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Application of the Truncated Skew Laplace Probability Distribution in 
Maintenance System 

 
Gokarna R. Aryal Chris P. Tsokos 

Purdue University Calumet University of South Florida 
 

 
A random variable X is said to have the skew-Laplace probability distribution if its pdf is given by

)()(2)( xGxgxf λ= , where g (.) and G (.), respectively, denote the pdf and the cdf of the Laplace 
distribution. When the skew Laplace distribution is truncated on the left at 0 it is called it the truncated 
skew Laplace (TSL) distribution. This article provides a comparison of TSL distribution with two-
parameter gamma model and the hypoexponential model, and an application of the subject model in 
maintenance system is studied. 
 
Key words: Probability Distribution; Truncation; Simulation; Reliability, Renewal Process. 
 
 

Introduction 
Very few real world phenomena studied 
statistically are symmetrical in nature, thus, the 
symmetric models would not be useful for 
studying every phenomenon. The normal model 
is, at times, a poor description of observed 
phenomena. Skewed models, which exhibit 
varying degrees of asymmetry, are a necessary 
component of the modeler’s tool kit. The term 
skew Laplace (SL) means a parametric class of 
probability distributions that extends the Laplace 
probability density function (pdf) by an 
additional shape parameter that regulates the 
degree of skewness, allowing for a continuous 
variation    from    Laplace    to    non-Laplace. 
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The skew Laplace distribution as a 

generalization of the Laplace law should be a 
natural choice in all practical situations in which 
some skewness is present. Several asymmetric 
forms of the skewed Laplace distribution have 
appeared in the literature with different 
formulations. Aryal et al. (2005b) studied 
extensively the mathematical properties of a 
skew Laplace distribution. This distribution was 
developed using the idea introduced by O’Hagan 
and studied by Azzalini (1985). A random 
variable X is said to have the skew symmetric 
distribution if its probability density function 
(pdf) is given by 
 

)()(2)( xGxgxf λ=             (1.1) 
 
where, -∞< x< ∞, -∞< λ< ∞, g(x) and G(x) are 
the corresponding pdf and the cumulative 
distribution function (cdf) of the symmetric 
distributions. 

The Laplace distribution has the pdf and 
cdf specified by 
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respectively, where ∞<<∞− x  and .0>ϕ  

Hence, the pdf )(xf  and the cdf )(xF  of the 
skew Laplace random variable is given, 
respectively, by 
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Aryal et al. (2005a) proposed a reliability model 
that can be derived from the skew Laplace 
distribution on truncating it at 0 on the left. This 
is called the truncated skew Laplace (TSL) 
probability distribution. The cdf of this 
reliability model for 0>λ  is given by 

( )

(1 )
exp 2(1 ) exp
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(2 1)

F x

x xλ λ
ϕ ϕ
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− − + −
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and the corresponding pdf is given by 
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It is immediate that the reliability function )(tR
and the hazard rate function )(th  of a TSL 
random variable is given, respectively, by 
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Also, note that the mean residual lifetime 
(MRLT) of a TSL random variable is given by 
 

22(1 ) exp

( ) .
(1 )

2(1 ) exp

t

m t
t

λλ
ϕϕ

λ λλ
ϕ

  + − −    =  +   + − −      
(1.10) 

 
This article provides a comparison of 

this reliability model with other competing 
models, namely, the two parameter gamma and 
hypoexponential distribution.  We also study an 
application of the TSL probability model in 
preventive maintenance and cost optimization. 
 
TSL vs. Gamma Distribution 

A random variable X is said to have a 
gamma probability distribution with parameters 
α  and β  denoted by ),( βαG  if it has a 
probability density function given by 
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(2.1) 
 
where (.)Γ  denotes the gamma function. The 

parameters α  and β  are the shape and scale 
parameters, respectively. The reliability and 
hazard functions are not available in closed form 
unless α  is an integer; however, they may be 
expressed in terms of the standard incomplete 
gamma function ),( zaΓ  defined by 
 

1

0

( , ) exp( ) , 0.
z

aa z y y dy a−Γ = − >  

 
In terms of ),( zaΓ  the reliability function for 
random variable Gamma is given by 
 

)(

),()(
),;(

α
βααβα

Γ
Γ−Γ= ttR .   (2.2) 

 
If α  is an integer, then the reliability function is 
given by 
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The hazard rate function is given by 
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for any 0>α , however, if α  is an integer it 
becomes 
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The shape parameter α  is of special 

interest, since whether α −1 is negative, zero or 
positive, corresponds to a decreasing failure rate 
(DFR), constant, or increasing failure rate (IFR), 
respectively. 

It is clear that the gamma model has 
more flexibility than the TSL model as the 
former can be used even if the data has DFR. In 
fact, the standard exponential distribution is 

)1,0(TSL  as well as )1,1(Gamma . However, if 

in the gamma model α >1, it has IFR which 
appears to be the same as that of the TSL model, 
but a careful study has shown a significance 
difference between these two models, this is the 
case for which real world data - where the TSL 
model gives a better fit than the competing 
gamma model - could be presented. 

According to Pal et al. (2006) the failure 
times (in hours) of pressure vessels constructed 
of fiber/epoxy composite materials wrapped 
around metal lines subjected to a certain 
constant pressure, studied by Keating et al. 
(1990), can be described using 

)300,45.1(Gamma  model. The subject data 
was studied using TSL model. It was observed 
that TSL (5939.8, 575.5) fits the subject data 
better than the gamma distribution The 
Kolmogorov-Smirnov goodness of fit indicated 
that, the D-statistic for Gamma (1.45, 300) and 
TSL (5939.8, 575.5) distribution are 

2502.0=GammaD  and 200.0=TSLD  
respectively. Since the smaller D-statistic, the 
better is the fit so it is concluded that the TSL 
model fits better than the gamma model. 

Figure 1 displays the P-P plot of the fits 
of the pressure vessels data assuming the TSL 
and the gamma models. It is clear that the TSL 
pdf is a better fit than the gamma model. Thus, 
the TSL is recommended for the pressure vessel 
data. Table 1 gives the reliability estimates using 
TSL and gamma models. It is observed that 
there is a significant difference in these 
estimates. 
 
TSL vs. Hypoexponential Probability 
Distribution 

Observing the probability structure of 
the truncated skew Laplace pdf it is of interest to 
seek an existing probability distribution, which 
can be written as a difference of two exponential 
functions. Since the hypoexponential 
distribution has this characteristic the TSL pdf 
will be compared with the hypoexponential pdf. 
Many natural phenomena can be divided into  
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Figure 1: P-P Plots of Vessel Data Using TSL and Gamma Distribution 
 

Table 1: Reliability Estimates of the Pressure Vessels Data 

t )(ˆ tRTSL  )(ˆ tRGAMMA  t )(ˆ tRTSL  )(ˆ tRGAMMA  

0.75 0.999 0.999 363 0.532 0.471 

1.70 0.997 0.999 458 0.451 0.365 

20.80 0.965 0.984 776 0.260 0.150 

28.50 0.952 0.976 828 0.237 0.129 

54.90 0.909 0.940 871 0.220 0.113 

126.0 0.803 0.826 970 0.185 0.085 

175.0 0.738 0.745 1278 0.108 0.034 

236.0 0.664 0.647 1311 0.102 0.030 

274.0 0.621 0.590 1661 0.056 0.010 

290.0 0.604 0.567 1787 0.045 0.007 
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sequential phases. If the time the process spent 
in each phase is independent and 
exponentiallydistributed, then it can be shown 
that overall time is hypoexponentially 
distributed. It has been empirically observed that 
service times for input-output operations in a 
computer system often possess this distribution 
(see Trivedi, 1982) and will have n  parameters 
one for each of its distinct phases. Interest then 
lies in a two-stage hypoexponential process, that 
is, if X is a random variable with parameters 1λ  

and )( 212 λλλ ≠  then its pdf is given by 

 

{ }1 2
1 2

2 1

( ) exp( ) exp( ) , 0f x x x xλ λ λ λ
λ λ

= − − − >
−

(3.1)
 

 
The notation ),( 21 λλHypo  denotes a 
hypoexponential random variable with 
parameters 1λ  and, 2λ  . The corresponding cdf 
is given by 
 

2 1
1 2
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The reliability function )(tR  of a 

),( 21 λλHypo  random variable is given by 
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The hazard rate function )(th  of a 

),( 21 λλHypo  random variable is given by 
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It is clear that )(th  is an increasing function of 

the parameter 2λ ; it increases from 0 to 

{ }.,min 21 λλ  Note that the mean residual life 

time (MRLT) at time t  for ),( 21 λλHypo  is 
given by 
 

[ ]
2 2

2 1 1 2

1 2 2 1 1 2

exp( ) exp( )1
( ) .

exp( ) exp(
Hypo

t t
m t

t t
λ λ λ λ

λ λ λ λ λ λ
− − −

=
− − −

(3.5) 
 

To compare the TSL and 
hypoexponential pdf in terms of reliability and 
mean residual life times, random samples of size 
50, 100 and 500 are  generated from a 
hypoexponential pdf with parameters 1λ =1 and 

20&10,5,22 =λ  for each sample size. 

Numerical iterative procedure, Newton-Raphson algorithm, is used to estimate the 
maximum likelihood estimates of 1λ  & 2λ .  To 

compare these results, the parameters ϕ  and λ
of a TSL distribution are estimated (See Table 
2). In addition the mean residual life times were 
computed for both the models at 2/ntt = . 

In Table 2, TSLM  and HYPOM  denote 

the MRLT of TSL and hypoexponential models 
respectively. Table 2 shows that if the sample 
size is large and the difference between the two 
parameters 1λ and 2λ is large both the TSL and 
hypoexponential model will produce the same 
result. However, for a small sample size and a 
small difference between 1λ and 2λ  a significant 
difference is observed between the two models. 
Figures 2-5 illustrate the plotted reliability 
graphs and provide the support for these 
findings. 
 

TSL Distribution and Preventive Maintenance 
In many situations, failure of a system 

or unit during actual operation can be very 
costly or in some cases dangerous if the system 
fails, thus, it may be better to repair or replace 
before it fails. However, it is not typically 
feasible to make frequent replacements of a 
system. Thus, developing a replacement policy 
that balances the cost of failures against the cost 
of planned replacement or maintenance is 
necessary. Suppose a unit that is to operate over 
a time 0 to time t, [0, t], is replaced upon failure 
(with failure probability distribution F). Assume 
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Table 2: Mean Residual Lifetimes (MRLT) of TSL and Hypoexponential  
Models Computed by Using (1.10) and (3.5) for Different Sample Sizes 

 

n  1λ  2λ  1̂λ  2λ̂  ϕ̂  λ̂  TSLM  HYPOM  

50 1 2 0.934 2.325 2.745 1.349 1.362 1.129 

50 1 5 0.975 5.133 2.779 1.097 1.108 1.029 

50 1 10 0.979 12.223 1.042 6.968 1.042 1.021 

50 1 20 0.940 26.742 1.069 15.349 1.069 1.063 

100 1 2 0.876 2.565 1.376 2.403 1.391 1.184 

100 1 5 0.903 6.835 1.178 6.216 1.179 1.108 

100 1 10 0.950 9.838 1.098 8.439 1.099 1.052 

100 1 20 1.029 26.322 0.892 0.242 0.982 0.971 

500 1 2 0.915 2.576 1.339 3.076 1.348 1.132 

500 1 5 0.961 6.489 1.088 3.453 1.093 1.042 

500 1 10 0.881 10.224 1.174 8.355 1.173 1.135 

500 1 20 1.016 27.411 0.988 14.044 0.988 0.983 

 

 
 

Figure 2: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=2 
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Figure 3: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=5 
 

Figure 4: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=10 
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that the failures are easily detected and instantly 
replaced and that cost 1c  includes the cost 

resulting from planned replacement and cost 2c  
that includes all costs  invested resulting from 
failure then the expected cost during the period 
[0, t] is given by 

 
)),(())(()( 2211 tNEctNEctC +=      (4.1) 

 
where, ))(( 1 tNE  and ))(( 2 tNE  denote the 
expected number of planned replacement and 
the expected number of failures respectively. 
The goal is to determine the policy minimizing 

)(tC  for a finite time span or minimizing 

t
tC

t

)(
lim

∞→
for an infinite time span. Because the 

TSL probability distribution has an increasing 
failure rate it is expected that this model would 
be useful in a maintenance system. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Age Replacement Policy and TSL Probability 
Distribution 

Consider the so-called age replacement 
policy; in this policy an item is always replaced 
exactly at the time of failure, or at ∗t  time after 
installation, whichever occurs first. This age 
replacement policy for infinite time spans seems 
to have received the most attention in the 
literature. Morese (1958) showed how to 
determine the replacement interval minimizing 
cost per unit time, while Barlow and Proschen 
(1962) proved that if the failure distribution, F, 
is continuous then a minimum-cost age 
replacement exists for any infinite time span. 

In this article, the goal is to determine 
the optimal time ∗t  at which preventive 
replacement should be performed. The model 
should determine the time ∗t    that minimizes 
the total expected cost of preventive and failure 
maintenance per unit time. The total cost per 
cycle consists of the cost of preventive 
maintenance in addition to the cost of failure  
 

Figure 5: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=20 
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maintenance. Hence, 
 

( ) ( ))(1)()( *
2

*
1

* tRctRctEC −+=    (4.1.1) 
 
where 1c and 2c denote the cost of preventive 
maintenance and failure maintenance 

respectively, and )( ∗tR  is the probability that 

the equipment survives until age ∗t . The 
expected cycle length consists of the length of a 
preventive cycle plus the expected length of a 
failure cycle. Thus, we have 
 

( )* * * *Expected Cycle Length = ( ) ( ) 1 ( )t R t M t R t+ −
(4.1.2) 
where 

( )  ∞−
=−

*** )()(1)(
t

dtttftRtM  

 
is the mean of the truncated distribution at time 

∗t . Hence, the expected cost per unit time is 
equal to: 

* *
1 2

* * * *

( ) 1 ( )

( ) ( ) 1 ( )

c R t c R t

t R t M t R t

 + − 
 + − 

     (4.1.3) 

 
Assume that a system has a time to failure 
distribution of the truncated skew Laplace pdf; 
the goal is to compute the optimal time ∗t  of 
preventive replacement. Because the reliability 
function of a TSL random variable is given by 
 

)12(

)1(
expexp)1(2

)(

**

*

+








 +−−







−+

=
λ

ϕ
λ

ϕ
λ tt

tR

 
 
and 
 

−
=

*

0

* )(
*)(1

1
)(

t
dtttf

tR
tM  

 
thus, 
 

( )

( )

*

0

*

*
*

*

2(1 )
( ) 1 exp( )

2 1

2(1 )
                  exp( )

2 1

exp (1 ) /
(2 1)

                  1 exp (1 )
(2 1)(1 ) /

t
tf t dt t

t t

t
t

t
t

λ ϕ ϕ
λ

λ
ϕ

λ

λ ϕ
λ

ϕ λ ϕλ λ ϕ

∗

∗

∗

+
= − −

+
+

− −
+

+ − +
+

− − − +
+ +

  

 
  



 
Substituting and simplifying the expressions, the 
expected cost per unit time (ECU) is given by: 
 

( )

( )
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2 1
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2 1
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2

*

2( )(1 )exp( / )
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 + −
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(4.1.4) 
 
Methodology 
In order to minimize a function )(tg  subject to 

bta ≤≤  the Golden Section Method, which 
employs the following steps to calculate the 
optimum value may be used.  
 
Step 1: 
Select an allowable final tolerance level δ  and 
assume the initial interval where the minimum 
lies is ],[],[ 11 baba = and let 
 

)(

))(1(

1111

1111

aba
aba

−+=
−−+=

αμ
αλ

 

 
Take 618.0=α , which is a positive root of 

012 =−+ cc , evaluate )( 1λg  and )( 1μg , and 

let 1=k . Go to Step 2. 
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Step 2: 
If δ≤− kk ab , stop because the optimal 

solution is 2/)(*
kk bat += , otherwise, if 

)()( kk gg μλ >  go to Step 3; or if

)()( kk gg μλ ≤ , go to Step 4. 

 
Step 3: 
Let kk aa =+1 , kk bb =+1 , kk μλ =+1  and 

)( 1111 ++++ −+= kkkk aba αμ . Evaluate 

)( 1+kg μ  and go to Step 5. 

 
Step 4: 
Let kk aa =+1 , kkb μ=+1 , kk λμ =+1  and 

))(1( 1111 ++++ −−+= kkkk aba αλ . Evaluate 

)( 1+kg λ  and go to Step 5. 

 
Step 5: 
Replace k  by 1+k  and go to Step 1. 
 
Example 
To implement this method to find the time ∗t  
subject to the condition that 11 =c  and 102 =c  
proceed as follows: 
 
Iteration 1: 
Consider ]10,0[],[ 11 =ba , where 618.0=α  so 

that .382.01 =−α  
 

82.3))(1( 1111 =−−+= aba αλ
18.6)( 1111 =−+= aba αμ , 

561.8)( 1 =λECU , and .570.8)( 1 =μECU  
 

Because )()( 11 μλ ECUECU <  the 
next interval where the optimal solution lies is 

]18.6,0[ . 
 
Iteration 2: 
[ ] [ ]

.561.8)(533.8)(

.82.336.2,18.6,0,

22

2222

==
===

μλ
μλ

ECUandECU
andba

 

 

Because )()( 22 μλ ECUECU <  the 
next interval where the optimal solution lies is
[ ]82.3,0 . 
 
Iteration 3: [ ] [ ]

.533.8)(516.8)(

36.2459.1,82.3,0

33

333,3

==

===

μλ

μλ

ECUandECU

andba
 

 
Because )()( 33 μλ ECUECU <  the 

next interval where the optimal solution lies is 
[ ]36.2,0 . 
 
Iteration 4: [ ] [ ]

.516.8)(613.8)(

459.1901.0,36.2,0

44

444,4

==

===

μλ

μλ

ECUandECU

andba

 
Because )()( 44 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]0.901,  2.36 . 
 
Iteration 5: 
[ ] [ ]

.517.8)(516.8)(

803.1459.1,36.2,901.0,

55

5555

==
===

μλ
μλ

ECUandECU
andba

 
Because )()( 55 μλ ECUECU <  the 

next interval where the optimal solution lies is 

[ ]0.901,  1.803 . 
 
Iteration 6: 
[ ] [ ]

.516.8)(528.8)(

459.1246.1,803.1,901.0,

66

6666

==
===

μλ
μλ

ECUandECU
andba

 
Because )()( 66 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]1.246,  1.803 . 
 
Iteration 7: 
[ ] [ ]

.514.8)(516.8)(

590.1459.1,803.1,246.1,

77

7777

==
===

μλ
μλ

ECUandECU
andba
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Because )()( 77 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]1.459,  1.803 . 
If the δ  level is fixed at 0.5, it can be 

concluded that the optimum value lies in the 

interval [ ]1.459,  1.803 and is given by 1.631. 

This numerical example was performed 
assuming that the failure data follows the 

)1,1(TSL  model and it has been observed that to 
optimize the cost, maintenance should be 
scheduled at 1.631 units of time. 
 
Block Replacement Policy and TSL Probability 
Distribution 

Consider the case of the Block-
Replacement Policy, or the constant interval 
policy. In this policy preventive maintenance is 
performed on the system after it has been 
operating a total of *t  units of time, regardless 
of the number of intervening failures. In the case 
where the system has failed prior to the time *t , 
minimal repairs are be performed. Assume that 
the minimal repair will not change the failure 
rate of the system and that preventive 
maintenance renews the system to its original 
new state. Thus, the goal is to find the time *t  
that minimizes the expected repair and 
preventive maintenance costs. The total 
expected cost per unit time for preventive 
replacement at time *t , denoted by ECU ( *t ) is 
given by 
 

*
* exp cos int (0, )

( )
int

Total ected t in the erval t
ECU t

Length of the erval
=

(4.2.1) 
 

The total expected cost in the interval 
*(0,  )t equals the cost of preventative 

maintenance plus the cost of failure 

maintenance, which is given by )( *
21 tMcc + , 

where M (t*) is the expected number of failures 
in the interval (0, t*). Thus, 
 

*

*
21* )(

)(
t

tMcctECU += .              (4.2.2) 

It is known that the expected number of failures 
in the interval (0, t*) is the integral of the failure 
rate function, that is 
 

( ) ===
*

0

*** )()()()(
t

dtthtHtNEtM . 

 
Therefore, if the failure of the system follows 
the TSL distribution it may be observed that 
 

( )

*

*
*

0

( )

(1 )
( )  

                  log (2 2 )exp( ) 1

                   log(2 1)

t

M t
th t dt

t

λ
ϕ

λ λ ϕ

λ

∗

=

+=

− + −

+ +


 

 
Therefore, 

( )

*

*
1 2

*
*

(1 )

log (2 2 )exp( / ) 1

log(2 1)

( ) .

t

c c t

ECU t
t

λ
ϕ

λ λ ϕ

λ

 +
 
 
 + − + −
 
 + +
 
 =

(4.2.3) 
 
Example 
To minimize the total expected cost subject to 
the conditions 11 =c  and 102 =c , the Golden 
Section Method (as described above)  is used to 
obtain the value of ∗t   
 
Iteration 1: 
[ ] [ ] 618.0,10,0, 11 == αba , 382.01 =−α ,  

 
82.3))(1( 1111 =−−+= aba αλ ,

18.6)( 1111 =−+= aba αμ , 
 

523.9)( 1 =λECU  and .697.9)( 1 =μECU  
 

Because )()( 11 μλ ECUECU <  the 
next interval where the optimal solution lies is 

[ ]0,  6.18 . 
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Iteration 2: 
[ ] [ ]18.6,02,2 =ba , 36.22 =λ , 82.32 =μ , 

30.9)( 2 =λECU , and .523.9)( 2 =μECU  

Because )()( 22 μλ ECUECU <  the 
next interval where the optimal solution lies is 

[ ]0,  3.82 . 
 
Iteration 3: 
[ ] [ ]82.3,03,3 =ba , 459.13 =λ , 36.23 =μ , 

124.9)( 3 =λECU  and .30.9)( 3 =μECU  

 
Because )()( 33 μλ ECUECU <  the 

next interval where the optimal solution lies is 

[ ]0,  2.36 . 
 
Iteration 4: 
[ ] [ ]36.2,04,4 =ba , 901.04 =λ , 459.14 =μ , 

102.9)( 4 =λECU  and .124.9)( 4 =μECU  
 

Because )()( 44 μλ ECUECU <  the 
next interval where the optimal solution lies is 

[ ]0,  1.459 . 
 
Iteration 5: 
[ ] [ ]459.1,05,5 =ba , 557.05 =λ , 5 0.901,μ =  

405.9)( 5 =λECU  and .124.9)( 5 =μECU  

 
Because )()( 55 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]0.557,  1.459 . 
 
Iteration 6: 
[ ] [ ]459.1,557.06,6 =ba , 9015.06 =λ , 

114.16 =μ , 102.9)( 6 =λECU , and 

.08.9)( 6 =μECU  

 
Because )()( 66 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]0.901,  1.459 . 
 

Iteration 7: 
[ ] [ ]459.1,901.07,7 =ba , 114.17 =λ , 

245.17 =μ , 08.9)( 7 =λECU , and 

.09.9)( 7 =μECU  

 
Because )()( 77 μλ ECUECU <  the 

next interval where the optimal solution lies is 

[ ]0.901,  1.245 . 

If the δ  level is fixed at 0.5 it can be 
concluded that the optimum value lies in the 

interval [ ]0.901,  1.245 and it is given by 1.07. 

As in the case of age replacement in this 
numerical example it was assumed that the 
failure data follows )1,1(TSL  model. Observe 
that, in order to optimize the cost, maintenance 
must be scheduled at every 1.07 units of time. 
 
Maintenance Over a Finite Time Span 

The problem concerning the preventive 
maintenance over a finite time span is of great 
importance in industry. It can be viewed in two 
different perspectives based on whether the total 
number of replacements (failure + planned) 
times are known or unknown. The first case is 
straightforward and has been addressed in the 
literature for a long time. Barlow et al. (1962) 

derived the expression for this case. Let ∗T  
represent the total time span, meaning 
minimization of the cost due to forced 
replacement or planned replacement until

∗= TT . Let ),( TTCn
∗  represent the expected 

cost in the time span 0 to *T , ],,0[ ∗T  
considering only the first n  replacements and 
following a policy of replacement at interval T. 
It is clear that considering the case when 

TT ≤*  is equivalent to zero planned 
replacements, that 
 

( )
* *

2*
1 *

2 1

( ), ,
( , )

( ) 1 ( ) ,

c F T if T T
C T T

c F T c F T if T T
 ≤=  + − ≥

(5.1) 
 

Thus, for ,...,3,2,1=n  =+ ),( *
1 TTCn  
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[ ]

[ ]
[ ] [ ]
















−×−++

−+

≤−+





otherwiseTFTTTCc

ydFTyTCc

TTifydFTyTCc

n

T

n

T

n

,)(1),(

)(),(

)(),(

*
1

0

*
2

0

**
2

*

(5.2) 
 

A statistical model may now be 
developed that can be used to predict the total 
cost of maintenance before an item is actually 
used. Let T equal the predetermined replacement 
time, and assume that an item is always replaced 
exactly at the time of failure T* or T hours after 
its installation, whichever occurs first. Let τ  
denotes the failure time then we have two cases 
to consider, 
 
Case 1: T < T* 

In this case the preventative 
maintenance (PM) interval is less than the finite 
planning horizon. For this case if the component 
fails after time, say,  )( Tfor <ττ  then the cost 
due to failure is incurred and the planning 

horizon is reduced to ].[ * τ−T  But if the 
component works  till the preventive 
replacement time T then the cost due to 
preventive maintenance is incurred and the 
planning horizon is reduced to [T*-T]. 

 
The total cost incurred in these two cases is 

[ ]
[ ] [ ]),()(1

)(),(),(

*
1

0

*
2

*

TTTCcTF

dfTTCcTTC
T

−+×−+

−+=  τττ
 

(5.3) 
where 1c  is the cost for preventive maintenance 

and )( 12 cc >  is the cost for failure maintenance. 
 
Case 2: T* < T 

In this case the PM interval is greater 
than the planning horizon so there is no 
preventive maintenance but there is a chance of 
failure maintenance. Hence the total cost 
incurred will be 

*

* *
2

0

( , ) ( , ) ( )
T

C T T c C T T f dτ τ τ = + −   (5.4) 

The interest here lies in finding the 
preventative maintenance time T that minimizes 
the cost of the system. Consider a numerical 
example to determine whether the minimum 
exists if the failure model is assumed to be TSL 
(1, 1). A random sample of size 100 was 
generated from TSL (1, 1) and a time T to 
perform preventive maintenance was fixed. The 
preventive maintenance cost c1 = 1 was set along 
with the failure replacement cost c2 = 1, 2 and 
10. The process was repeated several times and 
the total cost for first 40 failures was computed. 
All necessary calculations were performed using 
the statistical language R. In the table 3, iC , for 

10&,2,1=i  represents the total cost due to 
preventive maintenance cost c1=1 and the failure 
replacement cost 10&2,1,2 == iic . It can be 

observed from table 3 that the minimum  iC  

exists around at T = 1.1 units of time. A 
preliminary study of the application of the TSL 
distribution in such environment can be found in 
Aryal, et al. (2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3: Expected Costs at Different 
Maintenance Times 

T C10 C2 C1 
1.00 340.55 88.95 57.50 
1.01 347.25 89.65 57.45 
1.02 336.95 87.75 56.60 
1.03 342.95 88.15 56.30 
1.04 339.15 87.15 55.65 
1.05 341.25 87.25 55.50 
1.06 334.40 86.40 55.40 
1.07 343.75 87.35 55.30 
1.08 332.15 84.95 54.05 
1.09 338.55 85.81 54.22 
1.10 318.48 82.67 53.19 
1.11 327.68 84.04 52.59 
1.12 344.76 86.48 54.19 
1.13 333.70 84.50 53.35 
1.14 340.40 85.20 53.30 
1.15 338.86 84.68 53.90 
1.16 331.28 82.90 53.86 
1.17 338.27 84.09 54.31 
1.18 335.24 83.05 53.52 
1.19 341.90 84.00 54.76 
1.20 363.90 87.50 56.95 
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Conclusion 
This study presented a comparison of the 
truncated skew Laplace probability distribution 
with the two parameter gamma probability 
distribution and hypoexponential probability 
distribution. A detailed procedure was also 
provided to apply the truncated skew Laplace 
probability distribution in the maintenance 
system. 
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