0.332       0.7396  
ν            1.147 ( 1.171)      0.1626     7.054    < 0.0001 
φ            1.181 ( 1.185)     0.0635      18.6      < 0.0001 
------------------------------------------------------------------ 
β (SN)           1.781           0.3852      4.624    < 0.0001 
________________________________________ 
Note: The true value of β is 1.8 and 1.2 for ν. BC 
stands for bias corrected, GJ for grouped 
jackknife, and SN for Segal and Neuhaus. 
 
 
A real data example 

The well-known Chronic Granulomatous 
Disease (CGD) dataset, which is described in the 
Appendix D of the book by Fleming and 
Harrington (1991), has been analyzed by many 
authors. CGD is a group of inherited rare disorders 
of the immune function characterized by recurrent 
pyogenic infections, which usually present early 
life and may lead to death in childhood. 
Phagocytes from CGD patients ingest 
microorganisms normally but fail to kill them, 
primarily due to the inability to generate a 
respiratory burst dependent on the production of 
superoxide and other toxic oxygen metabolites. 
Thus, it is the failure to generate microbicidal 
oxygen metabolites within the phagocytes of CGD 
patients. 

There is evidence that gamma interferon is 
an important macrophage activating factor which 
could restore superoxide anion production and 

bacterial killing by phagocytes in CGD patients. In 
order to study the ability of gamma interferon to 
reduce the rate of serious infections, a double-
blinded clinical trial was conducted in which 
patients were randomized to placebo vs. gamma 
interferon. The data we use here, which is a little 
different from the one used by Fleming and 
Harrington (1991) in the example at page 162, has 
65 patients in placebo group, 63 in gamma 
interferon group, of 30 placebo patients who 
experienced at least one infection, 4 experienced 
2, 4 experienced 3, 1 experienced 4, 1 experienced 
5 and 1 experienced 7; of 14 treatment patients 
who experienced at least one infection, 4 
experienced 2 and 1 experienced 3.  

It is reasonable to assume that the patients' 
frailties are time-modulated, since the risk of 
infection may increase once a first failure event 
occurs. In this data set, we treat each patient as a 
cluster, and the frailty term is in the form of 

iikik ttw ξθ=)( . 
 

Table 3. Results of fitting the CGD dataset by 
proposed method with other two models. 
________________________________________ 
 
     BC (no BC)   GJ Standard 
Parameter    Estimate         error         t Value   Pr > |t|| 
------------------------------------------------------------------- 

:1)( =nκ  
β           -0.835 (-0.856)     0.2588      -3.207       0.0013  
θ            1.293 ( 1.321)      0.1995        6.481    < 0.0001 
φ            1.328 ( 1.357)      0.1945        6.828    < 0.0001 
ν            0.035  ( 0.037)      0.0184        1.944       0.052  
------------------------------------------------------------------- 

:)( 30/1−=nnκ  
β            -0.822 (-0.845)    0.2468      -3.332       0.0009 
θ             1.116 ( 1.169)     0.1809        6.169    < 0.0001 
φ             1.148 ( 1.204)     0.1736        6.613    < 0.0001 
ν             0.032 ( 0.034)     0.01461      2.204       0.0275 
β (SN, 1993)    -0.856      0.2489     -3.4389      0.00058 
________________________________________ 
Note: BC stands for bias corrected, GJ for grouped 
jackknife, and SN for Segal and Neuhaus. 
 

Table 3 provides estimates of β with 
several methods, the estimates of other parameters 
followed by standard error for case of 1)( =nκ by 
our time-modulated frailty model are ν̂ =0.035 
(0.0184), =θ̂ 1.293 (0.1995), =ϕ̂ 1.328 (0.1945). 
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The negative value of β̂ = -0.8353 means that the 
treatment (gamma interferon) effectively reduces 
the recurrence of pyogenic infections as compare 
to the placebo. The estimate of β is consistent to 
that from other approaches. 

From the estimates of θ and its variance, 
we can see that there is a time-modulated frailty 
effect in this dataset as noticed by Self (1995) 
though we have different model formulations. The 
parameter estimate of the time-modulated frailty 

293.1ˆ =θ  is statistically significant from 0; the 
positive sign also means that given the frailty, its 
effect on the hazard is increasing as the life goes 
on. 

The estimate of the treatment effect β is 
consistent with other two approaches; all of them 
indicate a statistically significant difference 
between the gamma interferon and placebo. The 
time-modulated frailty model does not seem to 
improve the efficiency, but the proposed model 
does help us to understand the nature of the frailty. 
In CGD case, the existence of effect of time-
modulated frailty means that if a patient has a 
large frailty at the beginning, then (s)he will have 
an increasing chance of recurrence of pyogenic 
infections. 
 

Conclusion 
 
Few results about time-modulated frailty models 
are available in the literature (Yau and 
McGilchrist, 1998; Self, 1995). Our model 
provides one way to detect whether there is a trend 
in the hazard function with time given the frailty. 
Our model is different from Yau and McGilchrist's 
(1998), which assumes a different frailty for each 
time period of recurrence of disease; and different 
from Self's (1995) which introduces a stochastic 
process of frailty in the hazard function. The 
models proposed can also be extended in more 
general case, for example, in the multiple-level of 
clustering case, the time-modulated frailty can 
have the following form ,)( ijiij ttw ηξ θ+=  

where ),(, 21 iii ηηξ are independent realizations of 
two independent random variables with positive 
values. The resulting models are more complex 
than the one we proposed. To fit this model, we 
may use techniques of nonlinear mixed-effects 
models (Pinheiro and Bates, 2000). 

Clinically speaking, the significance of the 
model is to realize whether there is an effect of 
time-modulated frailty in some diseases. If it does 
exist, for example, the pyogenic infection case 
(CGD data), it will tell us that more frail patients 
(say, have recurrence at the beginning) are more 
likely to have recurrence late in their life, which 
may suggest that those patients need more 
aggressive treatment (e.g. high dosage). 
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Appendix 1: Likelihood and moments 
 
Likelihood construction. For the model with 
multiple-levels of clustering, the hazard function is  
 ).()()( 0 tetwt ijkx

ijijk λλ β′=  
 
Its corresponding density and survival functions: 
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Thus, the contribution of the ith individual to the 
conditional likelihood given frailty ijw  is 
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independent given ,ijw therefore the conditional 
likelihood is 
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and the conditional log likelihood: 



ROBUST ESTIMATION OF MULTIVARIATE FAILURE DATA 376

 )]}.)()(log())(log())([log()log({)log(
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 Therefore, from the above arguments, we 
have the following : 
 
Result: Given the frailties 1iη and ,2iη  ijkδ can be 
thought as a Poisson random variable with mean  

.ijkµ  We will focus on the baseline hazard from 
Weibull distribution since it has a fairly flexible 
hazard function; baseline hazards from other 
distributions can be modeled by piece-wise 
exponential distribution which is a special case of 
Weibull. Assume the hazard function from 
Weibull distribution is ,)( 1−= νφνλ tt  
here φ  is a scale parameter, and ν is a shape 
parameter. The Weibull distribution is flexible 
enough to accommodate increasing (ν >1), 
decreasing (ν < 1) or constant hazard rate (ν = 1). 
When we have Weibull baseline distribution, the 
above log likelihood becomes 
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Since for Weibull distribution, the baseline hazard  
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Moments of censoring indicator variable 
 Under the Weibull baseline survival 
function, the hazard function for observation k of 
individual j in cluster i is  
 

.)( 1−′= νβθ νηλ ijk
x

ijijkijkijk tett ijk  
 
By the assumption that, conditional on the 
frailties, censoring is not 
 

 
 
informative of the frailties (Nielsen et. al., 1992), 
we have ),(~),(| ijkijiijk Poisson µηξδ  where 
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Notice that, for fixed j, njj ww ,...,1 are 

independent. Thus ,0),cov( =jlil ww  where 
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2.  Unconditional Variance: 
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3.  Unconditional Correlation (covariance): 
If ,kk ′≠ , note that given kijijkij TTw ′,, are 
independent and conditional on the frailties, 
censoring is uninformative of the frailties. 
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Thus, ijkδ 's can be treated as a sequence of 
correlated Poisson variables with over-dispersion 
since the variance of ijkδ  is not constant. 
 
Appendix 2: Asymptotic properties 
 
As we can see that the variance matrices in 
equation (1), (4) involve parameters besides β. 
Consistent estimate of β can be obtained by 

replacing θ and ν with their −− 2/1n consistent 
estimates (Liang and Zeger, 1986) and the 
asymptotic properties are well established in this 
case. As stated in Liang and Zeger (1986), under 
mild regularity conditions, the estimate of β̂  from 
the generalized estimating equation (1) and (4) is 
consistent and )ˆ(2/1 ββ −n is asymptotically 
multivariate Gaussian as ∞→n , where β is the 
true value. For the estimates of variance of θ, φ 
and ν, we adopt the grouped jackknife approach 
because the exact formulae are not available. The 
estimates are bias corrected and the asymptotic 
properties for φ, and θ will be shown in the 
following section, thus, we can use Wald type 
statistic ),ˆ(var/ˆ2 θθ J  to test the existence of 

time-modulated frailty, where )ˆ(var θJ is grouped 

jackknife variance estimate for .θ̂  
For the estimate of φ from the penalized 

score equation (3) or (6), under mild regularity 
conditions, we have following theorem and give a 
semi-rigorous proof. 
Theorem 1. The estimate ϕ̂ of φ is consistent and 

)ˆ(2/1 ϕϕ −n  is asymptotically normal as ∞→n  
if Mnii <)(max , where M is a known integer. 
 
 Proof: Under the true values of β, ν and φ, 
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as ∞→n  since and .0,)( >= − τκ τnn  By the 

law of large numbers, we have ,0)( →−
n

U
E
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U ϕϕ  

in probability as ∞→n . Therefore, from the 

above two equations, ).1(1
poU

n
=ϕ  Thus, ϕ̂  is 

consistent estimate of φ. The asymptotical 
normality of ϕ̂ can be obtained following the 
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proof in the appendix of Liang and Zeger (1986). 
Q.E.D. 
 Because ν̂  is moment estimate which is 
consistent and θνϕ += , thus, θ̂  is also 
consistent. 
 
Appendix 3: Jackknife variance estimation and 
bias correction 
 
For the parameter β, we can use the robust 
estimate building in the existing procedure. The 
parameter θ is indicator of the effect of time-
modulated frailty, and it is our interest to see 
whether this effect exist, thus we cannot treat it as 
a nuisance parameter. First, we notice that the 
estimate of θ is not unbiased because of the 
penalty term in equation (3) or (6) and  

           0≠
∂
∂
θ
lE  

(Page 28, McCullagh and Nelder, 1983). We will 
obtain the variance estimate as well an estimation 
of bias by grouped jackknife method (Therneau 
and Hamilton, 1997). 

The grouped jackknife procedure is the 
following: Each time we delete the observations 
from each cluster (or a patient), say cluster i, and 
obtain the estimate, say ,ˆ

)(iθ by applying above 

estimating procedure to the rest of the data. Let θ̂  
be the estimate based on the all the observations, 
then the grouped jackknife estimation of variance 
for θ is 
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The bias estimate for θ is )).ˆˆ)(1(ˆ

(.) θθθ −−= nB  
Thus, the bias corrected estimate for θ is 
 
 
    .ˆ)1(ˆˆˆ~

(.)θθθθ θ −−=−= nnB  
 
The reason that we apply the grouped jackknife 
procedure is that we have correlated observations 
in each cluster and the observations from different 
clusters are independent.  
 
Theorem 2. Under suitable conditions, the grouped 
jackknife estimates )ˆ(var ϕJ  and )ˆ(var θJ  are 
asymptotically unbiased estimates of the variance 
of ϕ̂  and variance of .θ̂  
 
Proof: The arguments are similar to Grambsch and 
Therneau (2000).  Q.E.D. 
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