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Level Robust Methods Based on the Least Squares Regression Estimator 
 

Marie Ng Rand R. Wilcox 
University of Hong Kong University of Southern California 

 
 
Heteroscedastic consistent covariance matrix (HCCM) estimators provide ways for testing hypotheses 
about regression coefficients under heteroscedasticity. Recent studies have found that methods combining 
the HCCM-based test statistic with the wild bootstrap consistently perform better than non-bootstrap 
HCCM-based methods (Davidson & Flachaire, 2008; Flachaire, 2005; Godfrey, 2006). This finding is 
more closely examined by considering a broader range of situations which were not included in any of the 
previous studies. In addition, the latest version of HCCM, HC5 (Cribari-Neto, et al., 2007), is evaluated. 
 
Key words: Heteroscedasticity, level robust methods, bootstrap. 
 
 

Introduction 
Consider the standard simple linear regression 
model 

i 0 1 i1 iY = X ,i=1, ..., n,β + β + ε          (1) 

where β and βଵ are unknown parameters and εi 
is the error term. When testing the hypothesis, 

0 1H : β 0=                          (2) 

the following assumptions are typically made: 
 

1. E(ε୧) = 0. 
2. Var(ε୧) = σ2 (Homoscedasticity). 
3. ε୧’s are independent of X. 
4. ε୧’s are independent and identically 

distributed (i.i.d). 
 
This article is concerned with testing (2) when 
assumption 2 is violated. 

Let β = 	 (β, βଵ) be the least squares 
estimate of β	 = 	 (β, βଵ). When there is 
homoscedasticity (i.e., assumption 2 holds), an 
estimate of the squared standard error of β is 
Var(β) = 	σොଶ(X’X)ିଵ, where σොଶ = 	 (Y	 −	Xβ)’(Y	 − 	Xβ)/(n	 − 	2) is the usual estimate of 
the assumed common variance; X is the design 
matrix containing an n × 1 unit vector in the first 
column and X୧ଵ’s in the second column. 
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However, when heteroscedasticity 

occurs, the squared standard error based on such 
an estimator is no longer accurate (White, 1980). 
The result is that the usual test of (2) is not 
asymptotically correct. Specifically, using the 
classic t-test when assumptions are violated can 
result in poor control over the probability of a 
Type I error. One possible remedy is to test the 
assumption that the error term is homoscedastic 
before proceeding with the t-test. However, it is 
unclear when the power of such a test is 
adequate to detect heteroscedasticity. 

One alternative is to use a robust method 
that performs reasonably well under 
homoscedasticity and at the same time is robust 
to heteroscedasticity and non-normality. Many 
methods have been proposed for dealing with 
heteroscedasticity. For example, a variance 
stabilizing transformation may be applied to 
the dependent variable (Weisberg, 1980) or a 
weighted regression with each observation 
weighted by the inverse of the standard 
deviation of the error term may be performed 
(Greene, 2003). 

Although these methods provide 
efficient and unbiased estimates of the 
coefficients and standard error, they assume that 
heteroscedasticity has a known form. When 
heteroscedasticity is of an unknown form, the 
best approach to date, when testing (2), is to use 
a test statistic (e.g., quasi-t test) based on a 
heteroscedastic consistent covariance matrix 
(HCCM) estimator. Several versions of HCCM 
have been developed that provide a consistent 
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and an unbiased estimate of the variance of 
coefficients even under heteroscedasticity 
(White, 1980; MacKinnon & White, 1985). 

Among all the HCCM estimators, HC4 
was found to perform fairly well with small 
samples (Long & Ervin, 2000; Cribari-Neto, 
2004). Recently, Cribari-Neto, et al. (2007) 
introduced a new version of HCCM (HC5) 
arguing that HC5 is better than HC4, particularly 
at handling high leverage points in X. However, 
in their simulations, they only focused on 
models with ε ∼ N(0, 1). Moreover, only a 
limited number of distributions of X and patterns 
of heteroscedasticity were considered. In this 
study, the performances of HC5-based and HC4-
based quasi-t statistics were compared by 
looking at a broader range of situations. 

Methods combining an HCCM-based 
test statistic with the wild bootstrap method 
perform considerably better than non-bootstrap 
asymptotic approaches (Davidson & Flachaire, 
2008; Flachaire, 2005). In a recent study, 
Godfrey (2006) compared several non-bootstrap 
and wild bootstrap HCCM-based methods for 
testing multiple coefficients (H:	βଵ =	. . . =	β୮ = 0). It was found that when testing at the α 

= 0.05 level, the wild bootstrap methods 
generally provided better control over the 
probability of a Type I error than the non-
bootstrap asymptotic methods. However, in the 
studies mentioned, the wild bootstrap and non-
bootstrap methods were evaluated in a limited 
set of simulation scenarios. 

In Godfrey’s study, data were drawn 
from a data set in Greene (2003) and only two 
heteroscedastic conditions were considered. 
Here, more extensive simulations were 
performed to investigate the performance of the 
various bootstrap and non-bootstrap HCCM-
based methods. More patterns of 
heteroscedasticity were considered, as well as 
more types of distributions for both X and ε. 
Small sample performance of one non-bootstrap 
and two wild bootstrap versions of HC5-based 
and HC4-based quasi-t methods were evaluated. 

Finally, two variations of the wild 
bootstrap method were compared when 
generating bootstrap samples. One approach 
makes use of the lattice distribution. Another 
approach makes use of a standardized 

continuous uniform distribution: Uniform(-1, 1). 
The former approach has been widely 
considered (Liu, 1988; Davidson & Flachaire, 
2000; Godfrey, 2006) and was found to work 
well in various multiple regression situations. Of 
interest is how these two approaches compare 
when testing (2) in simple regression models. 
Situations were identified where wild bootstrap 
methods were unsatisfactory. 

 
Methodology 

HC5-Based Quasi-T Test (HC5-T) 
The HC5 quasi-t statistic is based on the 

standard error estimator HC5, which is given by Vሷ = ൫X′X൯ିଵX′diag  ୰మ( ) ඥ(ଵି୦)α൨ X൫X′X൯ିଵ,    

(3) 
where r୧, i = 1, ..., n are the usual residuals, X is 
the design matrix, 

maxii
i

maxii
n n

ii iii 1 i 1

khh
α min{ ,max 4,   }

h h

nkhnh
min{ ,max 4,   }

h h

− −

= =

  =  
  

  =  
   

  (4) 

and 

( ) 1'
ii i ih x X X x

−
= ′                 (5) 

where x୧ is the ith row of X, h୫ୟ୶ =max{hଵଵ, . . . , h୬୬}	and k is set at 0.7 as 
suggested by Cribari-Neto, et al. (2007, 2008). 
The motivation behind HC5 is that when high 
leverage observations are present in X, the 
standard error of the coefficients are often 
underestimated. HC5 attempts to correct such a 
bias by taking into account the maximal 
leverage. 

For testing (2), the quasi-t test statistic 
is,  

1 22T=  0ˆ / V−β                          (6) 

where Vሷଶଶis the 2nd entry along the diagonal of Vሷ . Reject (2) if |T| ≥ tଵିα/ଶ where tଵିα/ଶ is the 
1−α/2 quantile of the Student’s t-distribution 
with n − 2 degrees of freedom. 
 
HC4-Based Quasi-T Test (HC4-T) 

The HC4 quasi-t statistics is similar to 
HC5-T, except the standard error is estimated 
using HC4, which is given by 
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where 

1

min{4, }  min{4, }ii ii
i n

iii

h nh
hh

δ −

=

= =


       (8) 

 
HC5-Based Wild Bootstrap Quasi-T Test 
(HC5WB-D and HC5WB-C) 

The test statistic for testing (2) is 
computed using the following steps: 

 
1. Compute the HC5 quasi-t test statistics (T) 

given by (6). 
2. Construct a bootstrap sample Y୧∗ = β +	βଵX୧ଵ +	a୧r୧, i = 1, ..., n, where a୧ is 

typically generated in one of two ways. 
The first generates a୧ from a two-point 
(lattice) distribution: 

i

1,    with probability 0.5  
a

1,      with probability 0.5 

−
= 


 

 
The other method uses 

i ia 12(U  0.5)= −  

where U୧ is generated from a uniform 
distribution on the unit interval. We 
denote the method based on the first 
approach HC5WB-D and the method 
based on the latter approach HC5WB-C. 

 
3. Compute the quasi-t test statistics (T∗) 

based on this bootstrap sample, yielding 
*

* 1

*
22

ˆ  0
T  

V

β −=


                      (9) 

4. Repeat Steps 2 - 3 B times yielding Tୠ∗ , b 
= 1, ..., B. In the current study, B = 599. 

5. Finally, a p-value is computed: 
*
b#{T T }

B
p

≥
=                    (10) 

6. Reject H	if  ≤ α. 
HC4-Based Wild Bootstrap Quasi-T Test 
(HC4WB-D and HC4WB-C) 

The procedure for testing (2) is the same 
as that of HC5WB-D and HC5W-C except that 
HC4 is used to estimate the standard error. 

Simulation Design 
Data are generated from the model: 

( )i i 1 i iY X β  τ X ε= +              (11) 

where  is a function of X୧ used to model 

heteroscedasticity. Data are generated from a g-
and-h distribution. Let Z be a random variable 
generated from a standard normal distribution, 

( ) 2exp gZ 1 
X exp(hZ / 2)

g

− 
=  
 

      (12) 

has a g-and-h distribution. When g = 0, this last 
equation is taken to be X = Zexp	(hZଶ 2⁄ ). 
When g = 0 and h = 0, X has a standard normal 
distribution. Skewness and heavy-tailedness of 
the g-and-h distributions are determined by the 
values of g and h, respectively. As the value of g 
increases, the distribution becomes more 
skewed. As the value of h increases, the 
distribution becomes more heavy-tailed. Four 
types of distributions are considered for X: 
standard normal (g = 0, h = 0), asymmetric light-
tailed (g = 0.5, h = 0), symmetric heavy-tailed (g 
= 0, h = 0.5) and asymmetric heavy-tailed (g = 
0.5, h = 0.5). The error term (ε୧) is also 
randomly generated based on one of these four 
g-and-h distributions. When g-and-h 
distributions are asymmetric (g = 0.5), the mean 
is not zero. Therefore, ε୧’s generated from these 
distributions are re-centered to have a mean of 
zero. 

Five choices for τ(X୧) are considered: 

( )iτ X 1= , ( )i iτ X | X |= , ( )iτ X =  

i

2
1 ,

X 1
+

+
 and ( )i iτ X X 1 .= +  These 

functions are denoted as variance patterns (VP), 
VP1, VP2, VP3, VP4 and VP5, respectively. 

Homoscedasticity is represented by ( )iτ X 1.=  

( )i iMoreover, τ X | X |,=  ( )iτ X =

i

2
1

X 1
+

+
, and ( )i iτ X X 1 = + represent a 

particular pattern of variability in Y୧ based upon 
the value of X୧. All possible pairs of X୧ and ε୧ 
distributions are considered, resulting in a total 
of 16 sets of distributions. All five variance 
patterns are used for each set of distributions. 
Hence, a total of 80 simulated conditions are 
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considered. The estimated probability of a Type 
I error is based on 1,000 replications with a 
sample size of n = 20 and when testing at α = 
0.05 and α = 0.01. According to Robey and 
Barcikowski (1992), 1,000 replications are 
sufficient from a power point of view. If the 
hypothesis that the actual Type I error rate is 
0.05 is tested, and power should be 0.9 when 
testing at the 0.05 level and the true α value 
differs from 0.05 by 0.025, then 976 replications 
are required. The actual Type I error probability 
is estimated with αෝ, the proportion of p-values 
less than or equal to 0.05 and 0.01. 
 

Results 
First, when testing at both α = 0.05 and α = 0.01, 
the performances of HC5-T and HC4-T are 
extremely similar in terms of control over the 
probability of a Type I error (See Tables 1 and 
2). When testing at α = 0.05, the average Type I 
error rate was 0.038 (SD = 0.022) for HC5-T 
and 0.040 (SD = 0.022) for HC4-T. When 
testing at α = 0.01, the average Type I error rate 
was 0.015 (SD = 0.013) for HC5-T and 0.016 
(SD = 0.013) for HC4-T. 

Theoretically, when leverage points are 
likely to occur (i.e. when X is generated from a 
distribution with h = 0.5), HC5-T should 
perform better than HC4-T; however, as shown 
in Table 1, this is not the case. On the other 
hand, when leverage points are relatively 
unlikely (i.e., when X is generated from a 
distribution with h = 0), HC5-T and HC4-T 
should yield the same outcomes. As indicated by 
the results of this study, when X is normally 
distributed (g = 0 and h = 0), the actual Type I 
error rates resulting from the two methods are 
identical. However, when X has a skewed light-
tailed distribution (g = 0.5 and h = 0), HC5-T 
and HC4-T do not always yield the same results. 
Focus was placed on a few situations where 
HC4-T is unsatisfactory, and we considered the 
extent it improves as the sample size increases. 
We considered sample sizes of 30, 50 and 100. 
As shown in Table 3, control over the 
probability of a Type I error does not improve 
markedly with increased sample sizes. 

Second, with respect to the non-
bootstrap and bootstrap methods, results suggest 
that the bootstrap methods are not necessarily 
superior to the non-bootstrap ones. As shown in 

Figures 1 and 4, when testing at α = 0.05, under 
VP 1 and 4, the bootstrap methods outperform 
the non-bootstrap methods. Specifically, the 
non-bootstrap methods tended to be too 
conservative under those conditions. 
Nonetheless, under VP 3 and 5 (see Figures 3 
and 5), the non-bootstrap methods, in general, 
performed better than the bootstrap methods. In 
particular, the actual Type I error rates yielded 
by the bootstrap methods in those situations 
tended to be noticeably higher than the nominal 
level. In one situation, the actual Type I error 
rate was as high as 0.196. When testing at α = 
0.01, HC5WB-C and HC4WB-C offered the 
best performance in general; however, situations 
were found where non-bootstrap methods 
outperform bootstrap methods. 

Finally, regarding the use of the 
continuous uniform distribution versus the 
lattice distribution for generating bootstrap 
samples, results suggest that the former has 
slight practical advantages. When testing at α = 
0.05, the average Type I error rates yielded by 
the two approaches are 0.059 for HC5WB-C and 
HC4WB-C and 0.060 for HC5WB-D and 
HC4WBD. When testing at α = 0.01, the 
average Type I error rates are 0.015 for 
HC5WB-C and HC4WB-C and 0.021 for 
HC5WB-D and HC4WB-D. Overall, the actual 
Type I error rates yielded by HC5WB-C and 
HC4WB-C appear to deviate from the nominal 
level in fewer cases. 
 

Conclusion 
This study expanded on extant simulations by 
considering ranges of non-normality and 
heteroscedasticity that had not been considered 
previously. The performance of the latest 
HCCM estimator (HC5) was also closely 
considered. The non-bootstrap HC5-based and 
HC4-based quasi-t methods (HC5-T and HC4-T) 
were compared, as well as their wild bootstrap 
counterparts (HC5WB-D, HC5WB-C, HC4WB-
D and HC4WB-C). Furthermore, two wild 
bootstrap sampling schemes were evaluated - 
one based on the lattice distribution; the other 
based on the continuous standardized uniform 
distribution. 

As opposed to the findings of Cribari-
Neto, et al. (2007), results here suggest that HC5 
does not offer striking advantages over HC4. 
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Both HC5-T and HC4-T perform similarly 
across all the situations considered. In many 
cases, HC5-T appears more conservative than 
HC4-T. One concern is that, for the situations at 
hand, setting k = 0.7 when calculating HC5 may 
not be ideal; thus, whether changing the value of 
k might improve the performance of HC5-T was 
examined. As suggested by Cribari-Neto, et al., 
values of k between 0.6 and 0.8 generally 
yielded desirable results, for this reason k = 0.6 
and k = 0.8 were considered. However, as 
indicated in Tables 4 and 5, regardless of the 
value of k, no noticeable difference was 
identified between the methods. 

Moreover, contrary to both Davidson 
and Flachaire (2008) and Godfrey’s (2006) 
findings, when testing the hypothesis H:	βଵ = 0 
in a simple regression model, the wild bootstrap 
methods (HC5WB-D, HC5WB-C, HC4WB-D 
and HC4WB-C) do not always outperform the 
non-bootstrap methods (HC5-T and HC4-T). By 
considering a wider range of situations, specific 
circumstances where the non-bootstrap methods 
outperform the wild bootstrap methods are able 
to be identified and vice versa. In particular, the 
non-bootstrap and wild bootstrap approaches are 
each sensitive to different patterns of 
heteroscedasticity. 

For example, the wild bootstrap 
methods generally performed better than the 
non-bootstrap methods under VP 1 and 4 
whereas the non-bootstrap methods generally 
performed better than the wild bootstrap 
methods under VP 3 and 5. Situations also exist 
(1988), Davidson and Flachaire (2008) and 
Godfrey (2006). The actual Type I error rates 
resulting from the methods HC5WB-C and 
HC4WB-C were generally less variable 
compared to those resulting from HC5WB-D 
and HC4WB-D. In many cases, the 
performances between the two approaches are 
similar, but in certain situations such as in VP3, 
HC5WB-C and HC4WB-C notably 
outperformed HC5WB-D and HC4WB-D. 
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Table 1: Actual Type I Error Rates when Testing at α = 0.05 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0 0 0 0 

1 0.051 0.036 0.030 0.050 0.035 0.030 
2 0.077 0.059 0.068 0.075 0.061 0.068 
3 0.052 0.036 0.048 0.053 0.038 0.048 
4 0.058 0.040 0.038 0.055 0.042 0.038 
5 0.085 0.064 0.072 0.086 0.065 0.072 

0 0 0 0.5 

1 0.048 0.044 0.022 0.052 0.046 0.022 
2 0.053 0.048 0.032 0.055 0.050 0.032 
3 0.055 0.054 0.036 0.054 0.051 0.036 
4 0.058 0.046 0.022 0.053 0.046 0.022 
5 0.053 0.054 0.036 0.055 0.051 0.036 

0 0 0.5 0 

1 0.059 0.047 0.041 0.055 0.045 0.041 
2 0.066 0.063 0.046 0.063 0.059 0.046 
3 0.058 0.050 0.054 0.058 0.047 0.054 
4 0.065 0.054 0.038 0.066 0.056 0.038 
5 0.093 0.074 0.072 0.091 0.070 0.072 

0 0 0.5 0.5 

1 0.036 0.028 0.017 0.036 0.030 0.017 
2 0.044 0.037 0.024 0.045 0.040 0.024 
3 0.057 0.053 0.036 0.054 0.056 0.036 
4 0.048 0.045 0.018 0.051 0.046 0.018 
5 0.157 0.152 0.118 0.165 0.154 0.118 

0 0.5 0 0 

1 0.053 0.049 0.028 0.060 0.050 0.033 
2 0.059 0.050 0.043 0.063 0.056 0.049 
3 0.051 0.055 0.039 0.056 0.053 0.043 
4 0.048 0.035 0.018 0.042 0.030 0.020 
5 0.060 0.051 0.045 0.059 0.050 0.052 

0 0.5 0 0.5 

1 0.044 0.042 0.008 0.045 0.041 0.009 
2 0.055 0.063 0.024 0.050 0.063 0.028 
3 0.043 0.054 0.023 0.042 0.048 0.027 
4 0.036 0.038 0.007 0.032 0.035 0.008 
5 0.043 0.068 0.029 0.044 0.067 0.031 

0 0.5 0.5 0 

1 0.058 0.044 0.031 0.051 0.048 0.033 
2 0.070 0.054 0.053 0.067 0.058 0.056 
3 0.054 0.052 0.047 0.056 0.051 0.050 
4 0.050 0.041 0.023 0.050 0.039 0.024 
5 0.055 0.052 0.041 0.056 0.055 0.045 

0 0.5 0.5 0.5 

1 0.039 0.043 0.013 0.042 0.037 0.013 
2 0.048 0.055 0.026 0.043 0.053 0.030 
3 0.049 0.062 0.030 0.045 0.063 0.037 
4 0.023 0.042 0.006 0.024 0.046 0.006 
5 0.071 0.090 0.045 0.078 0.086 0.054 

0.5 0 0 0 

1 0.067 0.061 0.049 0.068 0.055 0.050 
2 0.070 0.057 0.055 0.068 0.057 0.060 
3 0.061 0.064 0.057 0.064 0.064 0.058 
4 0.061 0.048 0.038 0.066 0.047 0.038 
5 0.075 0.095 0.066 0.083 0.088 0.069 
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Table 1: Actual Type I Error Rates when Testing at α = 0.05 (continued) 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0.5 0 0 0.5 

1 0.052 0.047 0.023 0.056 0.045 0.023 
2 0.056 0.059 0.029 0.053 0.055 0.031 
3 0.057 0.071 0.034 0.056 0.071 0.035 
4 0.041 0.036 0.020 0.043 0.041 0.020 
5 0.065 0.089 0.037 0.067 0.092 0.038 

0.5 0 0.5 0 

1 0.053 0.048 0.040 0.058 0.049 0.041 
2 0.073 0.055 0.072 0.081 0.064 0.073 
3 0.078 0.073 0.062 0.072 0.074 0.064 
4 0.046 0.038 0.027 0.040 0.040 0.027 
5 0.107 0.113 0.087 0.108 0.111 0.087 

0.5 0 0.5 0.5 

1 0.044 0.044 0.019 0.046 0.047 0.019 
2 0.065 0.062 0.050 0.068 0.065 0.051 
3 0.059 0.081 0.055 0.070 0.083 0.055 
4 0.048 0.046 0.019 0.046 0.048 0.019 
5 0.168 0.190 0.120 0.168 0.196 0.124 

0.5 0.5 0 0 

1 0.080 0.056 0.034 0.076 0.056 0.041 
2 0.062 0.065 0.040 0.064 0.067 0.047 
3 0.064 0.080 0.047 0.063 0.072 0.051 
4 0.050 0.042 0.017 0.047 0.038 0.019 
5 0.069 0.089 0.044 0.073 0.092 0.057 

0.5 0.5 0 0.5 

1 0.035 0.048 0.013 0.035 0.044 0.013 
2 0.038 0.057 0.017 0.036 0.059 0.018 
3 0.042 0.077 0.028 0.041 0.079 0.034 
4 0.036 0.036 0.007 0.028 0.033 0.008 
5 0.082 0.122 0.053 0.080 0.118 0.058 

0.5 0.5 0.5 0 

1 0.058 0.041 0.026 0.058 0.040 0.029 
2 0.061 0.057 0.043 0.061 0.055 0.054 
3 0.048 0.062 0.036 0.050 0.066 0.043 
4 0.045 0.038 0.016 0.049 0.035 0.016 
5 0.059 0.083 0.035 0.057 0.078 0.041 

0.5 0.5 0.5 0.5 

1 0.036 0.039 0.010 0.038 0.041 0.012 
2 0.057 0.057 0.021 0.055 0.059 0.031 
3 0.062 0.094 0.046 0.063 0.094 0.050 
4 0.030 0.041 0.007 0.036 0.036 0.008 
5 0.084 0.116 0.058 0.086 0.117 0.065 

Max 0.168 0.190 0.120 0.168 0.196 0.124 

Min 0.023 0.028 0.006 0.024 0.030 0.006 

Average 0.059 0.060 0.038 0.059 0.060 0.040 

SD 0.022 0.026 0.022 0.023 0.027 0.022 
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Table 2: Actual Type I Error Rates when Testing at α = 0.01 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0 0 0 0 

1 0.016 0.005 0.013 0.017 0.011 0.013 
2 0.016 0.009 0.016 0.014 0.009 0.016 
3 0.018 0.010 0.017 0.017 0.009 0.017 
4 0.016 0.010 0.008 0.017 0.011 0.008 
5 0.024 0.018 0.024 0.025 0.021 0.024 

0 0 0 0.5 

1 0.013 0.010 0.008 0.012 0.007 0.008 
2 0.013 0.018 0.010 0.013 0.015 0.010 
3 0.014 0.025 0.012 0.011 0.019 0.012 
4 0.006 0.004 0.001 0.008 0.005 0.001 
5 0.013 0.024 0.009 0.013 0.019 0.009 

0 0 0.5 0 

1 0.016 0.016 0.010 0.019 0.016 0.010 
2 0.022 0.011 0.023 0.021 0.011 0.023 
3 0.021 0.010 0.020 0.017 0.008 0.020 
4 0.012 0.011 0.011 0.013 0.010 0.011 
5 0.026 0.019 0.025 0.026 0.018 0.025 

0 0 0.5 0.5 

1 0.006 0.009 0.004 0.007 0.009 0.004 
2 0.015 0.010 0.010 0.013 0.010 0.010 
3 0.014 0.012 0.014 0.015 0.010 0.014 
4 0.008 0.010 0.001 0.006 0.008 0.001 
5 0.060 0.063 0.047 0.054 0.071 0.047 

0 0.5 0 0 

1 0.011 0.010 0.006 0.010 0.010 0.006 
2 0.010 0.007 0.015 0.013 0.008 0.018 
3 0.012 0.017 0.014 0.016 0.014 0.015 
4 0.005 0.002 0.003 0.006 0.004 0.004 
5 0.017 0.022 0.021 0.018 0.030 0.023 

0 0.5 0 0.5 

1 0.005 0.013 0.004 0.004 0.009 0.004 
2 0.005 0.019 0.009 0.008 0.022 0.011 
3 0.006 0.028 0.006 0.006 0.028 0.007 
4 0.007 0.007 0.004 0.006 0.006 0.004 
5 0.009 0.021 0.009 0.007 0.020 0.012 

0 0.5 0.5 0 

1 0.009 0.005 0.009 0.012 0.007 0.010 
2 0.016 0.020 0.020 0.018 0.016 0.023 
3 0.014 0.022 0.023 0.017 0.022 0.024 
4 0.005 0.007 0.006 0.006 0.006 0.006 
5 0.009 0.016 0.013 0.008 0.015 0.015 

0 0.5 0.5 0.5 

1 0 0.011 0 0.001 0.006 0 
2 0.009 0.018 0.010 0.007 0.016 0.012 
3 0.016 0.027 0.020 0.011 0.026 0.024 
4 0.004 0.012 0.001 0.004 0.011 0.001 
5 0.015 0.036 0.021 0.018 0.033 0.024 

0.5 0 0 0 

1 0.011 0.008 0.009 0.007 0.007 0.010 
2 0.019 0.021 0.023 0.021 0.021 0.027 
3 0.024 0.027 0.028 0.025 0.023 0.029 
4 0.015 0.008 0.009 0.012 0.009 0.009 
5 0.023 0.028 0.030 0.021 0.029 0.030 
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where all the methods fail: in summary, no 
single method dominates and no one method is 
always satisfactory. 

Finally, it is interesting to note that for 
the special case of simple regression, using the 
continuous standardized uniform distribution for 
generating wild bootstrap samples (as in 
HC5WB-C and HC4WB-C ) may have practical 
advantage over using the lattice distribution (as 
in HC5WB-D and HC4WB-D) advocated by Liu  
 
 
 
 
 
 
 
 
 

Table 2: Actual Type I Error Rates when Testing at α = 0.01 (continued) 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0.5 0 0 0.5 

1 0.008 0.007 0.005 0.007 0.004 0.005 
2 0.015 0.027 0.013 0.012 0.024 0.013 
3 0.013 0.031 0.009 0.014 0.030 0.009 
4 0.010 0.011 0.006 0.013 0.012 0.006 
5 0.021 0.057 0.015 0.023 0.057 0.015 

0.5 0 0.5 0 

1 0.010 0.007 0.005 0.010 0.010 0.005 
2 0.017 0.011 0.022 0.017 0.008 0.023 
3 0.026 0.034 0.040 0.029 0.031 0.040 
4 0.005 0.009 0.005 0.003 0.005 0.005 
5 0.028 0.049 0.030 0.023 0.05 0.031 

0.5 0 0.5 0.5 

1 0.010 0.011 0.004 0.008 0.011 0.004 
2 0.026 0.028 0.019 0.028 0.029 0.020 
3 0.032 0.039 0.032 0.033 0.041 0.034 
4 0.008 0.014 0.005 0.010 0.013 0.005 
5 0.078 0.114 0.072 0.076 0.111 0.079 

0.5 0.5 0 0 

1 0.008 0.005 0.011 0.011 0.005 0.012 
2 0.019 0.016 0.022 0.021 0.020 0.025 
3 0.007 0.036 0.013 0.006 0.037 0.013 
4 0.004 0.006 0.003 0.005 0.004 0.003 
5 0.012 0.034 0.014 0.012 0.032 0.021 

0.5 0.5 0 0.5 

1 0.004 0.011 0.002 0.006 0.011 0.002 
2 0.009 0.031 0.008 0.010 0.029 0.013 
3 0.006 0.029 0.008 0.008 0.027 0.010 
4 0.004 0.005 0 0.007 0.004 0.001 
5 0.074 0.114 0.075 0.081 0.116 0.076 

0.5 0.5 0.5 0 

1 0.003 0.003 0.006 0.005 0.004 0.006 
2 0.012 0.016 0.021 0.015 0.015 0.026 
3 0.015 0.027 0.022 0.016 0.030 0.026 
4 0.004 0.003 0 0.001 0.006 0 
5 0.017 0.036 0.020 0.014 0.038 0.024 

0.5 0.5 0.5 0.5 

1 0.010 0.011 0.004 0.010 0.014 0.004 
2 0.010 0.023 0.015 0.012 0.020 0.017 
3 0.014 0.045 0.021 0.013 0.047 0.029 
4 0.008 0.014 0.002 0.005 0.011 0.004 
5 0.025 0.059 0.024 0.027 0.060 0.031 

Max 0.078 0.114 0.075 0.081 0.116 0.079 

Min 0 0.002 0 0.001 0.004 0 

Average 0.015 0.021 0.015 0.015 0.021 0.016 

SD 0.013 0.020 0.013 0.013 0.020 0.014 
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Table 3: Actual Type I Error Rates when Testing at α = 0.05 with Sample Sizes 
30, 50 and 100 for HC4-T 

X e 
VP n = 30 n = 50 n = 100 

g h g h 

0 0.5 0 0.5 1 0.022 0.021 0.018 

0.5 0.5 0.5 0.5 1 0.012 0.019 0.020 

0 0.5 0 0.5 4 0.014 0.007 0.011 

0 0.5 0.5 0.5 4 0.011 0.009 0.023 

0 0 0.5 0.5 5 0.118 0.123 0.143 

0.5 0 0.5 0 5 0.093 0.070 0.078 

0.5 0 0.5 0.5 5 0.190 0.181 0.174 
 

Figure 1: Actual Type I Error Rates for VP1 when Testing at α = 0.05 

 
The solid horizontal line indicates α = 0.05, the dashed lines indicate the upper and 

lower confidence limits for α, (0.037, 0.065). 
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Figure 2: Actual Type I Error Rates Under VP2 

 

Figure 3: Actual Type I Error Rates Under VP3 

 

Figure 4: Actual Type I error rates under VP4 

 

Figure 5: Actual Type I error rates under VP5 

 



NG & WILCOX 
 

395 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Table 4: Actual Type I Error Rates when Testing at α = 0.05, k = 0.6 for HC5-T 
X e 

VP HC5-T HC4-T 
g h g h 

0 0.5 0.5 0.5 4 0.013 0.013 

0.5 0.5 0 0.5 4 0.015 0.015 

0 0 0.5 0.5 5 0.106 0.106 

0.5 0 0.5 0.5 5 0.135 0.136 
 
 

Table 5: Actual Type I Error Rates when Testing at α = 0.05, k = 0.8 for HC5-T 
X e 

VP HC5-T HC4-T 
g h g h 

0 0.5 0.5 0.5 4 0.005 0.006 

0.5 0.5 0 0.5 4 0.007 0.007 

0 0 0.5 0.5 5 0.106 0.106 

0.5 0 0.5 0.5 5 0.128 0.131 
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