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EMERGING SCHOLARS 
A Heteroscedastic, Rank-Based Approach for Analyzing 

2 x 2 Independent Groups Designs 
 

Laura Mills Robert A. Cribbie Wei-Ming Luh 
York University National Cheng Kung 

University 
 

 
The ANOVA F is a widely used statistic in psychological research despite its shortcomings when the 
assumptions of normality and variance heterogeneity are violated. A Monte Carlo investigation compared 
Type I error and power rates of the ANOVA F, Alexander-Govern with trimmed means and Johnson 
transformation, Welch-James with trimmed means and Johnson Transformation, Welch with trimmed 
means, and Welch on ranked data using Johansen’s interaction procedure. Results suggest that the 
ANOVA F is not appropriate when assumptions of normality and variance homogeneity are violated, and 
that the Welch/Johansen on ranks offers the best balance of empirical Type I error control and statistical 
power under these conditions. 
 
Key words: Factorial ANOVA, Welch factorial test, non-normality, variance heterogeneity. 
 
 

Introduction 
 
The factorial independent groups design 
investigates the effects of two or more factors on 
an outcome variable and usually considers both 
the main and interactive effects. For example, 
Pegg et al. (2005) investigated therapeutic 
methods for military personnel who had 
experienced traumatic brain injury. The 
researchers were interested in how information 
offered (personal vs. general) and information 
preference (high vs. low preference for health 
care information) would influence therapeutic 
outcome. The design was a 2 x 2 independent 
groups factorial design and the results indicated 
that regardless of preference for information, 
information offered positively affected treatment 
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outcome. This type of design is common in 
psychological studies and the analysis of 
variance (ANOVA) F statistic is most often 
employed to analyze the results. 

The ANOVA F test may not be 
appropriate when the data do not meet the 
validity assumptions that accompany the test 
(e.g., homogeneity of variance). These 
assumptions are discussed in most if not all texts 
but are largely ignored in applied research. This 
is especially problematic as previous studies 
have found that the assumptions of the ANOVA 
F are rarely met (e.g., Micceri, 1989; Wilcox, 
1989). This article focuses on three objectives. 
The first is to discuss the assumptions associated 
with the ANOVA F statistic. The second is to 
examine recommended procedures for analysis 
of factorial designs when assumptions are 
violated. Finally, these previously recommended 
procedures will be compared to a new procedure 
to determine the method that provided the best 
balance between Type I error control and power. 
Ultimately, the goal is for applied researchers to 
regard alternatives to the ANOVA F test as 
necessary tools that need to be considered for 
implementation when assumptions are violated. 
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Assumption Violation 
The first assumption of the ANOVA F 

test is that the observations are independent of 
one another; this is ascertained during the design 
stage and established during sampling. The 
second assumption is that data from each 
population are normally distributed. When non-
normality is a characteristic of the data in the 
cells, the deleterious effects on the ANOVA F 
can be quite serious. As a distribution becomes 
increasingly skewed, the mean of that 
distribution will be misrepresented because it 
will be pulled toward the tail and away from the 
middle of the data. Further, extreme scores in 
skewed distributions can elevate the variances of 
the distributions. 

The third assumption of the ANOVA F 
is that the data are drawn from populations with 
equal variances. The standard error of the 
ANOVA F is based on a pooled variance term 
which weights the variances of the cells by their 
sample sizes. The cells with the larger sample 
sizes will contribute more information about 
variability to the computation of the standard 
error than the cells with the smaller sample 
sizes. For example, when sample sizes and 
variances are positively paired (larger sample 
sizes with larger variances and smaller sample 
sizes with smaller variances), empirical Type I 
error rates for the ANOVA F will be deflated 
and power will be compromised. When sample 
sizes and variances are negatively paired (larger 
sample sizes with smaller variances and smaller 
sample sizes with larger variances), empirical 
Type I error rates will be inflated. 
 
Criteria for Robustness 

The current study investigates how well 
different procedures perform, and thus a 
measure of how well warrants a brief discussion. 
The threshold for acceptable empirical Type I 
error rate adopted in the current study was +/-.2 
α, meaning a statistical procedure was 
considered robust if it maintained empirical 
Type I error rates between .04 and .06 when α  = 
.05. This was deemed a reasonable middle 
ground between Bradley’s (1978) conservative 
(+/-.1α) and liberal (+/- .5α) criteria. 

 
 

 

Robust Test Statistics 
When assumptions are violated, the 

empirical Type I error rates of the ANOVA F 
vary in terms of robustness. The following 
summarizes conditions where the ANOVA F 
holds acceptable empirical Type I error rates and 
offers suggestions for alternatives when it does 
not. When data are normal in shape and have 
equal variance, the ANOVA F has accurate 
empirical Type I error rates and maximal power. 
In this situation, it merits the popularity it 
enjoys. 

 
Non-normality 

When distributions are non-normal but 
have equal variance, Hsuing and Olejnik (1996) 
found that the empirical Type I error rates for 
ANOVA F satisfied the threshold of +/-.2 α. 
However, Wilcox (2003) argued that non-
normality has deleterious effects on statistical 
power and that these effects are exacerbated by 
unequal sample size and heterogeneity (see, for 
example, Keselman, Wilcox, & Lix, 2003; 
Wilcox & Keselman, 2003). In these cases, the 
Welch on trimmed means (Wt) is recommended. 
 
Variance Heterogeneity 

The presence of unequal variances with 
normal distributions resulted in empirical Type I 
error rates for the ANOVA F that deviated 
considerably from the nominal level (Hsuing & 
Olejnik, 1996). Recommended alternatives for 
data that violate the assumption of variance 
homogeneity include the James, Welch, and 
Alexander-Govern (A-G) tests (Hsuing & 
Olejnik, 1996; Luh, 1999). Each of these 
procedures had acceptable empirical Type I 
error rates under heterogeneity. 
 
Variance Heterogeneity and Non-normality 

When non-normality was coupled with 
heterogeneous variances, the empirical Type I 
error rates for the ANOVA F become extremely 
unreliable (Hsuing & Olejnik, 1996). In this 
case, trimmed version of the James, Welch or A 
– G procedures have acceptable Type I error 
rates for several nonnormal distributions (Luh, 
1999). Further, the use of a Johnson 
transformation improves the empirical Type I 
error rates of these procedures (Luh & Guo, 
2001). 
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In general, the ANOVA F test is 
inappropriate when variance equality is 
compromised and especially so in combination 
with non-normality and unequal sample sizes. 
Researchers have the option of choosing from 
robust alternatives, but it remains unclear which 
choice is optimal. One method of simplifying 
the alternatives is to determine the procedures 
that maintain acceptable Type I error control, 
and then seek the procedure with the highest 
statistical power. Below is an overview of the 
reported power findings for procedures that 
maintained acceptable Type I error control. 
 
Power Findings 

When distributions were normal but 
variances heterogeneous, the James, Welch, and 
A-G tests reported by Luh (1999) all had similar 
power findings. When both normality and 
variance homogeneity were violated, trimmed 
versions of the the A-G, Welch and James tests 
had very similar power (Luh, 1999). 

The primary goal of this study is to 
identify test statistics for 2 x 2 factorial designs 
that are best suited to psychological research 
whether the data meets the assumptions of the 
ANOVA F or it does not.  
 
Test Statistics 

Five procedures were evaluated and 
compared with the intention of determining one 
test that holds the most acceptable empirical 
Type I error rates combined with the highest 
power findings. The computational methods for 
each procedure are provided in Appendix A. 1) 
ANOVA F test. This test is included in this 
study as it is almost exclusively adopted by 
applied researchers, regardless of whether the 
assumptions of the test are violated; 2) Welch on 
trimmed means (Wilcox, 2003) using a Johnson 
transformation and Johansen interaction term 
(JW-Jt). The JW-Jt circumvents the problem of 
heterogeneous variances by unweighting the 
error term and the problem of non-normality by 
transforming and trimming the data. The Welch-
James using trimmed means and Winsorized 
variances was found by Keselman, Kowalchuk,  
and Lix (1998) to be robust to heterogeneity and 
non-normality in non-orthogonal (unequal 
sample size) designs. Further, Luh & Guo 
(2001) recommended the use of this procedure 

with a Johnson transformation. 3) Alexander-
Govern with trimmed means and Johnson’s 
transformation (JA-Gt). Luh & Guo (2001) 
found that the Alexander-Govern test with a 
combination of trimmed means and Johnson’s 
transformation had acceptable empirical Type I 
error control under several conditions of non-
normality and variance heterogeneity (Luh & 
Guo, 2001; Luh & Guo, 2004). 4) Welch on 
trimmed data (Wt). The Welch test on trimmed 
data is advantageous under heterogeneity of 
variance, as it unweights the pooled error term. 
In other words, the largest sample sizes no 
longer have the most influence on the pooled 
error term. 

The final procedure investigated in this 
study is the Welch test, with the Johansen 
interaction procedure, on ranked data (Wr). 
Cribbie, Wilcox, Bewell & Keselman (2007) 
found that the Welch (1951) test on ranked data 
provided the best balance between Type I error 
control and power in one-way independent 
groups designs when both the assumptions of 
normality and variance homogeneity were 
violated. It is hypothesized in this study that the 
use of the Wr will also provide the best balance 
between Type I error control and power in 2 x 2 
factorial independent groups designs. The use of 
a heteroscedastic test statistic in combination 
with ranked data is expected to simultaneously 
correct for violations of the assumptions of 
variance homogeneity and normality. Ranking 
data assigns the lowest score on the outcome 
variable a value of 1 and every other score a 
rank relative to that score, regardless of group 
membership. Thus, outlying data points become 
less distant and the problems associated with 
extreme data points are reduced. The Wr 
procedure is exactly as described for the Welch 
(see Appendix A), but because trimming and 
Winsorizing are unnecessary when using ranked 
data, the substitutions 
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and jkX  for tjkX are made.  

The Johansen test (see Appendix A) is 
used for evaluating the statistical significance of 
the interaction term. 

Methodology 
 
The current study aims to facilitate decision-
making by applied researchers by discovering 
the one procedure which can offer the best 
balance of empirical Type I error control and 
power for 2 x 2 factorial designs. It is 
hypothesized that the Wr will be such a 
procedure, following the findings of Cribbie, et 
al. (2007) for one-way designs. 
 To test this hypothesis, a Monte Carlo 
study was conducted using 5000 simulations. R-
project (Ihaka & Gentleman, 1996) and 
SAS/IML (SAS Institute Inc, 1989) software 
were used, with data generated using the rnorm 
and the RANNOR generators, respectively. The 
variables manipulated were: degree of sample 
size imbalance, variance inequality, pairings of 
unequal group sizes and variances (positive and 
negative), population distribution shape, and 
population means. The total sample size for the 
current study was set at 56 with specific 
individual cell sizes outlined below. 

The procedures were tested with equal 
variances and with largest to smallest variance 
ratios of 4:1 and 8:1, respectively. This disparity 
was found by Keselman et al. (1998) to be 
common in psychological testing. The unequal 
variances were then reversed when sample sizes 
were unequal in order to test for both positive 
and negative pairings of unequal sample sizes 
and variances. The sample size and variance 
conditions investigated in this study are 
presented in Table 1. 

Data were tested when population 
distribution shapes were normal and non-
normal. The data were drawn from distributions 
defined by Hoaglin (1985) where both skewness 
(g) and kurtosis (h) can be manipulated to create 
varying levels of non-normality. In the current 
study, the distributions were set to normal (g = 
0, h = 0), moderately skewed (g = 0.5, h = 0), 
and heavily skewed (g = 1, h = 0). Standard 
normal variates were generated with SAS 
RANNOR (SAS Institute, 1989) and R-project 
RNORM (Ihaka & Gentleman, 1996) and to 

obtain data from a skewed g- and h- distribution, 
these variables were converted to: 

 

 [ ]1 2exp( ) 1 exp( / 2),g gZ hZε −= −   

 

when g = 0, )2/exp( 2hZZ=ε . For g > 0, the 
mean of the g- and h- distribution 
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was subtracted from each observation, and for 
trimmed data the population trimmed mean (μtgh) 
was subtracted from each observation. In order 
to create cells with mean µjk and standard 
deviation σjk, the resulting εijk were converted to 
Yijk =  µjk + (εijk σjk). For the Wr, the population 
mean rank is not equal across cells when the 
distribution shapes are skewed and the variances 
are unequal. Therefore, for each condition of 
skewness and variance heterogeneity, we 
adjusted the distribution of the cells so that the 
population mean ranks were equal. Specifically, 
the empirically derived population mean rank 
for each cell was subtracted from Yijk. 
 
Null Hypotheses 

Given a 2 x 2 independent groups 
factorial design, the null hypotheses for the row 
and column main effects are: H0: μ1 = μ2 where 

μj. = 
2

 jkk μ
and μk. = 

2
 jkj μ

. When 

trimmed means are applied, as is the case for the 
Wt, the null hypotheses becomes H0: μt1 = μt2 

where μtj. = 
2

 tjkk μ
 and μtk. = 

2
 tjkj μ

. The 

null hypotheses for the interaction term can be 
expressed as H0: μ11 - μ12 = μ21 - μ22 for the usual 
means and for trimmed means H0: μt11 - μt12 = 
μt21 - μt22. For ranked data, the null hypotheses 
for the main effects and interactions (without a 
heteroscedastic test statistic) relate to the 
population mean ranks (i.e., μrjk) only when the 
distributions are the same shape and variances 
are equal. Hence, an important part of this study 
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is to evaluate how the Welch on ranks performs 
when variances are unequal. 

 
Results 

 
Normal Distributions and Equal Variances 

When distributions were normal and 
variances were equal, all tests produced 
acceptable empirical Type I error rates. The 
ANOVA F and the Wr held the highest power 
under these conditions, although differences 
among procedures were minimal. (Empirical 
Type I error and power rates are presented in 
Tables 2 - 6.) 

  
Skewed Distributions and Equal Variances 

When distributions were moderately 
skewed and variances were equal, empirical 
Type I error rates were within the acceptable 
range for all procedures. The power of the 
procedures was very similar in terms of main 
effects, but when interaction is present, the Wr is 
the most powerful. 

When distributions were heavily skewed 
and had equal variances, the ANOVA F and the 
Wr maintained Type I error rates within the 
acceptable range while the other procedures 
were deflated relative to α. The Wr was more 
powerful than the ANOVA F (and all other 
procedures). 
 
Heterogeneity and Normal Distributions 

When unequal variances were combined 
with normal distributions, the ANOVA F had 
Type I error control that was deflated relative to 
α when the pairing of the unequal variances and 
sample sizes was positive and inflated relative to 
α when the pairing was negative. Type I error 
rates for the Wt slightly exceeded the robustness 
criteria when testing interactions with negatively 
paired sample sizes and variances, but all other 
procedures had Type I error rates within the 
acceptable range. Power findings were similar 
across all procedures, with the Wr slightly 
higher, particularly for interactions when there 
was a negative pairing of unequal sample sizes 
and variances. 
 
Heterogeneity and Skewed Distributions 

When distributions were moderately 
skewed and variances were unequal, the 

ANOVA F and the Wt had unacceptable Type I 
error control. Specifically, the ANOVA F had 
inflated Type I error rates when sample sizes 
and variances were negatively skewed and 
deflated Type I error rates when sample sizes 
and variances were positively skewed, for both 
main effects and interactions. The Wt procedure 
had inflated Type I error rates when testing 
interactions with negatively paired sample sizes 
and variances. The Wr maintained much higher 
power than all other procedures, again 
particularly in the case of negative pairings. 
Finally, when distributions were heavily skewed 
with unequal variances, the Wr was the only 
procedure that maintained empirical Type I error 
rates within the acceptable range, and even when 
other procedures had acceptable Type I error 
rates the power of the Wr was generally superior. 
 

Conclusion 
 
Factorial designs are extremely common in 
psychological research. The method most 
commonly used for analyzing factorial designs, 
the ANOVA F statistic, is clearly a poor choice 
when the assumptions of homogeneity and 
normality are violated.  The F test simply falls 
short of the expectations that researchers assign 
it. The goal of the current paper was to elucidate 
the problems with the popular ANOVA F test 
while at the same time offering a comparison of 
alternative procedures across numerous 
conditions of normality/non-normality and 
variance homogeneity/heterogeneity with 
respect to the balance between empirical Type I 
error control and statistical power. 

It is strikingly clear that the most 
popular procedure, the ANOVA F, is also the 
most inappropriate test for factorial research 
unless data conform to the assumptions of 
normality and variance homogeneity. Empirical 
Type I error rates stray considerably from the 
nominal α, especially when variances are 
unequal or unequal variances are combined with 
non-normal distributions. When α is set at .05, 
the empirical Type I error rates for the ANOVA 
F can be as low as 1.8% or as high as 14% under 
the conditions used in the current study. Further, 
if the ratio of the largest to smallest variances 
exceeds 8:1 or more extreme sample size 
imbalance is present (both realities in real-world 
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data), the rates of Type I error become even 
more alarming (see Hsuing & Olejnik, 1996). 

These results are troubling given that the 
assumptions of the ANOVA F are routinely 
violated. Micceri (1989) investigated the 
distribution shapes of over 400 sets of data from 
empirical studies and found that in psychometric 
and ability type scores about 70% were 
asymmetric and/or had heavy tails. In other 
words, most of the studies had distributions that 
could be considered non-normal. Further, 
Keselman, Kowalchuk, and Lix (1998) discuss 
the regular occurrence of unequal variances in 
psychology, and unbalanced cell sizes are the 
norm in psychological research. 

The closer the data come to meeting 
assumptions, the more choices there are for 
researchers in terms of accuracy and power. As 
the data move farther from normality and 
variance homogeneity, the decision is made 
easier by elimination. The procedure that holds 
empirical Type I error rates closest to α and has 
the highest power is the Welch on ranked data 
using the Johansen procedure for interactions. 
Under all conditions, the procedure performed 
well in terms of Type I error control and power. 
The most exciting aspect of the findings in this 
project is that the Welch on ranked data worked 
well under the majority of conditions that were 
investigated for a 2 x 2 design, including equal 
variances and normal distributions. In other 
words, researchers don’t need to sort through a 
confusing decision-making process. This 
procedure can easily fill the role that the 
ANOVA F now occupies by offering more 
accuracy and power when assumptions are 
violated while only losing a trivial amount of 
power when assumptions are met. Therefore, it 
is highly recommended that researchers 
routinely adopt the Welch procedure with 
ranked data when analyzing factorial designs. 

With regard to limitations of the current 
study, Micceri (1989) notes that Monte-Carlo 
investigations don’t necessarily replicate real-
world data. With real-world data, researchers 
might experience different kinds of non-
normality than the distribution shapes that were 
investigated in this study. Likewise, the degree 
of variance heterogeneity has innumerable 
possibilities while only five conditions were 
investigated in the current project. However, the 

conditions investigated in the current project 
covered many of the most extreme assumption 
violations that researchers will encounter and 
thus if the procedure is robust under these 
conditions, it will likely be robust under most 
conditions encountered in applied research. 

An obvious future direction for this 
procedure is to investigate the performance of 
the Welch on ranks in higher order factorial 
designs. Although it is expected that the results 
of this study will replicate in larger factorial 
designs, this hypothesis still needs to be 
evaluated, especially in light of the fact that 
Seaman, Walls, Wise, and Jaeger (1994) report 
that in designs larger than a 2 x 2 factorial that 
because rank transformations are nonlinear, the 
expected rank of an observation in one cell will 
depend nonlinearly on the original population 
means of the other cells.  

It is expected that the complications that 
arise when utilizing ranks with traditional test 
statistics [e.g., the rank transform procedure 
suggested by Conover and Iman (1981)] will not 
have a significant effect on the Welch on ranks 
procedure because it utilizes heteroscedastic test 
statistics; however this is still to be 
demonstrated. Another important consideration 
in future research is the effect of between-cell 
distribution shape heterogeneity. In other words, 
the degree of skew might differ from group to 
group and exacerbate the effects of skewness 
beyond what was reported in this paper. In fact, 
Wilcox (2005) notes that skewness per se is not 
necessarily the problem, but the degree to which 
skewness varies from group to group raises 
cause for alarm. 

As a result of the findings of the current 
study, it is strongly recommended that 
researchers discontinue the use of the ANOVA 
F procedure. Instead, it is suggested that 
researchers utilize the Welch on ranked data 
(with Johansen procedure for interactions) 
regularly for analyzing independent groups 
factorial designs. 
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Table 1: Means, Sample Sizes and Variances Utilized in the Monte Carlo Study 

Condition 

Relevant Statistic 

Means 
μ11 μ12 μ21 μ22 

No Main Effect or Interaction 0 0 0 0 
Main Effect + Interaction 0 0 0 2 
No Main Effect, Interaction 0 1 1 0 

 Sample Sizes 

n11 n12 n21 n22 

Equal Sample Sizes 14 14 14 14 

Moderately Unequal Sample Sizes 11 14 14 17 

Extremely Unequal Sample Sizes 7 10 18 21 

 Variances 

σ11 σ12 σ21 σ22 

Equal Variances 1 1 1 1 

Moderately Unequal Variances 
  (Positively Paired with Unequal 

Sample Sizes) 
1 2 3 4 

Moderately Unequal Variances 
  (Negatively Paired with Unequal 

Sample Sizes) 
4 3 2 1 

Extremely Unequal Variances 
  (Positively Paired with Unequal 

Sample Sizes) 
1 3 5 8 

Extremely Unequal Variances 
  (Negatively Paired with Unequal 

Sample Sizes) 
8 5 3 1 

 



RANK-BASED APROACH FOR 2 x 2 INDEPENDENT GROUPS DESIGNS 
 

330 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Type I Error Rates for Main Effects with Normal and Skewed Distribution for N = 56 
 

Distribution Variances  F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal   .050        .047 .048         .048             .050 
  Positive Pair  .034        .046 .048         .048     .055 
  Negative Pair  .094        .050 .048         .050     .054 
 
Moderate Equal   .048        .043 .041        .046     .050 
Skew  Positive Pair  .037        .045 .045        .046     .053 
  Negative Pair  .095        .049 .047        .049     .055 
 
Heavy  Equal   .042        .040 .037        .038     .052 
Skew  Positive Pair  .041        .041 .035        .037     .053 
  Negative Pair  .093        .039 .035        .046     .054 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Bolded entries indicate conservative empirical Type I error rate.  Bolded and underlined entries represent 
liberal Type I error rates 

Table 3: Type I Error Rates for Interactions with Normal and Skewed Distribution for N = 56 
 

Distribution Variances  F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal   .054        .048 .050        .056     .051 
  Positive Pair  .035        .047 .049        .055     .054 
  Negative Pair  .095        .051 .049        .062     .054 
 
Moderate Equal   .050        .045 .042        .054     .052 
Skew  Positive Pair  .033        .045 .046        .053     .051 
  Negative Pair  .095        .050 .045        .064     .054 
 
Heavy  Equal   .044        .039 .035        .052     .052 
Skew  Positive Pair  .029        .040 .035        .050     .051 
  Negative Pair  .079        .042 .034        .064     .057 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Bolded entries indicate conservative empirical Type I error rate.  Bolded and underlined entries represent 
liberal Type I error rates 
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  Table 4: Power Findings for Main Effects with Normal and Skewed Distribution when both Main Effects 

and Interaction were Present for N = 56 
 

Distribution Variances F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal  .940        .893 .886        .897     .911 
  Positive Pair .468        .484 .490        .492     .467 
  Negative Pair .556        .367 .363        .377     .493 
 
Moderate  Equal  .838        .816 .859        .841     .847 
Skew  Positive Pair .344        .487 .494        .459     .518 
  Negative Pair .480        .321 .345        .361     .402 
 
Heavy  Equal  .516        .680 .750        .708     .733 
Skew  Positive Pair .134        .427 .422        .362     .556 
  Negative Pair .330        .266 .290        .310     .334 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Greyed power findings indicate cases where empirical Type I error rate does not fall within +/- .2α criteria.

 

Table 5: Power Findings for Interactions with Normal and Skewed Distribution when Both Main Effects 
and Interactions were Present for N = 56 

Distribution Variances    F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal  .941        .898 .888        .946     .954 
  Positive Pair .470        .483 .491        .548     .468 
  Negative Pair .558        .365 .363        .504     .651 
 
Moderate  Equal  .832        .854 .874        .941     .962 
Skew  Positive Pair .356        .432 .456        .522     .584 
  Negative Pair .449        .326 .328        .505     .577 
 
Heavy  Equal  .508        .712 .764        .886     .921 
Skew  Positive Pair .188        .343 .382        .448     .726 
  Negative Pair .278        .240 .254        .472     .502 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Greyed power findings indicate cases where empirical Type I error rate does not fall within +/- .2α criteria.



RANK-BASED APROACH FOR 2 x 2 INDEPENDENT GROUPS DESIGNS 
 

332 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Table 6: Power Findings for Interactions with Normal and Skewed Distribution When Interaction 
Was Only Present for N = 56 

Distribution Variances F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal  .943        .895 .894        .910     .925 
  Positive Pair .469        .489 .494        .509     .560 
  Negative Pair .557        .370 .362        .409     .465 
 
Moderate Equal  .832        .842 .843        .867     .925 
Skew  Positive Pair .366        .466 .466        .477     .596 
  Negative Pair .473        .382 .371        .406     .482 
 
Heavy  Equal  .511        .724 .724        .752     .910 
Skew  Positive Pair .204        .395 .383        .403     .668 
  Negative Pair .288        .357 .333        .365     .613 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Welch (Welch on trimmed data), Wr (Welch on 
ranked data). 
Greyed power findings indicate cases where empirical Type I error rate does not fall within +/- .2α criteria.  
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Appendix A: 
ANOVA F Procedure 

 
The main effect of one factor (A) is a measure of 
the ratio of mean squared group variation to 
mean squared error and is defined as: 
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where n = cell group size, N = total sample size, 
j = 1 … J (number of levels for factor A), k = 1 
… K (number of levels for factor B), X is an 

observation, jkX  is the mean of the cell at the 

ith row and the jth column, X .. is the grand 

mean, X j. is the mean of the jth level of factor A, 

and X .k is the mean of the kth level of factor B. 
The degrees of freedom for factor A are J - 1 and 
JK(n – 1). 
 
The main effect for factor B is likewise defined, 
with the means of each level obtained across 
(and disregarding) all levels of Factor A. The 
equation is: 
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The degrees of freedom for the main effect of B 
are K-1 and JK(n–1). The interaction term for 
the ANOVA F test is a ratio of mean squared 
cell variation (less mean squared variance of 
both factors) to mean squared error and is 
defined as: 
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The main effect for factor B is likewise defined, 
with the means of each level obtained across 
(and disregarding) all levels of Factor A. The 
equation is: 
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The degrees of freedom for the main effect of B 
are K - 1 and JK(n – 1). The interaction term for 
the ANOVA F test is a ratio of mean squared 
cell variation (less mean squared variance of 
both factors) to mean squared error. It is defined 
as: 
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The degrees of freedom for the interaction term 
are (J-1)(K-1) and JK(n – 1). 
 

Appendix B: 
The Welch Procedure using Johansen Interaction 

Term 
 
Wilcox (2003, p. 345) defines the Welch 
procedure using trimmed means and Winsorized 
variances. Winsorizing is a method by which 
trimmed scores are replaced with the remaining 
highest and lowest score in the data. This 
generates an appropriate estimate of variance 
when using a trimmed mean as opposed to 
estimating variance using only the scores left 
after trimming by accounting for the original 
sample size. The current study adopts these 
procedures for the Welch. Consider X1, …, Xn, 
a random sample from a single group, ordered 
from smallest to largest. Let e = [γn], where γ is 
the proportion of symmetric trimming, set at .20 
in this study, and [X] is the greatest integer less 
than or equal to X, and let hjk=n-2e be the 
effective sample size (i.e., sample size after 
trimming). 
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A trimmed mean can be expressed as 

X
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. The main effect of Factor A first 

takes a measure of typical deviation for each 
cell: 
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where Yi = Xe+1 if Xi ≤ Xe+1, Xi if Xe+1 < Xi <Xn-e 
and Xn-e if Xi ≥ Xn-e. 

A measure of row means is indicated by 
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/ k, where t indicates trimmed 

cell means. Next, the inverse of the sum of the 

row deviations is r
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, and these two 

terms contribute to a measure of predicted 

variance for Factor A, defined by R
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Two final terms contribute to the Welch statistic: 
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The main effect is defined as: 
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The numerator degrees of freedom are 1v  = J – 1 
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Degrees of freedom for Factor B are v K1 1= −  

and v
K

Bb
2

2 1

3
=

−
. To test for interactions, 

Wilcox recommends the Johansen (1980) 
method. The inverse of the mean cell deviation 

is D
djk
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=

1
 which are summed across each 

factor and in total to determine (respectively) 
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D Djk.. =  .  The predicted values of the cell 

means are determined using: 
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The interaction is determined with a ratio of the 
cell mean residuals to cell mean deviation using 
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. Using the 

example, the interaction is calculated as follows: 
The critical value for the Johansen 

method is found by computing 
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where 1−= jkjk hf and c is the cutoff value in 

the 1 – α chi-square distribution, with 
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Appendix C: 
Alexander-Govern Procedure with Trimmed 
Means and Johnson Transformation 
 
This procedure involves terms identical to those 

used for the Welch statistic: rj, Rj, jυ̂ , & R̂ for 

the row effect and wk, Wk, kω̂ , & Ŵ for the 

column effect, with 
jk
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jk n

s
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= for both row and 

column effects. The A-G then computes the row 

Z statistic using ( )T r R Rj j j= −  , 
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This test statistic is compared to a χ2 critical 
value at 1 – α with J – 1 degrees of freedom. For 
the example, the critical value is 3.84 when α = 
.05. To test for interactions, the Johansen 
method is recommended by Luh (1999), which 

is the same as used by the Welch and so its 
definition will suffice. 

For use in the transformation, the third 
central Winsorized moment is defined using 
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central sample Winsorized moment.  The 
transformation is executed in the residual 
computations for the Tt  terms. These residuals 
are defined as 
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Appendix D: 
Welch-James with Trimmed Means and Johnson 

Transformation 
 
C1 are contrast matrices associated with either 
the main effect of factor A or B or AB. The cell 

means are: =
i jkijkjk nYY / . The matrix of 

cell means is: ( )''
1 ,..., jKjj YYY =   and the 1 x J 

matrix of cell means is thus, ( )''
1 ,..., jYYY = . 

The sample variance matrix of Y is: 
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The test statistic is: 
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and Pjk,jk = the jk,jkth element of the matrix 

1
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'
1 )( CSCCSCI −− . TWJ has an approximate 

F distribution with degrees of freedom f1 = r and 
f2 = r(r + 2)/(3/4).  

The Johnson transformation applied to 
the W-Jt is defined by Luh & Guo (2001) as 

follows tjkX  is replaced by  
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