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Participants in epidemiologic studies may not represent statistically independent observations. We consider 
modifications to conventional analyses of 2×2 tables, including Fisher’s exact test and confidence intervals, to 
account for correlated observations in this setting. An example is provided, assessing the robustness of 
conclusions from a published analysis. 
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Introduction 
 
Participants in epidemiologic studies may not 
represent statistically independent observations. 
For instance, some individuals may belong to the 
same family. This will usually make simple 
statistical tests for exposure-risk relationships 
anti-conservative, i.e., the strength of evidence for 
a relationship will be exaggerated by ignoring the 
lack of independence. We consider a method to 
modify the standard statistical tests for 2×2 tables 
in this setting, in order to account for such non-
independent observations. 

For convenience and clarity, we describe 
the method in terms of an example comparison of 
“exposed” and “unexposed” children born to 
mothers enrolled in a study. Intra-family 
correlations may induce inter-dependence or 
clustering of outcomes between siblings. If the 
exposure of interest is a fixed characteristic of the 
mother,   such  as   whether  or  not  the   mother is 
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positive for a hereditary gene mutation, then all 
children of that mother will be concordant on their 
exposure. This will tend to induce positive 
correlations between outcomes in the siblings. 
Other exposures (e.g., gender of the child) may be 
concordant or discordant, and some exposures 
(e.g., birth-order) will always be discordant. Most 
previous research in this area has focused only on 
settings with no discordant exposures. 

In this paper we provide a correction 
factor for the ordinary Pearson chi square test for 
independence, and for the construction of 
confidence intervals, and also propose a method 
for applying the correction factor to Fisher’s exact 
test. The correction factor depends on the numbers 
of concordant pairs in each exposure group, the 
number of discordant pairs, and the intra-family 
correlation in outcome. We evaluate properties of 
the new tests using simulations. 

An important application of these methods 
is in evaluating published epidemiologic findings 
based on a 2×2 table when correlated observations 
have been naively assumed to be independent. The 
methods in this paper can then be used to check 
the robustness of their findings after accounting 
for non-independence. 
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Methodology 

Suppose there are N1 and N2 subjects, respectively, 
in the exposed and unexposed groups (N=N1+N2). 
Let 1π̂ and 2π̂ denote the estimated probabilities 
of a binary disease outcome in the two groups. 
Assuming all observations are independent, under 
the null hypothesis of equal response probabilities, 
H0: 21 π=π , the variance of 21 ˆˆ ππ −  is 

 

 [ ] ( )[ ]1 2 1 2ˆ ˆvar 1 1 1 ,− = − +N Nπ π π π  

 (1) 

where 1 2π π π= = . 

Thus the normal approximation statistic for testing 
H0 is  
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where ( ) ( )212211 /ˆˆ NNNN ++= πππ  denotes 
the overall estimate of response probability from 
both groups combined. Z has approximately a 
standardized normal distribution under H0 when 
N1 and N2 are large, and Z2 is the statistic from the 
ordinary Pearson chi square test for independence. 

To account for lack of independence, let ρ 
be the within-family correlation of disease 
outcome (i.e., the correlation between binary 
variables), which is assumed known. Let S be the 
total number of sibling pairs. Note that each 
individual can be in more than one of the S pairs, 
for example four siblings would contribute six 
pairs to S. Let S11, S12 and S22 denote the number 
of concordant exposed, discordant and concordant 
unexposed pairs, respectively (where “concordant 
exposed” means that both members of the pair are 
exposed and the other terms are defined similarly). 
Thus S= S11+S12+S22. Using standard results for 
the variance of a linear combination of correlated 
variables, it can be shown that  

 

1 2 1 2
2 2
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Expressions (1) and (2) suggest that the Pearson 
chi square statistic should be multiplied by a 
correction factor.  

 

( )
1 2
2 2

1 2 11 1 12 1 2 22 2

1N 1NCF .
1N 1N 2 S N S NN S N

+
=

+ + ρ − +  

 
We refer to this as the modified chi square test for 
independence. In practice, ρ needs to be estimated, 
or a range of values used, because it is usually 
unknown. 

It seems plausible that the correction 
factor can also be used to account for 
non-independence when performing Fisher’s exact 
test, as would be appropriate in studies with small 
sample sizes. Suppose one wants an α=0.05 level 
Fisher’s exact test. Rather than rejecting H0 when 
the sum of probabilities of extreme tables is less 
than 0.05 (which corresponds to rejecting H0 if 
Pearson’s chi square statistic is greater than 3.84), 
one would use the nominal p-value which 
corresponds to the probability that the chi square 
distribution exceeds 3.84×CF. We refer to this as 
the modified Fisher’s exact test. 

The methods described so far have been in 
terms of hypothesis testing. By relaxing the null 
hypothesis assumption that π1=π2, one can extend 
the results so that confidence intervals can be 
constructed. Generalizing expression (2) by 
allowing π1≠π2 yields the following formula for 
the variance of the risk difference, which accounts 
for correlations: 
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 In practice, π1 and π2 would be replaced 
by observed proportions from the data. Similarly, 
the familiar variance estimate for the log odds 
ratio (OR) based on a 22×  table with cell entries 
{a,b,c,d}, where 1π̂ =a/(a+b) and 2π̂ =c/(c+d), is 
 

( ) .1111ˆlogrâv
dcba

RO +++=  

 
  With correlated observations this 
generalizes to: 
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These variance estimates can be used to construct 
confidence intervals for a risk difference or odds 
ratio based on a normal approximation. 

We evaluate the true size of the modified 
Pearson chi square test for independence and 
modified Fisher’s exact tests via simulations. For 
simplicity, in all simulations we assumed equal 

exposure group sample sizes (N1=N2) and a 
maximum number of siblings per family of two. 

Letting θ denote the response probability, 
consider a fairly rare and a common outcome 
probability, θ = 0.1 and 0.5; small and large intra-
family correlations, ρ={0.2, 0.8}; three total 
sample sizes, N=N1+N2={24, 100, 500}; and a low 
and high proportion of N which is made up of 
siblings, 2S/N≈{0.08, 0.64}. (A footnote to Table 
3 below explains why we were not always able to 
achieve 2S/N=0.08 and 0.64 exactly.) 

For each combination, we considered 
three ways that the S sibling pairs could be divided 
into concordant exposed, concordant unexposed 
and discordant pairs, as shown in Table 1. In 
configurations A and B all sibling pairs are 
concordant whereas in configuration C all pairs 
are discordant. Configuration A represents the 
extreme case where all concordant pairs are in a 
single exposure group. We did not consider cases 
with both concordant and discordant pairs because 
the signs on the Sij terms in expression (2) show 
that these terms would tend to cancel each other 
out and the results would be intermediate between 
configurations considered. 

All combinations of θ, ρ, N, S and 
configurations A-C were simulated (except for 
combinations with {N=24, θ=0.1}, which has a 
substantial probability of a zero marginal total 
because the study was too small). Thirty thousand 
simulations for each combination guaranteed that 
for a true rejection probability of 0.05, we would 
have a 95% chance of observing a rejection 
probability within [0.0475, 0.0525]. 
In the simulations, we used randomized critical 
regions (Cox and Hinkley, 1974) to correct for 
discreteness of the test statistic. Although this may 
not be used in practice, it makes the different 
procedures comparable by removing the inherent 
conservatism in Fisher’s exact test (Agresti, 1996). 

 

Example 

Dickover et al. (1996) analyzed 
mother-to-child transmission of human 
immunodeficiency virus (HIV) in 97 mother-
infant pairs, including two pregnancies resulting in 
twins and three mothers each having two singleton 
pregnancies. Thus, the 97 mother-infant pairs 
represented 95 pregnancies in 92 women. 
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Table 1. Three configurations for allocating 
siblings to concordant exposed, concordant 
unexposed and discordant pairs in the simulation 
study. 

 Configuration 

 A  B  C 

 conc disc   conc disc   conc disc  

exp  100  0 100   50  0  50   0  50  50

unexp  0  0  0   50  0  50   0  50  50

  100  0 100   100  0 100   0 100  100

 
Note: Numbers in each cell represent the 
percentage of the total number of siblings. (conc = 
concordant, disc = discordant, exp = exposed, 
unexp = unexposed). 
 

 
One of the exposures considered is the use 

of the antiretroviral treatment zidovudine (ZDV) 
by the mother during pregnancy and/or during 
labor and delivery. In all, four of 43 ZDV exposed 
infants were HIV infected compared with 16 of 54 
ZDV unexposed infants. The conventional Pearson 
χ2 statistic without continuity correction is 6.043, 
corresponding to a two-sided p-value of 0.014. 
The two-sided Fisher’s exact test p-value is 0.022. 

Although we know S11+S12+S22=5, we 
have only partial information on the values of S11, 
S12 and S22 from the paper. Clearly, ZDV exposure 
within each of the twin pairs must be concordant, 
although we do not know if each pair is exposed or 
unexposed, leading to the restriction S11+S22≥2. 
The paper states that ZDV was used in both 
pregnancies by at least one of the mothers with 
two singleton births, yielding S11≥1. 

 Given these restrictions, the most extreme 
allocations of {S11,S12,S22} result from setting 
{S11=5,S12=0,S22=0}, or at the other extreme, 
{S11=1,S12=3,S22=1}. Table 2 shows for both these 
extremes, the p-values for the modified Pearson χ2 
and the modified Fisher’s exact test over a range 
of values for ρ from –1.0 to 1.0. The ρ=0 column 
corresponds to the naïve analysis. The true 
(unknown) correlation is plausibly small and 
positive, although there are not sufficient data to 
evaluate this. However, even at the theoretical 

extremes (ρ=±1.0) the p-values change very little, 
illustrating that the presence of a small number of 
correlated observations in this data set has only 
minimal impact on the statistical findings. 

The estimated odds ratio relating HIV 
infection to ZDV exposure is 0.243 with 95% 
confidence interval (CI), assuming independence, 
of (0.075, 0.795). Assuming {S11=5,S12=0,S22=0} 
and a correlation of ρ=.20, the CI becomes (0.073, 
0.812). With a correlation of ρ=1.0 the CI 
becomes (0.068, 0.879). Again, the correlation has 
only minimal impact on statistical findings. 

 
Table 2. Modified Pearson chi square test for 
independence square p-value (top entry) and 
modified Fisher’s exact test p-value (bottom 
values) for mother-to-child HIV transmission 
example. 

 

 ρ 

{S11,S12,S22} -1.0 -0.5 -0.2 0.0 0.2 0.5 1.0

{5,0,0} .008
.014

.011 

.018 
.013 
.020 

.014 

.022 
.015
.024

.017

.026
.021
.031

{1,3,1} .015
.023

.014 

.023 
.014 
.022 

.014 

.022 
.014
.022

.013

.021
.013
.021

 

Simulation 

Simulation results for configurations B 
and C are shown in Table 3. Because N1=N2, the 
properties of the different tests are nearly invariant 
to any allocation of concordant siblings to the 
exposed and unexposed groups, and hence results 
for configuration A (not shown) are very similar to 
configuration B. Both the modified tests perform 
well, although the modified Fisher’s exact test 
appears to correct for correlation better than the 
modified Pearson chi square test in most situations 
studied.  
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 Table 3. Simulation Results. 

 
     Actual Test Size for Nominal α=.05 Test 

 
N1 

 
θ2 

 
Config3 

 
ρ4 

 
2S/N5 

 
Pearson 

Modified
Pearson 

 
Fisher 

Modified
Fisher 

100 .1 B .2 Low .0493 .0470 .0496 .0473 

100 .1 B .8 Low .0598 .0462 .0594 .0520 

100 .1 B .2 High .0639 .0414 .0635 .0485 

100 .1 B .8 High .1164 .0519 .1117 .0504 

500 .1 B .2 Low .0523 .0523 .0537 .0523 

500 .1 B .8 Low .0557 .0494 .0576 .0503 

500 .1 B .2 High .0666 .0515 .0673 .0517 

500 .1 B .8 High .1094 .0498 .1110 .0507 

24 .5 B .2 Low .0687 .0687 .0541 .0502 

24 .5 B .8 Low .0804 .0499 .0624 .0489 

24 .5 B .2 High .0829 .0533 .0647 .0495 

24 .5 B .8 High .1422 .0729 .1178 .0520 

100 .5 B .2 Low .0571 .0571 .0500 .0480 

100 .5 B .8 Low .0650 .0444 .0562 .0492 

100 .5 B .2 High .0733 .0486 .0650 .0505 

100 .5 B .8 High .1188 .0481 .1077 .0489 

500 .5 B .2 Low .0557 .0451 .0508 .0489 

500 .5 B .8 Low .0624 .0507 .0579 .0499 

500 .5 B .2 High .0667 .0453 .0614 .0472 

500 .5 B .8 High .1168 .0541 .1096 .0504 
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Table 3. (Continued) 
     Actual Test Size for Nominal α=.05 Test 

 
N1 

 
θ2 

 
Config3 

 
ρ4 

 
2S/N5 

 
Pearson 

Modified
Pearson 

 
Fisher 

Modified
Fisher 

100 .1 C .2 Low .0491 .0578 .0489 .0501 

100 .1 C .8 Low .0440 .0529 .0440 .0517 

100 .1 C .2 High .0373 .0532 .0377 .0523 

100 .1 C .8 High .0065 .0635 .0079 .0585 

500 .1 C .2 Low .0480 .0514 .0499 .0509 

500 .1 C .8 Low .0403 .0474 .0413 .0487 

500 .1 C .2 High .0357 .0504 .0367 .0511 

500 .1 C .8 High .0053 .0502 .0053 .0498 

24 .5 C .2 Low .0614 .0614 .0487 .0513 

24 .5 C .8 Low .0577 .0577 .0443 .0535 

24 .5 C .2 High .0456 .0488 .0352 .0519 

24 .5 C .8 High .0058 .0497 .0057 .0582 

100 .5 C .2 Low .0537 .0537 .0471 .0488 

100 .5 C .8 Low .0489 .0490 .0428 .0501 

100 .5 C .2 High .0412 .0424 .0364 .0507 

100 .5 C .8 High .0070 .0614 .0061 .0510 

500 .5 C .2 Low .0544 .0544 .0501 .0521 

500 .5 C .8 Low .0508 .0508 .0474 .0549 

500 .5 C .2 High .0392 .0507 .0361 .0509 

500 .5 C .8 High .0055 .0465 .0047 .0495 
1N: Total sample size 
2θ: Probability of disease outcome 
3Config:Configuration of concordant exposed, concordant unexposed and discordant sibling pairs 

(see Table 1) 
4ρ: Within-family correlation 
52S/N: Number of siblings as a proportion of total sample size. Target low and high values of 2S/N are 0.08 

and 0.64. With a small total sample size of N=24, it was not possible to achieve 2S/N=0.08 or 0.64 
exactly. For example, in configuration A (Table 1), with one concordant pair, 2S/N=2/24=0.08333 
instead of 0.08. Similarly, the actual values of 2S/N for configurations B and C were 0.1667 and 
0.0833, respectively. Instead of 0.64, the values of 2S/N were 0.50, 0.6667 and 0.50, respectively, for 
configurations A, B and C. With N=100 or 500, the only combination where it was impossible to 
achieve the target values of 2S/N was for {2S/N=0.64, Configuration A}, where allocating 64% of the 
sample to the exposed group would make N1 exceed N/2. Thus we used 2S/N=0.50 here. 
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As expected, the conventional tests tend to 

be anti-conservative when there are concordant 
siblings (configurations A and B) and conservative 
when there are discordant siblings. (configuration 
C). The conventional Pearson chi square test for 
independence and Fisher’s exact tests perform 
well when there are <10% siblings in the data set 
(2S/N≈0.08), even with correlation as high as 0.8.  
The magnitude of conservatism or anti-
conservatism increases with the correlation (ρ) and 
as the number of sibling pairs in the data set (S) 
increases. 

 
Conclusion 

 
We have presented modifications to the ordinary 
Pearson χ2 test for independence and to Fisher’s 
Exact test for the analysis of 2×2 tables when 
some of the observations are correlated. The 
methods achieve the desired properties across a 
wide range of possible data sets even with quite 
small sample sizes. Formulae for constructing 
modified confidence intervals are also provided. 

Previous work has focused on unstratified 
and stratified 2×2 tables and clustered data where 
it is assumed that exposure status is common to all 
units in a cluster (i.e., no discordant pairs) (Donald 
& Donner, 1987; Donner, 1989; Rao & Scott, 
1992; Rosner, 1982). This would occur, for 
example, if the exposure of interest was a genetic 
characteristic of the mother of children in a 
cluster. This assumption is not required in other 
research (Rosner & Milton, 1988; Begg, 1999) but 
these methods require enough clustered 
observations to allow the nature of the correlation 
to be estimated from the data. 

Another possible approach to analysis 
would be to use a logistic regression model with 
correlation between siblings from the same family. 
Standard errors that take the correlation into 
account can be obtained using generalized 
estimating equations (Diggle, Liang & Zeger, 
1994). Advantages of this modeling approach are 
that additional covariates can be added to the 
model, the covariates can be specific to each 
cluster unit and and the exposures of interest need 
not be dichotomous. However, its complexity is a 
problem and since it requires availability of the 
raw data it could not ordinarily be used to evaluate 
published results. 

Our modified procedures require 
knowledge of the correlation, ρ, which would be 
difficult to estimate unless the number of pairs is 
large. However, by repeating the analysis over a 
range of possible values for ρ, one can assess the 
sensitivity of conclusions to the presence of 
correlation. 

Determining a reasonable range of 
plausible values for ρ is difficult in part because 
correlations of binary variables have unusual 
properties. It is known that the correlation between 
binary variables is constrained by the true 
probabilities as follows (Prentice, 1988): If π1<π2 
then 
 

 
( ) ( )

( ) ( )

( )
( )

1 21 2

1 2 1 2

1 2
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1 π 1 π π π
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Estimates of π1 and π2 can therefore aid in 

setting bounds on ρ. Published results from 
analyses that naively assumed independence can 
easily be checked in such a sensitivity analysis, 
provided one is given enough information about 
the numbers of pairs in which both pair members 
are exposed, both are unexposed and exposure 
status is discordant. Unlike the value of ρ, these 
numbers would ordinarily be known when 
analyzing one’s own data but may not be known 
when assessing the impact of non-independence 
on published results, in which case a range of 
possible numbers can be used in a sensitivity 
analysis. 

Although the methods here are presented 
as for epidemiologic risk relations, they could also 
apply to clinical trials in which some (but not 
necessarily all) subjects have more than one 
“outcome,” for example on two eyes in 
ophthalmologic studies, two legs in studies of 
walking impairment or multiple teeth in dental 
studies. 

The procedures in this paper are most 
useful when there is a small amount of clustering 
so that the correlation cannot be reliably estimated, 
and when it is desired to evaluate the robustness of 
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conclusions to deviations from the assumption of 
independence. 

In conclusion, it is important to recognize 
that non-independent observations, such as 
subjects within the same family, may make 
conventional statistical analyses based on 
independence assumptions prone to be 
conservative or anti-conservative. Simple 
correction methods, such as that described here for 
dichotomous exposure and outcome, are of value 
in ensuring that appropriately valid inferences are 
drawn when non-independent observations are 
present. 
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