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A Comparison of Maximum Likelihood and Expected A Posteriori Estimation 
for Polychoric Correlation Using Monte Carlo Simulation 

 
Jinsong Chen Jaehwa Choi 
The George Washington University 

 
 
This study aims to compare the maximum likelihood (ML) and expected a posterior (EAP) estimation for 
polychoric correlation (PCC) under diverse conditions, especially when considering a sample size. As the 
ML is the classical solution to estimate PCC, the EAP is a new method based on Bayes’ theorem. 
Different types of prior distributions are also adapted to investigate the sensitivity of prior distribution 
onto the PCC estimate for the EAP case. The Monte Carlo simulation is used for this comparison by a 
specialized program code in MATLAB. 
 
Key words: Polychoric correlation, maximum likelihood, expected a posterior. 
 
 

Introduction 
 
It is fairly common that observed variables are 
measured using ordinal scales, which represent 
categorizations of underlying constructs that are 
continuous. This scenario is especially relevant 
in psychological and educational measurement. 
As an estimate of the relation between the two 
continuous constructs underlying two such 
ordinal variables, the polychoric correlation 
(PCC) has been widely employed. For instance, 
PCC has been used in many confirmatory factor 
analysis (CFA) or structural equation model 
(SEM) scenarios recently (e.g., Flora, 2002; 
Flora & Curran, 2004; Rigdon & Ferguson, 
1991). The estimation of PCC has been 
conducted using maximum likelihood (ML) 
methods (e.g., Olsson, 1979), which can be 
accomplished using several popular statistical 
applications such as PRELIS (Jöreskog, 2002-
2005) or SAS PROC FREQ (SAS Institute Inc., 
2004). 
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Regarding the ML estimation of PCC, 
research showed that it: 1) produces an unbiased 
estimate of the correlation between the original 
bivariate normal variables (Babakus & 
Ferguson, 1988; Olsson, 1979); 2) outperforms 
Pearson’s product-moment correlation (PPMC), 
Spearman’s rho, and Kendall’s tau-b for ordinal 
data (Babakus & Ferguson, 1988); and 3) is 
rather robust to modest violation of the 
underlying normality assumptions (Quiroga, 
1992). 

Even though estimating PCC with the 
ML method has been quite satisfactory as stated 
above, empirical or simulation results from 
previous research are based on relatively large 
sample sizes. For instance, the sample size was 
500 for Olsson (1979), and 200 or above for 
Quiroga (1992). In many situations however, the 
sample size could be much smaller (e.g., less 
than 100), and the performance of the ML 
estimator has not been studied yet in the case of 
smaller sample sizes. Furthermore, due to the 
properties of numerical procedure of ML (i.e., 
iterative hill-climbing method using gradients of 
the target function), the ML estimation method 
for PCC also has several disadvantages such as, 
local maxima and non-converged solution. 

Recently, expected a posteriori (EAP) 
estimation for PCC was introduced (Choi, Chen, 
& Kim, in press). As the EAP method is based 
on Bayes’ theorem (Bock & Aitken, 1981), the 
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estimation of PCC can incorporate prior 
information regarding the correlation. The EAP 
method has been spotlighted in social and 
behavioral methodologies, such as Item 
Response Theory (IRT) models (e.g., Mislevy & 
Stocking, 1989). Also, this estimator has been 
compared with the ML method in IRT models 
(see Chen, Hou, & Dodd, 1998 for a summary). 
Because both PCC and EAP are becoming 
increasingly popular in social science research, 
understanding the behavior of the newly 
developed EAP estimator for PCC from a 
systematic comparison with the ML estimator 
would be beneficial. In this article, a 
methodological framework of both ML and EAP 
estimators will be introduced and the 
performance of the two estimators under various 
conditions will be compared, especially in the 
case of small sample size, using a Monte Carlo 
simulation study. 
 
Polychoric Correlation and the Maximum 
Likelihood (ML) Estimation 

Traditionally, ML has been the only 
estimator for estimating PCC, and the 
procedures are summarized here (see Olsson, 
1979 for details). Two ordinal variables are 
observed with r and s possible categories. Given 
that the two corresponding continuous latent 
constructs follow the crucial assumption of 
bivariate normal distribution, the log-likelihood 
function of any sample is: 
 

1 1

ln ln ln
s r

ij ij
i j

L C n π
= =

= +         (1.1) 

 
where C is a constant and ijπ  is the probability 

that a given observation falls into the 
contingency table cell (i, j) between two ordinal 
variables, 
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where a and b are the threshold parameters for 
the categories i = 1, 2, …, s and j = 1, 2, …, r, 

with a0 = b0 = -∞ and as = br = + ∞, and 2Φ  is 

the bivariate standard normal cumulative density 
function (CDF) with correlation ρ. 

The threshold and correlation 
parameters can be estimated by: 1) taking partial 
derivatives of the log-likelihood function with 
respect to the parameters (thresholds and 
correlation), 2) setting these equations equal to 
zero, and 3) solving these equations for the 
parameters of interest using the numerical 
iterative procedure such as the Newton-Raphson 
method (Olsson, 1979). This method attempts to 
estimate all parameters of interest 
simultaneously, and was referred to as the “full 
ML method” or the “one-step ML method” by 
Olsson (1979). 

Olsson also presented the two-step ML 
method for PCC, which estimates threshold 
values first: 
 

( ).1
1 ii Pa −Φ=  and ( )jj Pb .1

1
−Φ=      (1) 

 
where Pij is the observed proportion in cell (i, j), 
Pi. and Pj are observed cumulative marginal 
proportions of the contingency table, and Φ1 is 
the univariate normal CDF. 

These threshold values are then 
substituted into the log-likelihood function, 
Equation (1), and the correlation parameter is 
estimated similar to the one-step ML method 
illustrated above. Olsson (1979) further showed 
that the difference of estimation between the 
one-step and two-step ML methods is negligible. 
Therefore, the two-step method is used in this 
study for the purpose of computational 
convenience. 

Several issues of the ML methods are 
worthwhile to be noted here. As mentioned 
earlier, ML methods are iteratively searching the 
maximum of the log-likelihood function using 
the gradients (the first and second derivative of 
the log-likelihood function). Therefore, in 
general, ML estimators present the following 
disadvantages: 1) it is possible to get a non-
converged solution; 2) there is no guarantee of 
getting the global maximum; 3) consequently, 
the ML estimates depend on a starting value; 4) 
above disadvantages tend to get worse as sample 
sizes decrease. Because it is very common for 
one to analyze small sample sizes (e.g., less than 
100) in social and behavioral applied research, 
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these disadvantages of ML estimation have 
occasionally frustrated researchers who want to 
estimate PCC over the last several decades. 
 
Expected A Posteriori Estimation 

The EAP estimation method for PCC 
proposed by Choi et al. (in press) also adopts the 
assumption of bivariate underlying normal 
distribution, and uses the same procedure, 
Equation (3), in the above two-step ML method 
to estimate threshold values. However, when it 
estimates PCC, it follows Bayes’ theorem: 
posterior distribution ∝  likelihood function × 
prior distribution. In other words, subjective 
belief about what the true correlation is likely to 
be can be incorporated into the estimation 
procedure through the prior distribution. Here is 
a brief development of the EAP method for PCC 
(more details of the EAP estimator of IRT model 
are available in Bock & Aitken, 1981): 
 

1

1

Pr( ) Pr( )
Pr( )

Pr( ) Pr( )

x
x

x d

ρ ρ
ρ

ρ ρ ρ
−
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           (2) 

 

where )Pr( xρ  is the posterior distribution of 

given x which is frequency data of two variables, 

)Pr( ρ  is a prior distribution of ρ, and )Pr( ρx  

is the same likelihood function L in the ML 
method. Then, the EAP (i.e., the mean of the 
posterior distribution) estimate of PCC can be 
simply expressed as: 
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For the purpose of numerical computation of the 
integration, the above two equations can be re-
expressed as: 
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where k is the number of equally spaced 
quadrature points from -1 to +1. 

As described in the above development, 
the EAP method is based on both Bayes’ 
theorem and the non-iterative numerical 
integration. Consequently, the EAP method has 
the following advantages over the ML method: 
1) there is no non-convergence issue (i.e., the 
estimates always exist); 2) there is no risk of a 
local maxima problem; 3) the estimates do not 
depend on a starting value; 4) the capability of 
including the a priori knowledge/belief on the 
parameter into the estimation process using prior 
distribution. 
 

Methodology 
 
Beyond the methodological advantages of the 
EAP over the ML illustrated above, it would be 
useful to investigate the empirical behavior of 
the two estimators over various conditions 
especially for a small sample sizes. In this study, 
a Monte Carlo simulation was used to examine 
the effect of sample size, population correlation 
magnitude, and number of categories on the 
PCC estimation for both EAP and ML 
estimators. The procedures can be summarized 
in the following way: (1) bivariate normal data 
was randomly generated from specific 
population correlation magnitude (ρ) and sample 
size (n); (2) the generated interval data was 
categorized over number of categories based on 
the threshold scheme and; (3) PCC was 
estimated by the EAP and ML estimation 
methods; and (4) the above procedures were 
repeated 1,000 times (i.e., iteration number in = 
1,000). 
 
Data Generation 

The sample size variable was n = 30, 50, 
100, and 500 observations. These numbers were 
chosen to reflect from small to moderate sample 
size that might be commonly encountered in the 
social sciences. The population correlation 
variable was chosen with ρ = 0, 0.1, 0.3, 0.5, and 
0.7 magnitudes, ranging from null to moderate 
high. 

The categorization rule (threshold 
scheme) used in this simulation study was the 
normal category option, which was also called 
the equal category width option within the range 
from -3 to 3 in standard normal distribution 
(Bollen & Barb, 1981). Therefore, the 
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distribution of categorized data gets closer to 
normal as the number of categories is increased. 
The number of category for both ordinal 
variables was r = s = 2, 3, 5, and 7. 

EAPPCC, a MATLAB subroutine (Choi 
et al., in press) was adopted for both EAP and 
ML estimators. Also, entire Monte Carlo 
simulation was implemented by a specialized 
program code in MATLAB (The MathWorks 
Inc., 2007), and the MVNRND function in 
MATLAB was used to generate bivariate normal 
data with specified population correlation (ρ) 
magnitude and sample size (n). 
 
Estimation Options 

In this study, the following estimators 
were considered: the ML, the EAP with Uniform 
(−1, 1) prior (EAPU), the EAP with Normal (0, 
1/3) prior (EAPN), the EAP with Beta (5, 5) 
prior (EAPB5), and the EAP with Beta (1.5, 1.5) 
prior (EAPB1.5). The latter three were 
compared for prior sensitivity  onto  estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the range of Beta and Normal prior 
distribution have been adjusted to [-1, 1] for the 
purpose of constructing the appropriate priors 
for the correlation. As shown in Figure 1, the 
shape of Beta (5, 5) is very similar to that of 
Normal (0, 1/3). From the perspective of 
informativeness of prior, above two priors are 
more informative than Beta (1.5, 1.5) prior 
whereas the uniform distribution is least 
informative, specifically non-informative. Note 
that for comparing the performance of ML and 
EAP estimator, the EAPU (EAP with Uniform 
prior) was compared to the ML. 

A two-step ML method was employed 
for the ML method and the EAP method adopted 
100 quadrature points (k = 100). Chen et al. 
(1998) showed that any quadrature points of 20 
or above were substantially the same. Therefore, 
100 quadrature points would be a fair balance 
considering both accuracy requirement and 
computational load in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Probability density functions for four prior distributions: Uniform (-1, 1), 
Beta (1.5, 1.5), Beta (5, 5), Normal (0, 1/3) 
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First, the convergence of the ML estimator was 
examined using the convergence rate (CR): 
 

/ 100 %CR pcin in= ×                (6) 
 
where pcin was the properly converged iteration 
number, and in was the total iteration number 
attempted (i.e., in = 1,000). 

Second, for evaluating the bias of the 
ML and EAPU (EAP with uniform distribution 
as prior) estimates, mean relative bias (MRB) 
was employed as the major statistics, and its 
general form was (Bandalos, 2006): 
 

1
( ) / /

pcin
ii

MRB pcinρ ρ ρ
∧

=
 = −  

       (7) 

where i

∧
ρ  was the ith iteration PCC estimate. In 

case of ρ = 0, mean bias (MB) was used instead 
of MRB, to avoid the issue of dividing by zero: 
 

1
/

pcin
ii

MB pcinρ ρ
∧

=
 = −  

 .          (8) 

 
In case average MRB values over different ρ 
magnitudes were needed (e.g., Figures 2 and 4), 
the MB values of ρ = 0 were excluded from 
averaging MRB values. Additionally, mean 
value (M) of estimates were also presented and 
analyzed: 
 

1
/

pcin

i i
M pcinρ

∧

=
= .              (9) 

 
Third, for evaluating the variability of 

the ML and EAPU estimates, root mean squared 
error (RMSE) and standard deviation of mean 
values (SD) were examined with the following 
definitions: 
 

1/2
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and 
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MRB and SD were used for examining the prior 
sensitivity of EAP estimators. 
 

Results 
 
Convergence Rate for the ML Estimator 

In this study, the convergence of both 
EAP and ML estimators was assessed; as shown 
in previous studies (e.g., Flora & Curran, 2004), 
not all iterations were converges for the ML 
estimator in this study as well. From the pilot 
study, it was found that the convergence rate 
was very low (< 30%) in most cases when a 
fixed initial value (0) was used. Therefore, 
PPMC was used with categorized data as the 
initial value for the ML method in this 
simulation study. 

As indicated in Table 1, the average 
convergence rates were below 100% in all 
scenarios for the ML. Furthermore, as the 
sample size, number of categories, or ρ 
magnitude decrease, the rates tended to become 
worse. In contrast, as expected, EAP estimates 
could be obtained for all iterations for all 
conditions (i.e., pcin = 1,000 for the EAP). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bias of ML and EAPU Estimates 

Statistics regarding the bias of 
estimators (M and MRB) are presented in Table 
2, and are also summarized and depicted in 
Figure 2. 

First, for ρ = 0, the differences between 
the ML and EAP (specifically the EAPU) 
estimators were negligible, and M for both 
estimates were very close to zero (i.e., |M| < 0.01 
for most cases). 

Table 1: Convergence Rates of the ML 
Estimator 

n 30 50 100 500  

% 98.1 98.7  99.1  99.4  

r = s 2 3 5 7  

% 97.5 99.1  99.5  99.4  

ρ 0 0.1 0.3 0.5 0.7 

% 97.8 98.1  98.7  99.1 99.5 
Note. Values were averaged over other 
conditions 
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Table 2: Simulation Results of the ML and EAPU Estimates 

 

ML EAPU 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0, r = s = 2 ρ = 0, r = s = 2 
30 -0.013 0.295 -0.013 0.295 -0.011 0.249 -0.011 0.249 
50 0.001 0.224 0.001 0.224 0.001 0.201 0.001 0.202 

100 -0.003 0.161 -0.003 0.161 -0.003 0.152 -0.003 0.152 
500 0.002 0.074 0.002 0.069 0.002 0.072 0.002 0.068 

n ρ = 0, r = s= 5 ρ = 0, r = s= 5 
30 0.007 0.231 0.007 0.231 0.006 0.202 0.006 0.202 
50 0.007 0.165 0.007 0.165 0.007 0.150 0.007 0.150 

100 0.000 0.111 0.000 0.110 0.000 0.105 0.000 0.105 
500 0.004 0.050 0.004 0.051 0.004 0.050 0.004 0.050 

n ρ = 0.1, r = s= 2 ρ = 0.1, r = s= 2 

30 0.102 0.291 2.115 0.291 0.087 0.247 -13.291 0.247 
50 0.096 0.224 -3.980 0.225 0.086 0.202 -13.581 0.203 

100 0.091 0.150 -9.227 0.151 0.086 0.142 -14.056 0.143 
500 0.103 0.073 3.334 0.070 0.102 0.071 1.924 0.069 

n ρ = 0.1, r = s= 5 ρ = 0.1, r = s= 5 
30 0.109 0.217 9.145 0.217 0.095 0.191 -4.611 0.191 
50 0.097 0.163 -2.837 0.163 0.089 0.149 -11.277 0.150 

100 0.102 0.112 1.488 0.112 0.096 0.107 -3.552 0.107 
500 0.102 0.050 1.460 0.050 0.100 0.050 0.297 0.050 

n ρ = 0.3, r = s= 2 ρ = 0.3, r = s= 2 
30 0.282 0.265 -6.102 0.267 0.240 0.226 -20.096 0.234 
50 0.300 0.205 0.080 0.205 0.271 0.186 -9.587 0.188 

100 0.302 0.150 0.515 0.150 0.286 0.143 -4.631 0.143 
500 0.299 0.069 -0.476 0.066 0.295 0.069 -1.761 0.065 

n ρ = 0, r = s= 3 ρ = 0, r = s= 3 
30 -0.016 0.275 -0.016 0.276 -0.014 0.236 -0.014 0.236 
50 0.002 0.214 0.002 0.215 0.002 0.194 0.002 0.195 

100 0.001 0.140 0.001 0.140 0.001 0.132 0.001 0.132 
500 0.001 0.062 0.001 0.062 0.001 0.061 0.001 0.061 

n ρ = 0, r = s= 7 ρ = 0, r = s= 7 
30 0.002 0.208 0.002 0.208 0.002 0.182 0.002 0.182 
50 -0.001 0.155 -0.001 0.155 -0.001 0.142 -0.001 0.141 

100 0.003 0.113 0.003 0.113 0.003 0.108 0.003 0.107 
500 0.002 0.048 0.002 0.048 0.002 0.048 0.002 0.048 

a Mean bias (MB) was used instead of MRB in case of ρ = 0 
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Table 2: Simulation Results of the ML and EAPU Estimates (continued) 

 

ML EAPU 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0.1, r = s= 3 ρ = 0.1, r = s= 3 

30 0.112 0.270 11.719 0.271 0.096 0.231 -4.081 0.231 
50 0.104 0.203 3.799 0.201 0.094 0.184 -6.248 0.182 

100 0.108 0.136 7.582 0.137 0.102 0.129 1.688 0.129 
500 0.103 0.058 2.509 0.058 0.101 0.058 1.211 0.058 

n ρ = 0.1, r = s= 7 ρ = 0.1, r = s= 7 
30 0.082 0.192 -18.201 0.193 0.071 0.168 -28.592 0.171 
50 0.104 0.147 3.537 0.147 0.095 0.135 -5.346 0.135 

100 0.106 0.111 5.876 0.111 0.101 0.105 0.714 0.105 
500 0.099 0.047 -0.563 0.047 0.098 0.047 -1.691 0.047 

n ρ = 0.3, r = s= 3 ρ = 0.3, r = s= 3 
30 0.323 0.255 7.648 0.256 0.280 0.222 -6.835 0.223 
50 0.316 0.184 5.209 0.185 0.287 0.170 -4.226 0.170 

100 0.299 0.132 -0.243 0.132 0.284 0.127 -5.286 0.127 
500 0.297 0.055 -1.025 0.055 0.294 0.055 -2.140 0.055 

n ρ = 0.3, r = s= 5 ρ = 0.3, r = s= 5 
30 0.301 0.200 0.462 0.200 0.266 0.180 -11.369 0.183 
50 0.297 0.151 -1.169 0.151 0.273 0.142 -9.041 0.144 

100 0.304 0.104 1.263 0.103 0.290 0.100 -3.199 0.100 
500 0.300 0.046 -0.006 0.046 0.297 0.046 -0.982 0.046 

n ρ = 0.5, r = s= 2 ρ = 0.5, r = s= 2 
30 0.492 0.235 -1.602 0.235 0.422 0.206 -15.541 0.220 
50 0.488 0.176 -2.329 0.176 0.444 0.163 -11.237 0.173 

100 0.499 0.128 -0.161 0.128 0.475 0.123 -4.947 0.125 
500 0.501 0.058 0.236 0.056 0.495 0.058 -0.988 0.056 

n ρ = 0.5, r = s= 5 ρ = 0.5, r = s= 5 

30 0.515 0.172 3.003 0.172 0.463 0.164 -7.332 0.168 
50 0.501 0.130 0.235 0.130 0.468 0.127 -6.339 0.131 

100 0.508 0.088 1.693 0.088 0.491 0.088 -1.778 0.088 
500 0.499 0.041 -0.164 0.041 0.496 0.041 -0.884 0.041 

n ρ = 0.7, r = s= 2 ρ = 0.7, r = s= 2 
30 0.685 0.192 -2.217 0.193 0.598 0.178 -14.637 0.205 
50 0.692 0.142 -1.180 0.143 0.636 0.138 -9.079 0.151 

100 0.698 0.099 -0.241 0.099 0.669 0.098 -4.400 0.102 
500 0.700 0.044 -0.009 0.043 0.693 0.044 -0.945 0.044 

a Mean bias (MB) was used instead of MRB in case of ρ = 0 
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Table 2: Simulation Results of the ML and EAPU Estimates (continued) 

 

ML EAPU 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0.7, r = s= 5 ρ = 0.7, r = s= 5 

30 0.709 0.124 1.299 0.124 0.655 0.128 -6.458 0.136 
50 0.711 0.092 1.622 0.092 0.679 0.095 -2.997 0.097 

100 0.705 0.064 0.714 0.065 0.689 0.066 -1.559 0.067 
500 0.701 0.028 0.119 0.028 0.698 0.029 -0.330 0.029 

n ρ = 0.3, r = s= 7 ρ = 0.3, r = s= 7 
30 0.310 0.187 3.472 0.188 0.275 0.170 -8.252 0.171 
50 0.303 0.146 1.003 0.146 0.280 0.137 -6.707 0.138 

100 0.301 0.102 0.353 0.102 0.288 0.099 -3.927 0.099 
500 0.301 0.045 0.301 0.044 0.298 0.044 -0.644 0.044 

n ρ = 0.5, r = s= 3 ρ = 0.5, r = s= 3 
30 0.503 0.214 0.571 0.214 0.440 0.193 -12.068 0.202 
50 0.507 0.162 1.445 0.162 0.466 0.154 -6.707 0.157 

100 0.502 0.112 0.445 0.112 0.481 0.110 -3.861 0.112 
500 0.500 0.051 0.049 0.051 0.496 0.051 -0.863 0.051 

n ρ = 0.5, r = s= 7 ρ = 0.5, r = s= 7 

30 0.513 0.156 2.530 0.157 0.464 0.151 -7.108 0.155 
50 0.510 0.122 2.018 0.122 0.479 0.120 -4.156 0.122 

100 0.502 0.083 0.341 0.083 0.486 0.083 -2.896 0.084 
500 0.501 0.037 0.214 0.037 0.498 0.037 -0.456 0.037 

n ρ = 0.7, r = s= 3 ρ = 0.7, r = s= 3 
30 0.719 0.169 2.641 0.170 0.640 0.161 -8.573 0.172 
50 0.706 0.122 0.791 0.122 0.659 0.121 -5.906 0.127 

100 0.695 0.090 -0.665 0.090 0.672 0.090 -4.028 0.094 
500 0.701 0.038 0.178 0.038 0.697 0.038 -0.491 0.039 

n ρ = 0.7, r = s= 7 ρ = 0.7, r = s= 7 
30 0.705 0.116 0.646 0.116 0.657 0.120 -6.143 0.128 
50 0.703 0.089 0.366 0.089 0.674 0.093 -3.677 0.096 

100 0.703 0.057 0.436 0.057 0.689 0.058 -1.542 0.059 
500 0.700 0.026 0.057 0.026 0.698 0.026 -0.329 0.026 

a Mean bias (MB) was used instead of MRB in case of ρ = 0 
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Figure 2: MRB across Different Sample Sizes, Correlation Magnitude, and Number of Categories 
(Values averaged over other conditions; Mean Bias (MB) was Used in Case of ρ = 0) 
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Second, as sample size increased, the 
difference between the two estimators 
disappeared, and both estimators performed 
better (i.e., smaller magnitude of MRB). Also, it 
seemed the EAP estimator was more sensitive to 
the change of sample size than the ML estimator 
according to Table 2 and Figure 2. 

Third, for small sample sizes (n = 30 
and 50) with non-zero ρ magnitude, MRB 
patterns of the two estimators substantially 
differed. For the ML case, MRB values can be 
largely positive or negative. Accordingly, the 
average MRB values (depicted in Figure 2) 
appeared to be smaller than most individual 
biases. Namely, the average MRB in Figure 2 
were attenuated compared with the actual bias of 
the ML estimator in terms of MRB. For EAPU 
case, the MRB values tended to be largely 
negative for most cases, which supported the 
consistency between average and individual 
MRB values in Table 2 and Figure 2. These 
observations suggested the existence of 
systematic underestimation for the EAP 
estimator. 

Fourth, the EAP estimator performed 
slightly better as ρ magnitude increased except 
in the null case. Also, the EAP estimator 
performed poorly for two categories as 
compared to higher numbers of categories, as 
shown in Figure 2. Again, the average MRB 
values for the ML in Figure 2 were less 
meaningful because they represent averages of 
the negative and positive values in each 
simulation cell MRB values. 
 
Variability of ML and EAPU Estimates 

Detailed RMSE and SD values of ML 
and EAP estimates are presented in Table 2, and 
are summarized and depicted in Figure 3. 

First, in terms of RMSE and SD, the 
EAP outperformed the ML estimator in most 
cases. However, the differences in RMSE and 
SD among estimators are negligible for many 
cases. 

Second, in small sample sizes (n = 30 
and 50), the EAP estimator clearly outperformed 
the ML estimator (Figure 3). As sample size 
increased, the difference of RMSE values 
between two estimators disappeared, and the 
variability or fluctuation became increasingly 

smaller, which suggested that both estimators 
were asymptotically efficient. 

Third, a similar pattern was found over 
ρ magnitude. In small magnitude, the EAP 
estimator evidently outperformed the ML 
estimator. As the magnitude increased, the 
difference between the two estimators 
disappeared, and the variability of estimates 
decreased for both estimators. However, RMSE 
values were more sensitive to the change of 
sample size than that of ρ magnitude. This can 
be observed by comparing different charts in 
Figure 3. 

Fourth, for number of categories, the 
EAP estimator also appeared to outperform the 
ML estimator in all cases. However, the 
differences in RMSE values between five and 
seven categories were very small for both 
estimators. 
 
Prior Sensitivity for EAP with Different Prior 
Distributions 

Statistics of EAP estimates with 
different prior distributions are presented in 
Table 3, and those are also summarized and 
depicted in Figures 4 through 5. 

First, the EAP estimators whose prior 
distributions were more informative increasingly 
biased toward the mean of prior distribution. As 
shown in Table 3, the mean of estimates (M) for 
both EAPN and EAPB5 estimators, whose prior 
distributions are most informative (Figure 1), are 
very close to zero for most conditions. Also, 
MRB values for both EAPN and EAPB5 were 
extremely negatively biased (approximately -92) 
for all non zero population correlation cases. 
The M and MRB values for EAPB1.5, whose 
prior distribution is moderately informative in 
this study, are always between the above 
informative prior cases and the least informative 
prior case, EAPU. The MRB values in Figure 4 
present essentially the same results. 

Second, for estimators whose prior 
distributions were more informative, the 
variability of estimates in terms of SD was less. 
Both EAPN and EAPB5 cases showed the 
smallest SD values, whereas the SD values of the 
EAPB1.5 estimator were larger when compared 
with the above two estimators, but smaller when 
compared with the EAPU case (Figure 5). These 
results     were    also     consistent    with    the 
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Figure 3: RMSE across Different Sample Sizes, Correlation Magnitude, and 
Number of Categories  

(Values were averaged over other conditions.) 
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Table 3: Simulation Results of EAPU Estimates with Different Prior 
Distributions 

 

EAPU EAPB1.5 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0 ρ = 0 

30 -0.004 0.217 -0.004 0.217 -0.001 0.089 -0.001 0.089 
50 0.002 0.172 0.002 0.172 0.001 0.069 0.001 0.069 

100 0.000 0.124 0.000 0.124 0.000 0.049 0.000 0.049 
500 0.002 0.058 0.002 0.057 0.001 0.022 0.001 0.022 

n ρ = 0.1 ρ = 0.1 
30 0.087 0.209 -12.644 0.210 0.036 0.085 -63.600 0.107 
50 0.091 0.168 -9.113 0.168 0.038 0.067 -62.341 0.092 

100 0.096 0.121 -3.801 0.121 0.039 0.048 -61.026 0.077 
500 0.100 0.056 0.435 0.056 0.040 0.022 -60.496 0.065 

n ρ = 0.3 ρ = 0.3 
30 0.265 0.200 -11.638 0.203 0.112 0.082 -62.550 0.205 
50 0.278 0.159 -7.390 0.160 0.115 0.065 -61.684 0.196 

100 0.287 0.117 -4.261 0.117 0.116 0.047 -61.302 0.190 
500 0.296 0.053 -1.382 0.052 0.118 0.022 -60.675 0.184 

n ρ = 0.5 ρ = 0.5 
30 0.447 0.179 -10.512 0.186 0.191 0.077 -61.865 0.319 
50 0.464 0.141 -7.110 0.146 0.194 0.061 -61.179 0.312 

100 0.483 0.101 -3.370 0.102 0.199 0.044 -60.226 0.304 
500 0.496 0.047 -0.798 0.046 0.203 0.024 -59.395 0.300 

n ρ = 0.7 ρ = 0.7 
30 0.637 0.147 -8.967 0.160 0.275 0.071 -60.667 0.430 
50 0.662 0.112 -5.415 0.118 0.284 0.055 -59.471 0.419 

100 0.680 0.078 -2.882 0.081 0.289 0.039 -58.658 0.412 
500 0.697 0.034 -0.524 0.034 0.297 0.023 -57.632 0.406 

Note. Values were averaged across different number of categories 
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Table 3: Simulation Results of EAPU Estimates with Different Prior 
Distributions (continued) 

 

EAPB5 EAPN 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0 ρ = 0 

30 -0.001 0.017 -0.001 0.017 -0.001 0.016 -0.001 0.016 
50 0.000 0.013 0.000 0.013 0.000 0.012 0.000 0.012 

100 0.000 0.010 0.000 0.010 0.000 0.009 0.000 0.009 
500 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 

n ρ = 0.1 ρ = 0.1 
30 0.007 0.016 -92.914 0.095 0.006 0.015 -93.578 0.095 
50 0.007 0.013 -92.636 0.094 0.007 0.012 -93.352 0.094 

100 0.007 0.009 -92.400 0.093 0.007 0.009 -93.164 0.093 
500 0.007 0.005 -92.328 0.092 0.007 0.004 -93.114 0.093 

n ρ = 0.3 ρ = 0.3 
30 0.022 0.016 -92.712 0.278 0.020 0.014 -93.393 0.280 
50 0.022 0.012 -92.585 0.278 0.020 0.011 -93.306 0.280 

100 0.022 0.009 -92.538 0.278 0.020 0.008 -93.286 0.280 
500 0.023 0.005 -92.409 0.277 0.021 0.004 -93.185 0.280 

n ρ = 0.5 ρ = 0.5 
30 0.037 0.014 -92.688 0.464 0.033 0.013 -93.368 0.467 
50 0.037 0.011 -92.603 0.463 0.033 0.010 -93.319 0.467 

100 0.038 0.008 -92.453 0.463 0.034 0.007 -93.205 0.466 
500 0.039 0.005 -92.293 0.462 0.035 0.004 -93.076 0.466 

n ρ = 0.7 ρ = 0.7 
30 0.052 0.013 -92.623 0.648 0.047 0.011 -93.304 0.653 
50 0.053 0.009 -92.470 0.647 0.048 0.009 -93.192 0.652 

100 0.053 0.007 -92.370 0.647 0.048 0.006 -93.123 0.652 
500 0.054 0.004 -92.213 0.646 0.049 0.004 -92.998 0.651 

Note. Values were averaged across different number of categories 
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Figure 4: MRB of the EAP Estimator across Different Sample Sizes and 
Correlation Magnitude 

(Values were averaged over other conditions) 
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Figure 5: SD of the EAP Estimator across Different Sample Sizes and 
Correlation Magnitude 

(Values were averaged over other conditions) 
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informativeness order of different prior 
distributions (Figure 1). 

Third, the performance of the EAP 
estimators in terms of biases (MRB) and 
variability (SD) got better as sample size or ρ 
increase. However, as the prior distribution got 
more informative, both MRB and SD are less 
sensitive to the change of sample size or ρ 
magnitude, whereas the EAPU estimates were 
most sensitive to those changes (Figures 4 
through 5). Furthermore, for ρ = 0 magnitude, 
biases of all estimators disappeared. 
 

Conclusion 
 
This study attempted to evaluate and compare 
the behaviors of ML and EAP estimators for 
PCC focusing on small sample size cases. The 
convergence rate of the ML estimator improves 
when using the PPMC for categorized data as 
the initial value rather than a fixed number, 0. 
However, non-converged cases for the ML 
remain an issue. In contrast, for the EAPU 
estimator, there is no non-convergent issue. 
These results could prove promising and useful 
to the applied researcher who is planning to 
estimate PCC and perhaps already arrived at a 
non-converged solution from the ML estimator. 

For small sample sizes, the ML 
estimator can substantially underestimate or 
overestimate the ρ magnitude, whereas the EAP 
estimator always underestimates the ρ 
magnitude as shown in Figure 6. This, shrinkage 
effect, is a well known problem of EAP, similar 
to other Bayesian estimates. Because of the 
nature of EAP, a weighted average of posterior 
distribution which is a function of prior, EAP 
estimates is generally biased toward the mean of 
the prior distribution. Because all priors used in 
this research have zero as a mean, EAP 
estimates were biased toward zero for all cases. 
Important issues to be addressed include 1) the 
shrinkage effect is more apparent as the ρ 
magnitude increased or sample size decreased; 
and 2) the shrinkage effect disappears when ρ = 
0. 

Although this shrinkage effect is 
obviously a negative aspect of the EAP 
estimator, the systematic underestimation pattern 
could be wisely utilized to arrive at a 
conservative estimate of the true value. As 

shown in Figure 2 and Table 2, the true value is 
most likely 0% to 15% higher than the EAPU 
estimate. Applied researchers should note that 
the ML estimator cannot provide such 
information. 

For the variability of estimates in terms 
of RMSE or SD, the EAP estimator generally 
outperforms the ML estimator. The results are 
more apparent when the sample size, ρ 
magnitude, or number of categories is small. 
Because the EAP estimator is a weighted 
average over a prior distribution, it tends to 
provide more stable estimates than the ML 
estimator in those conditions. 

For the EAP estimator with small 
sample sizes, the use of two categories would 
not be recommended due to relatively large bias 
and variability of estimates. Meanwhile, the use 
of three, five, or seven categories does not 
provide much difference in MRB values. 
Although RMSE gets smaller as the number of 
categories increases, the difference in RMSE 
between two categories and higher numbers of 
categories is not as imminent as that of MRB 
(i.e., the average RMSE with two categories – 
the average RMSE with seven categories < 
0.05). In sum, especially when sample sizes are 
small (50 or below) and number of categories 
are not large (five or below), the EAP estimator 
can be recommended over the ML because the 
EAP is free from the convergence issue and 
provides smaller estimate variability. Also, as 
the sample size increases, both the shrinkage 
effect and the difference between the ML and 
EAP estimators disappear. 

EAP estimators with more informative 
prior distribution could result in stronger bias 
toward the mean of the prior distribution, and 
provide less variation of estimates in terms of 
SD. For EAP estimators with relatively 
informative prior distributions like EAPN or 
EAPB5, both bias and variation of estimates are 
insensitive to the change of the sample size or ρ 
magnitude. For applied researchers with a strong 
a priori belief of the true correlation, EAP can 
provide a more stable estimate. Researchers can 
also include such information into an estimation 
procedure by adopting an informative prior 
distribution in the EAP estimator. This 
advantage of the EAP is beneficial especially 
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when the research involves small sample sizes in 
practice. 

The following suggestions for future 
research on the estimation of PCC are based on 
the findings from this study. First, other 
Bayesian estimate, e.g., maximum a posteriori 
(MAP) estimate might be considered for 
analysis. As it relies on the mode, rather than the 
mean, of the posterior distribution, MAP could 
have some advantages against either the EAP or 
ML   estimates.   Second,  the    violation     of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

normality under different settings should be 
considered. As it has been shown that modest 
violation to normality is not critical for the ML 
estimator under relatively large sample size 
(Flora & Curran, 2004; Olsson, 1979; Quiroga, 
1992), the situations for small sample size or for 
other estimators are not fully understood yet. 
Third, as this study focused on the point 
estimate, investigations on the interval estimates 
over different estimators would be needed, and 
should be addressed in future research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: M across Different Sample Sizes 
(Values were averaged over number of categories) 
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