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On the BLUE of the Population Mean for Location and Scale Parameters of 
Distributions Based on Moving Extreme Ranked Set Sampling 

 
Walid Abu-Dayyeh Lana Al-Rousan 

Sultan Qaboos University Yarmouk University 
Muscat, Oman Jordan 

 
 
The best linear unbiased estimator (BLUE) for the population mean under moving extreme ranked set 
sampling (MERSS) is derived for general location and scale parameters of distributions which generalizes 
Al-Odat and Al-Saleh (2001). It is compared with the sample mean of simple random sampling (SRS). 
The efficient sample size under the MERSS for which the BLUE estimator dominates the usual sample 
mean under SRS for estimating the population mean is also computed for several distributions. 
 
Key words: Best linear unbiased estimator; location parameter; scale parameter; moving extreme ranked 
set sampling, simple random sampling. 
 
 

Introduction 
 
Ranked set sampling (RSS) as introduced by 
McIntyre (1952) is useful for cases when the 
variable of interest can be more easily ranked 
than quantified. The aim of RSS is to increase 
the efficiency of the sample mean as an 
estimator for the population mean μ. Takahasi 
and Wakimoto (1968) established a very 
important statistical foundation for the theory of 
RSS. They showed that the mean of the RSS is 
an unbiased estimator for the population mean 
and has smaller variance than the mean of SRS. 
Dell and Clutter (1972) studied the effect of 
ranking error on the procedure. The RSS has 
many statistical applications in biological and 
environmental studies and reliability theory (e.g. 
Dell & Clutter, 1972; Stokes, 1977, 1980; Mode 
et al., 1999; Barabesi & El-Sharaawi, 2001; Al-
Saleh & Zheng, 2002; & Al-Saleh & Al-Omary, 
2002). Sinha, et al., (1996) explored the concept 
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of RSS when the population is partially known 
using the parameters of normal and exponential 
distributions. They found that the use of 
knowledge of the distribution along with RSS 
provides improvement in estimation over SRS, 
as well as over nonparametric RSS. Li and 
Chuiv (1997) discussed the issue of the 
efficiency of RSS compared to SRS in many 
parametric estimation problems. They found an 
improvement in estimation of many common 
parameters of interest with smaller numbers of 
measurements compared to SRS.  

RSS has been investigated extensively 
(see for example, Stokes, 1977; Stokes & 
Sager, 1988; Lam, et al., 1994; Barabesi & El-
Sharaawi, 2001). Al-Saleh and Al-Kadiri 
(2000) introduced Double RSS to increase the 
efficiency of RSS estimates without increasing 
the set size m and Al-Saleh and Al-Omary 
(2002) generalized it to multistage RSS. 
Samawi, et al., (1996) used extreme ranked set 
sample (ERSS), which is easier to use than the 
usual RSS procedure, when the set size is 
large to estimate the population mean in the 
case of symmetric distributions. Al-Odat and 
Al-Saleh (2001) introduced the concept of 
varied set size RSS, which is coined here as 
Moving Extreme Ranked Set Sampling 
(MERSS). They investigated this modification 
non-parametrically and found that the 
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procedure can be more efficient and applicable 
than the simple random sampling technique 
(SRS). The MERSS procedure is as follows: 

1. Select m  random samples of size 1, 2, 
3,…, m  respectively. 

2. Identify the maximum of each set by eye 
or by some other relatively inexpensive 
method without actually measuring the 
characteristic of interest. 

3. Measure accurately the selected judgment 
identified maximum. 

4. Repeat steps 1, 2, 3, but for the minimum. 
5. Repeat the above steps r times until the 

desired sample size, 2n rm=  is obtained. 
Clearly, the procedure of MERSS is easier to use 
than the usual RSS procedure. 
 

Methodology 
 
The BLUE of the Mean for Distributions with a 
Location Parameter 

Let { }1 1 1

1 2
, ,i i iiX X X

 
and 

 
{ }2 2 2

1 2
, ,i i iiX X X be simple random 

samples each of size i. for 1, 2,...,i m= from a 
population with distribution function F and a 

probability density function f. Let μ  and 
2σ be 

the mean and variance of the population 
respectively. If 

{ }1 1 1

1 21
, ,i i iii

Miny X X X=  , 

and 

{ }2 2 2

1 22
, ,i i iii

Maxy X X X=  ,

1, 2,...,i m= , 
then 

{ }21 1 12 22 211
, , , , ,

m my y y y y y   

 
is a MERSS of size 2m. 

The BLUE for μ for a population can 
be derived with a pdf of the form: 
 

( ) ,f x θ θ− − ∞ < < ∞ ,              (2.1) 

 
where f is a pdf. 
 

Result 1 

Let 
1 2 2
, , ,

my y y  be 2m 

independent ordered statistics of simple random 
samples each of size less than m from an 
underlying distribution with a pdf as in (2.1). 
Then the BLUE of the population μ is then given 
by: 
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and iC  and 2
iσ are the mean and the variance of 

iZ  respectively, where 
iiZ y θ−=  and 

X bE θμ θ= = + . (Note that 

1 2 2
, , ,

my y y are not necessarily 

identically distributed.) 
 
Proof 

Starting with a class of unbiased linear 
estimators of μ  of the form 
 

2

1

m

i i
i

yaμ
=

= ,                 (2.3) 

implies that 
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2 2
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which, in turn, implies that 
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Applying the method of the Lagrange multiplier 
to minimize 
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where 
1λ and 

2λ are the Lagrange multipliers 

and 
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1
.
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is the BLUE of μ with variance 
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If 
1i iy y= , for i = 1, 2,….,m and 

2iiy y= , for 1, 2,..., 2i m m m= + + . 
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where ( )1i iE uc = , ( ) 2
1iiVar u σ=  , and iu  

is the minimum of a SRS of size i, and 

( )2i iE wc = , ( ) 2
2iiVar w σ=  and iw  is the 

maximum of a SRS of size i, under θ = 0. It then 
follows that: 
 

{ }

{ }

2 1 1 1
1

1

2

2 2 2 2
1

2

1

2

1

2

ˆ
m

i iMEBlue i
i i

m

i i i
i m i

k b t bw t
d

k b t bw t
d

yc c

yc c

μ
σ

σ

=

= +

= − + −

+ − + −




 

(2.8) 
and 
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(2.9) 
 

Al-Odat and Al-Saleh (2001) introduced 
MERSS and studied the linear estimators of the 

form: ( )yya ii

m

i
i 21

1

+
=

. They derived the 

BLUE among such linear combinations for the 
population mean. The BLUE derived by Al-Odat 
and Al-Saleh (2001) is not the BLUE estimator 

based on (
11 21 1

, ,
m

y y y ,
12 22 2

, ,
m

y y y ), 
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but the BLUE based on (
1 2

, ,
mk k k ) where 

=ki yi1
+ yi2

 for i=1,2,… m. If the underlying 

distribution is symmetric about its mean μ, then 
(2.9) coincides with the results obtained by Al-
Odat and Al-Saleh (2001). 

The BLUE estimator based on MERSS, 
obtained with the sample mean based on SRS in 
case of uniform U(θ ,θ  +1) and Exp(θ ,1) 
distributions are compared. The first is 

symmetric about its mean 
2

1+θ  and the second 

is skewed to the right with mean 1+θ . Both 
families are location parameter families of 
distributions, so the BLUE's are the same as 

given in (2.8), with b = 
2

1
 for U (θ ,θ +1) and 

b=1 for Exp(θ , 1). Balakrishnan and Cohen 
(1990) computed the variances of the estimators 
in this case and in the following cases. 

The estimators compared are both 
unbiased for μ . Therefore, they will be 
compared through their variances. The 

efficiency between two estimators μ̂1
 and μ̂ 2

is defined as: 

( ) ( ) ( ) 1

2 1 1 2
,ˆ ˆ ˆ ˆeff Var Varμ μ μ μ

−
 =   . 

 
The larger the efficiency, the better the estimator 

μ̂ 2
will be. The efficiency of μ̂

MEBlue
 with 

respect to the sample mean under SRS was 
computed for both distributions for m = 2,…,10. 
The results are summarized in Tables 1 and 2. 
From these tables, it may be concluded that the 
variance of the BLUE decreases as m increases 

and ( )2
, 1ˆ mMEBlue

eff μ ≥Χ  for both 

distributions. Also, the efficiency is more than 2 
for m 4≥  in the uniform case and for m 9≥  in 
the exponential case. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The BLUE of the mean for distributions with a 
scale parameter 

Let { }
21 1 12 22 211

, , , , ,
m m

y y y y y y   

be a MERSS from a population with a pdf of the 
form: 

1
, 0

xf θ
θ θ

  > 
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               (3.1) 

 
where f is a pdf. Then as shown previously, if 
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where ( )1i iC E U= and iU  is the first order 

statistic of a SRS of size i from the pdf in (3.1), 

under θ  = 1. Similarly, E ( yi2
) = θ2iC , for

( )2i iC E W=  where iW  is the maximum order 

statistic of a SRS of size i from the pdf in (3.1), 

Efficiency of μ̂
MEBlue

with respect to 
2mΧ  

 

Table 1  Table 2 

 
U (θ ,θ +1)  

 
Exp(θ ,1) 

m ( )2
,ˆ mMEBlue

eff μ Χ   m ( )2
,ˆ mMEBlue

eff μ Χ  

2 1.333  2 1.167 

3 1.765  3 1.333 

4 2.200  4 1.483 

5 2.863  5 1.639 

6 3.150  6 1.647 

7 3.683  7 1.8397 

8 4.288  8 1.996 

9 4.932  9 2.087 

10 5.620  10 2.177 
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under θ  = 1. Also, Var ( yi1
) = θ 2 σ 2

1i  and 

Var ( y 2i
) = θ 2 σ 2

2i
where σ 2

1i
and σ 2

2i
are 

the variances of ui and wi respectively, for i = 
1, 2,…, m. (The BLUE of  the mean of the 
population with pdf (3.1) proof is similar to that 
of Result (1) and therefore is omitted.) 
 
Result 2 

Let 
1 2 2
, , ,

m
y y y be 2m independent 

order statistics each of size less than m from an 
underlying distribution with a pdf as in (3.1). 
Then the BLUE of the population μ is given by: 
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2
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2
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ˆ

m
i

i
i i

Blue m
i

i i
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c
σμ
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with variance 
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c
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
                (3.3) 

 
where μ = b θ  and b = XE 1=θ . 

The BLUE of μ using MERSS is given 
by: 

2
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(3.5) 
 
Comparing the BLUE estimator based on 
MERSS with the sample mean based on SRS in 

case of uniform Exp(θ ) and U(0, θ  )  
distributions. The first is skewed to the right 
with mean θ and the second is symmetric about 

its mean 
2

θ
. So, the BLUE's are the same as 

given in (3.2). The estimators are unbiased and 
therefore are compared using their variances for 
m = 2… 10. The results are summarized in 
Tables (3) and (4). Similar conclusions to those 
presented for Tables (1) and (2) can be given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Saving by using MERSS to estimate the 
population mean 

Measuring the units of a sample costs 
money, time, and effort. The previous tables 
show that the BLUE for estimating the 
population mean μ under MERSS is more 
efficient (less variance) than the sample mean of 
SRS, which is usually used for estimating μ. 

Therefore, μ̂
MEBlue

 will be as good as Χ m2
 by 

using a smaller number of observations which 
will result in saving time, money and effort. 
Table (5) shows the smallest 2m such that the 
variance of the BLUE under MERSS using 2m 
observations is smaller than the variance of the 
sample mean of SRS using a specified sample 
size in case of the normal, logistic, uniform, and 
exponential distributions. The first two 

Efficiency of μ̂
MEBlue

with respect to 
2mΧ  

 

Table 3 
 

Table 4 

 
Exp(θ )

  
U(0, θ )

m ( )2
,ˆ mMEBlue

eff μ Χ  m ( )2
,ˆ mMEBlue

eff μ Χ  

2 1.200  2 1.331 
3 1.380  3 1.815 
4 1.540  4 2.264 
5 1.690  5 2.955 
6 1.820  6 3.574 
7 1.950  7 4.593 
8 2.070  8 5.713 
9 2.190  9 6.935 
10 2.300  10 8.261 
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distributions are location parameter families of 
distributions while the other two are scale 
parameter families. 

Table (5), shows how the BLUE, under 
MERSS for estimating the population mean, 
requires a smaller number of observations than 

Χ m2
based on SRS. This indicates a reduction 

in the sample size required for estimating the 
mean. As m increases then the savings will be 
greater for all the cases studied. According to 
Table (5), the savings in sample sizes range from 

0% to 70%. For example, μ̂
MEBlue

based on 12 

observations is better than Χ m2
based on 40 

observations in the case of U (θ , 1+θ ) for 
estimating the mean, resulting in saving 70% of 
the sample size from using the MERSS 
compared to SRS. 
 

Conclusion 
 
If ordering the data can be done more easily than 
quantifying it, then the BLUE under MERSS 
can be used instead of the mean of SRS for 
estimating the population mean because the 
BLUE under MERSS provides better results 
than the mean of SRS with fewer numbers of 
observations. 
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Table 5: Efficiency of the Smallest Number of Observations for MERSS Compared to 
the SRS of Size 2m 

SRS MERSS 

2m ( )1,θN  ( )1,θL  ( )1,θExp  ( )θExp  ( )1, +θθU  ( )θ,0U  

2 2 2 2 2 2 2 
4 4 4 4 4 4 4 
6 6 6 6 6 6 6 
8 6 6 8 6 6 6 

10 8 8 8 8 6 6 
12 8 10 10 8 8 8 
14 10 10 10 10 8 8 
16 10 12 10 10 8 8 
18 12 12 12 12 10 10 
20 12 14 12 12 10 10 
22 14 14 14 14 10 10 
24 14 16 14 14 10 10 
26 14 16 16 14 10 10 
28 16 18 16 16 10 10 
30 16 20 16 16 12 12 
32 16 20 18 16 12 12 
34 18 21 18 18 12 12 
36 18 21 18 18 12 12 
38 19 22 20 18 14 12 
40 19 22 20 20 14 12 
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