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On Some Discrete Distributions and their Applications with Real Life Data 
 

Shipra Banik B. M. Golam Kibria 
Independent University, 

Bangladesh 
Florida International University 

 
 
This article reviews some useful discrete models and compares their performance in terms of the high 
frequency of zeroes, which is observed in many discrete data (e.g., motor crash, earthquake, strike data, 
etc.). A simulation study is conducted to determine how commonly used discrete models (such as the 
binomial, Poisson, negative binomial, zero-inflated and zero-truncated models) behave if excess zeroes 
are present in the data. Results indicate that the negative binomial model and the ZIP model are better 
able to capture the effect of excess zeroes. Some real-life environmental data are used to illustrate the 
performance of the proposed models. 
 
Key words: Binomial Distribution; Poisson distribution; Negative Binomial; ZIP; ZINB. 
 
 

Introduction 
Statistical discrete processes – for example, the 
number of accidents per driver, the number of 
insects per leaf in an orchard, the number of 
thunderstorms per year, the number of 
earthquakes per year, the number of patients 
visit emergency room in a certain hospital per 
day - often occur in real life. To approximate (or 
fit) a process, statistical probabilistic 
distributions are often used. Thus, fitting a 
process has been drawn considerable attention in 
the literature of many fields, for example, 
engineering (Lord, et al., 2005), ecology 
(Warton, 2005), biological science (Lloyd-
Smith, 2007; Bliss & Fisher, 1953),  
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epidemiology (Bohning, 1998), entomology 
(Taylor, 1961), zoology (Fisher, 1941), 
bacteriology (Neyman, 1939). 

A broad range of probability models are 
commonly used in applied literature to fit 
discrete processes. These include: binomial 
model, Poisson model, negative binomial model, 
zero-inflated models and zero-truncated models. 
Binomial distribution models represent the total 
number of successes in a fixed number of 
repeated trials when only two outcomes are 
possible on each trial. Poisson distributions 
approximate rare-event processes (e.g., accident 
occurrences, failures in manufacturing or 
processing, etc.). An important restriction of the 
Poisson distribution is that its mean and variance 
are equal. 

In reality, discrete processes often 
exhibit a large variance and a small mean and 
thus, display over-dispersion with a variance-to-
mean value greater than 1 (Bliss & Fisher, 1953; 
Warton, 2005; Ross & Preece, 1985; White & 
Bennetts, 1996). Therefore, in real life, the 
Poisson assumption is often violated. A negative 
binomial distribution may be used for modeling 
purposes because it uses an additional parameter 
to describe the variance of a variable. Hence, the 
negative binomial distribution is considered as 
the first alternative to the Poisson distribution 
when the process is over-dispersed. 

However, in many situations (e.g., road 
crash data), the chance of observing zero is 
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greater than expected. Reasons may include 
failing to observe an event during the 
observational period and an inability to ever 
experience an event. Some researchers (Warton, 
2005; Shankar, et al., 2003; Kibria, 2006) have 
applied zero-inflated models to model this type 
of process (known as a dual-states process: one 
zero-count state and one other normal-count 
state). These models generally capture apparent 
excess zeroes that commonly arise in some 
discrete processes, such as road crash data, and 
improve statistical fit when compared to the 
Poisson and the negative binomial model. The 
reason is that data obtained from a dual-state 
process often suffer from over-dispersion 
because the number of zeroes is inflated by the 
zero-count state. A zero-inflated model 
(introduced by Rider, 1961) is defined by 
 





>
=−

==
0Xif);X(P

0Xif1
)kX(P

iμθ
θ

 

 
where θ is the proportion of non-zero values of 
X and P(X;μi) is a zero-truncated probability 
model fitted to normal-count states. To address 
phenomena with zero-inflated counting 
processes, the zero-inflated Poisson (ZIP) model 
and the zero-inflated negative binomial (ZINB) 
model have been developed. A ZIP model is a 
mix of a distribution that is degenerate at zero 
and a variant of the Poisson model. Conversely, 
the ZINB model is a mix of zero and a variant of 
negative binomial model.  

Opposite situations from the zero-
inflated models are also encountered; this article 
examines processes that have no zeroes: the 
zero-truncated models. If the Poisson or the 
negative binomial model is used with these 
processes, the procedure tries to fit the model by 
including probabilities for zero values. More 
accurate models that do not include zero values 
should be able to be produced. If the value of 
zero cannot be observed in any random 
experiment, then these models may be used. 
Two cases are considered: (1) the zero-truncated 
Poisson model, and (2) the zero-truncated 
negative binomial model. 

Given a range of possible models, it is 
difficult to fit an appropriate discrete model. The 
main purpose of this article is to provide 

guidelines to fit a discrete process appropriately. 
First, a simulation study was conducted to 
determine the performance of the considered 
models when excess zeroes are present in a 
dataset. Second, the following real-life data (For 
details, see Table 4.1) were analyzed, the 
numbers of: 
 

1. Road accidents per month in the Dhaka 
district, 

2. People visiting the Dhaka medical hospital 
(BMSSU) per day, 

3. Earthquakes in Bangladesh per year, and 
4. Strikes (hartals) per month in Dhaka. 

 
Statistical Distribution: The Binomial 
Distribution 

If X~B(n, p), then the probability mass 
function (pmf) of X is defined by 
 

knk
C )p1(pn)p,n;kX(P

K

−−== , 

k = 0, 1, 2, …, n.                  (2.1) 
 
where n is the total number of trials and p is the 
probability of success of each trial. The moment 
generating function (mgf) of (2.1) is 
 

( ) ( ) ,t n
XM t p qe= +  

 
thus, E(X), V(X) and skewness (Sk) of (2.1) are 
np, npq and ]npq/)p21[( 2−  respectively. 
 
Statistical Distribution: The Poisson Distribution 

In (2.1) if n→∞ and p→0, then X 
follows the Poisson distribution with parameter 
λ(>0) (denoted X~P(λ)). The pmf is defined as 
 

!k
e);kX(P

kλλ
λ−

== , k = 0, 1, 2, …   (2.2) 

 
where λ denotes expected number of 
occurrences. The mgf of (2.2) is 
 

( 1)( ) ,
te

XM t eλ −=  

 
thus, E(X) and V(X) of (2.2) are the same, which 
is λ and Sk is equal to 1/λ. 
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Statistical Distribution: The Negative Binomial 
Distribution 

If X~NB(k,p), then the pmf of X is given 
by 
 

( )( )
( ; , ) ,

!
                     0, 0, 0,  1,  2,...

X k Xk XP X k p p q
X k

p k X

− +Γ +=
Γ

> > =
 

(2.3) 
 
where p is the chance of success in a single trial 
and k are the number of failures of repeated 
identical trials. If k→∞, then X~P(λ), where λ = 
kp. The mgf of (2.3) is 
 

( ) ( ) ,t k
XM t q pe −= −  

 
thus, E(X), V(X) and Sk of (2.3) are kp, kpq and 

]kpq/)p21[( 2+ respectively. 
 
Statistical Distribution: The Zero-Inflated 
Poisson (ZIP) Distribution 

If X~ZIP(θ, λ) with parameters θ and λ, 
then the pmf is defined by 
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where P(X; λ) is defined in (2.2) and θ is the 
proportion of non-zero values of X. The mgf of 
(2.4) is 
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thus, E(X), V(X) and Sk of (2.4) are 
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respectively. 

Statistical Distribution: Zero-Inflated Negative 
Binomial (ZINB) Distribution 

If X~ZINB(θ, k, p), then the pmf  of X is 
defined by 
 

1 0
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(2.5) 
 
where P(X; k, p) is defined in (2.3) and θ is the 
proportion of non-zero values of X. The mgf of 
(2.5) is 
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thus, E(X), V(X) and Sk of (2.5) are 
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respectively. As k→∞, ZINB (θ, k, p) ~ZIP(θ, 
λ), where λ= kp. 
 
Statistical Distribution: Zero-Truncated Poisson 
(ZTP) Distribution 

If X~ZTP(λ), then the pmf of X is given 
by 
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for x = 1, 2, 3, …, where P(X; λ) is defined in 
(2.2). The mgf of this distribution is 
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thus, E(X) and V(X) are 1)e1( −−− λλ  and Sk is 

11 )e1()1(3)3)(e1( −−−− −−+−++− λλ λλλ . 
 
Statistical Distribution: Zero-Truncated 
Negative Binomial (ZTNB) Distribution 

If X~ZTNB(k, p), then the pmf of X is 
given by 
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for x = 1, 2, 3, …, where P(X; k, p) is defined in 
(2.3). The mgf of this distribution is 
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respectively. 
 
Parameter Estimation 

To estimate the parameters of the 
considered models, the most common methods 
are the method of moment estimation (MME) 
(Pearson, 1894) and the maximum likelihood 
estimation (MLE) method (Fisher, 1922). The 
latter method has been used extensively since in 
the early 1900s, due to its properties of being 
consistent, asymptotically normal and having 
minimum variances for large samples. 

The Moment Estimation Method (MME) 
Consider the kth moments of a random 

variable X. By notation, 
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The Maximum Likelihood Estimation Method 
(MLE) 

Find the log-likelihood function for a 
given distribution and take a partial derivative of 
this function with respect to each parameter and 
set it equal to 0; solve it to find the parameters 
estimate. 
 
Binomial Distribution: Moment Estimator of p 

Based on (2.1), it is known that E(X) = 
np, therefore, M1 = np. Simplification results in: 
 

ˆ ( ) 1( ) / / .p momB E X n M n= =  

 
Binomial Distribution: Maximum Likelihood 
Estimator of p 

The log-likelihood expression of (2.1) is 
 

LogL(X;n,p) =  

Constant + 
1 1

log log(1 );
n n

i i
i i

X p n X p
= =
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differentiating the above expression with respect 
to p, the following equation is obtained 
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Simplifying results in: 
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Poisson Distribution: Moment Estimator of λ 

Based on (2.2), it is known that E(X) = 
λ, thus, 
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Poisson Distribution: Maximum Likelihood 
Estimator of λ 

The log-likelihood expression of (2.2) is 
 

LogL(X;λ) =  
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Differentiating the above expression with 
respect to λ, results in 
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and, after simplification, 
 

1)ml(ˆ MP =λ  

thus 
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Negative Binomial Distribution: Moment 
Estimators of p and k 

Based on (2.3), it is known that E(X) = 
kp and V(X) = kpq, thus 
 

M1 = kp                           (2.6) 
and 

M2 – M1
2 = kpq                      (2.7) 

 

Solving (2.7) for q results in 
1

2
12

M
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because it is known (based on 2.3) that q – p = 1, 
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Solving (2.6), results in 
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Negative Binomial Distribution: Maximum 
Likelihood Estimators of p and k 

The log-likelihood expression of (2.3) is 
 

LogL(X; k, p) = 
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Differentiating the above expression with 
respect to p and k, the following equations 
result: 
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Solving (2.8), results in ( ) 1
ˆ/ .p mlNB M k=  It 

was observed that 
)ml(k̂

NB  does not exist in 

closed form, thus, 
)ml(k̂

NB was obtained by 

optimizing numerically (2.9) using the Newton-
Raphson optimization technique where p= p . 
 
ZIP Distribution: Moment Estimators of θ and λ 

It is known for (2.4) that 
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Simplifying the above equations results in 

1
M
M

ZIP
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ZIP Distribution: Maximum Likelihood 
Estimators of θ and λ 

The log-likelihood expression of (2.4) is 
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Differentiating the above expression with 
respect to θ and λ, results in 
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After the above equations are simplified for θ 
and λ, the following are obtained: 
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where E(X) is the expected value of the non-zero 
occurrences of X (λ does not have a closed form 
solution, hence the Newton-Raphson algorithm 

was used to find λ̂  iteratively.) 
 
ZINB Distribution: Moment Estimators of θ, k, 
p 

Moment estimators of θ, k, p do not 
exist. 
 
ZINB Distribution: Maximum Likelihood 
Estimators of θ, k, p 

The log-likelihood expression of (2.5) is 
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Differentiating the above with respect to each of 
parameters, results in the following estimators 
for θ, k, and p: 
 

n/)0X(IZINB
n

1i
i)ml(ˆ 

=
>=θ . 

 
Other estimates andp̂ k̂  were found 
iteratively: k, p is given by 
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thus, the solution of p̂  has the same properties 
as described above. Because the score equation 

for k̂  does not have a simple form, k was 
estimated numerically given the current estimate 
of p̂ from (2.10) (for details, see Warton, 2005). 
 
ZTP Distribution 

The estimated parameters 
)mom(ˆZTPλ and 

)ml(ˆZTPλ  are similar to )mom(ˆZIPλ  and 
)ml(ˆZIPλ , 

where the log-likelihood expression for this 
distribution is given by 
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ZTNB Distribution 

The estimated parameters )ml(p̂ZTNB  

and 
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are similar to )ml(p̂ZINB  and 

)ml(k̂
ZINB , where the log-likelihood expression 

for this distribution is given by 
 
LogL(X; k, p) =  
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Methods for Comparison of the Distributions: 
Goodness of Fit (GOF) Test 

The GOF test determines whether a 
hypothesized distribution can be used as a model 
for a particular population of interest. Common 
tests include the χ2, the Kolmogorov-Smirnov 
and the Anderson-Darling tests. The χ2 test can 
be applied for discrete models; other tests tend 
to be restricted to continuous models. The test 
procedure for the χ2 GOF is simple: divide a set 
of data into a number of bins and the number of 
points that fall into each bin is compared to the 
expected number of points for those bins (if the 
data are obtained from the hypothesized 
distribution). More formally, suppose: 
 
H0: Data follows the specified population 

distribution. 
H1: Data does not follow the specified 

population distribution. 
 
If the data is divided into bins, then the test 
statistic is: 


=

−
=

s

1i i

2
ii2

cal E
)EO(χ             (2.11) 

 
where Oi and Ei are the observed and expected 
frequencies for bin i. The null, Ho, is rejected if 

2
,df

2
cal αχχ > , where degrees of freedom (df) is 

calculated as (s−1− # of parameters estimated) 
and α is the significance level. 
 

Methodology 
Simulation Study 

Because the outcome of interest in many 
fields is discrete in nature and generally follows 
the binomial, Poisson or the negative binomial 
distribution. It is evident from the literature that 
these types of variables often contain a high 
proportion of zeroes. These zeroes may be due 
to either the presence of a population with only 
zero counts and/or over-dispersion. Hence, it 
may be stated that - to capture the effect of 

excess zeroes - it is necessary to investigate 
which model would best fit a discrete process. 
Thus, a series of simulation experiments was 
conducted to determine the effect of excess 
zeroes on selected models. These simulation 
studies reflect how commonly used discrete 
models behave if excess zeroes are present in a 
set of data. 
 
Simulation Experiment Design 

A sample, X = {X1, X2, …, Xn}, was 
obtained where data were generated from a 
Poisson model with: 

λ: 1.0, 1.5, 2.0 and 2.5; 
n: 10, 20, 30, 50, 100, 150, 200; and 
10%, 20%, 80% zeroes. 

Different data sets for different sample sizes and 
λs were generated to determine which model 
performs best if zeroes (10% to 80%) are present 
in a dataset. To select the possible best model, 
the Chi-square GOF statistic defined in (2.11) 
for all models were calculated. If the test was 
not statistically significant, then the data follows 
the specified (e.g., binomial, Poisson, or other) 
population distribution. Tables 3.1-3.8 show the 
GOF statistic values for all proposed 
distributions. Both small and large sample 
behaviors were investigated for all models, and 
all calculations were carried out using the 
programming code MATLAB (Version 7.0). 
 

Results 
Tables 3.1 to 3.8 show that the performance of 
the models depends on the sample size (n), λ 
and the percentage of zeroes included in the 
sample. It was observed that, as the percentage 
of zeroes increases in the sample, the proportion 
of over dispersion decreases and performance of 
the binomial and Poisson distributions decrease. 
For small sample sizes, most of the models fit 
well; for large sample sizes, however, both the 
binomial and Poisson performed poorly 
compared to others. For samples containing a 
moderate to high percentage of zeroes, the 
negative binomial performed best followed by 
ZIP and ZINB. Based on simulations, therefore, 
in the presence of excess zeroes the negative 
binomial model and the ZIP (moment estimator 
of parameters) model to approximate a real 
discrete process are recommended. 
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Table 3.1: Simulation Results for 10% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (1.87, 1.55) 4.86 1.53 0.71 - - 1.45 0.93 1.08 

1.5 (1.88, 1.61) 4.59 1.45 0.49 - - 0.80 0.61 0.48 

2.0 (2.11, 1.11) 6.99 3.24 3.94 - - 1.26 4.54 6.34 

2.5 (2.66, 2.00) 2.41 14.34 2.11 - - - 1.32 1.96 

20 

1.0 (1.29, 0.59) 3.14 1.03 3.56 - - 0.87 0.22 57.69* 

1.5 (1.55, 1.67) 50.39* 22.04* 6.80 6.57 6.74 6.95 6.00 4.35 

2.0 (1.89, 1.43) 8.03 2.07 0.64 - - 1.70 0.75 0.70 

2.5 (2.42, 2.47) 33.68* 15.00 4.53 4.53 4.43 4.68 5.15 6.19 

30 

1.0 (1.28, 0.71) 4.74 1.22 3.04 - - 0.85 0.95 111.05* 

1.5 (1.78, 1.45) 10.13 3.22 1.16 - - 1.67 1.55 1.03 

2.0 (2.11, 2.41) 8.48 31.46* 11.36 9.80 10.08 11.81 7.60 8.91 

2.5 (2.25, 2.66) 129.94* 51.96* 6.42 5.15 5.33 6.01 8.45 4.31 

50 

1.0 (1.50, 1.00) 21.9 6.37 5.58 - - 5.97 5.03 4.76 

1.5 (1.82, 1.25) 10.75 2.09 1.73 - - 6.93 2.28 4.78 

2.0 (2.33, 2.04) 57.09* 24.38* 6.99 - - 10.67 8.55 9.52 

2.5 (2.68, 2.21) 34.43* 26.04* 10.41 - - 50.46* 11.36 16.67 

100 

1.0 (1.24, 0.54) 13.33 4.32 15.87 - - 5.06 2.04 217.25* 

1.5 (1.67, 1.29) 32.99* 11.59 6.36 - - 2.50 2.63 7.72 

2.0 (1.93, 1.74) 73.11* 27.26* 4.50 - - 3.37 4.37 1.79 

2.5 (2.50, 3.27) 379.60* 159.59* 9.64 4.74 4.78 11.31 12.02 7.29 

150 

1.0 (1.21, 0.64) 27.15* 18.09* 28.80* - - 1.10 2.05 630.30* 

1.5 (1.68, 1.35) 33.19* 11.91 6.94 - - 1.51 1.83 9.04 

2.0 (2.50, 2.49) 108.42* 51.92* 5.80 - - 6.54 7.28 17.72* 

2.5 (2.05, 1.80) 54.72* 19.62* 2.98 - - 3.44 3.86 9.24 

200 

1.0 (1.31, 0.87) 33.01* 20.37* 25.95* - - 3.81 3.53 48.64* 

1.5 (1.76, 1.58) 281.53* 111.60* 11.22 - - 8.43 10.59 18.00* 

2.0 (2.16, 2.16) 98.78* 39.66* 0.52 - - 0.51 2.67 9.86 

2.5 (2.52, 2.49) 108.42* 51.92* 5.80 - - 6.54 7.28 17.72* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.2: Simulation Results for 20% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.75, 0.91) 2.44 0.87 0.54 0.56 0.54 0.67 1.49 19.74* 

1.5 (1.88, 1.61) 1.90 1.36 0.21 0.33 0.23 0.11 0.65 0.44 

2.0 (2.11, 1.11) 5.13 1.97 1.07 - - 2.51 2.08 1.78 

2.5 (2.40, 2.26) 4.46 52.17* 2.16 - - 5.88 1.24 2.33 

20 

1.0 (1.14, 0.74) 9.12 2.43 3.54 - - 5.78 5.42 83.15* 

1.5 (1.76, 1.69) 9.47 6.16 3.42 - - 4.59 5.00 3.93 

2.0 (2.05, 2.26) 43.37* 21.00* 6.54 6.17 6.30 6.01 7.87 7.19 

2.5 (2.25, 2.72) 22.62* 17.07* 7.25 6.46 6.41 5.08 7.77 7.53 

30 

1.0 (1.44, 1.11) 16.47 4.57 1.98 4.14 - - 4.42 1.94 

1.5 (1.51, 1.87) 15.05 6.69 2.80 3.36 3.13 3.70 3.85 3.97 

2.0 (1.71, 3.02) 183.02* 79.97* 10.86 2.53 2.23 3.38 17.55* 1.50 

2.5 (1.89, 1.87) 22.97* 14.24 6.21 - - 7.73 9.48 8.64 

50 

1.0 (1.07, 0.73) 8.91 1.90 3.01 - - 0.72 0.87 226.10* 

1.5 (1.27, 1.12) 9.23 2.64 0.84 - - 0.82 2.45 2.57 

2.0 (1.42, 1.58) 36.468 14.27 0.83 0.40 0.45 0.74 4.39 0.90 

2.5 (2.31, 4.26) 1.16e+003* 473.03* 25.04* 9.44 9.44 17.75* 29.23* 21.43* 

100 

1.0 (1.27, 1.11) 12.51 4.70 2.93 - - 5.07 8.63 6.35 

1.5 (1.54, 1.98) 111.79* 44.34* 1.81 1.08 1.13 1.68 8.20 3.94 

2.0 (1.90, 2.02) 49.98* 29.58* 10.09 9.46 9.43 7.80 13.15 12.44 

2.5 (2.21, 2.95) 129.95* 73.67* 17.07* 10.76 10.42 3.83 13.62 11.96 

150 

1.0 (1.15, 0.92) 26.42* 6.98 4.04 - - 0.79 3.19 15.99 

1.5 (1.38, 1.45) 521.78* 206.30* 13.68 11.50 11.97 13.60 37.08* 11.87 

2.0 (2.09, 2.85) 643.42* 284.48* 27.75* 9.65 8.65 4.70 31.70* 9.87 

2.5 (1.81, 2.35) 163.00* 77.96* 10.29 2.76 2.33 2.08 17.60* 2.32 

200 

1.0 (1.07, 0.80) 16.68 2.76 5.02 - - 0.60 2.64 931.68* 

1.5 (1.43, 1.39) 31.52* 12.61 2.07 - - 2.76 12.21 7.39 

2.0 (1.78, 2.20) 269.23* 119.66* 12.80 7.57 7.52 6.05 23.29* 12.43 

2.5 (2.09, 2.85) 643.42* 284.48* 27.75* 9.65 8.65 4.70 31.71* 9.87 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.3: Simulation Results for 30% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.87, 0.69) 2.84 0.45 0.44 - - 0.94 1.16 27.88* 

1.5 (1.12, 1.83) 3.96 2.01 0.55 0.55 0.44 0.91 1.43 0.67 

2.0 (2.10, 2.98) 5.61 14.43 3.24 1.23 1.09 1.51 0.49 0.36 

2.5 (2.30, 4.90) 18.52* 19.26* 6.62 3.92 4.02 1.51 3.76 2.96 

20 

1.0 (0.94, 0.71) 3.21 0.51 0.86 - - 0.15 0.39 92.09* 

1.5 (1.38, 1.78) 35.44* 15.61 4.36 3.13 3.13 2.60 9.45 2.50 

2.0 (1.70, 2.09) 20.71* 17.90* 11.35 10.73 10.68 8.74 13.98 11.83 

2.5 (1.65, 2.39) 17.36* 11.52 4.39 3.82 3.82 2.42 2.03 4.38 

30 

1.0 (1.0, 0.88) 7.18 1.64 0.16 - - 0.50 2.29 190.49* 

1.5 (1.0, 0.91) 7.71 2.04 0.18 - - 0.59 2.85 197.58* 

2.0 (2.03, 3.89) 32.69* 52.35* 21.40* 6.51 3.97 6.44 4.58 3.54 

2.5 (1.29, 2.21) 80.02* 33.24* 4.13 1.99 1.78 5.92 12.27 4.58 

50 

1.0 (0.84, 0.97) 6.60 3.12 1.70 1.69 1.67 1.23 5.90 3.52 

1.5 (1.48, 2.30) 283.18* 120.03* 13.83 5.50 5.26 2.89 29.87* 4.96 

2.0 (1.67, 2.09) 64.25* 35.99* 11.66 9.08 8.83 6.04 14.96 9.07 

2.5 (2.02, 3.32) 551.89* 241.91* 37.23* 8.70 7.04 1.51 104.44* 7.85 

100 

1.0 (0.92, 0.84) 12.54 3.18 0.59 - - 0.59 5.54 663.75* 

1.5 (1.23, 1.72) 156.60* 67.78* 9.01 1.21 0.95 1.41 34.08* 0.48 

2.0 (1.47, 2.04) 146.74* 69.81* 13.45 4.26 3.48 1.25 28.87* 1.80 

2.5 (1.92, 3.14) 2.62e+003* 1.06e+003* 51.79* 21.29* 20.20* 7.95 66.55* 20.26* 

150 

1.0 (0.93, 1.00) 37.20* 13.93 0.89 0.28 0.29 0.25 17.34* 11.65 

1.5 (1.27, 1.50) 46.01* 26.46* 10.28 8.17 8.05 4.44 27.61* 9.47 

2.0 (1.82, 2.79) 532.08* 273.65* 61.18* 26.09* 22.16* 4.35 64.56* 20.42* 

2.5 (1.44, 2.07) 281.77* 127.63* 22.52* 5.78 4.76 6.99 54.01* 2.57 

200 

1.0 (0.95, 0.99) 72.01* 27.23* 1.18 0.83 0.86 1.22 22.25* 16.74 

1.5 (1.15, 1.47) 88.14* 44.03* 10.55 4.57 4.41 2.79 44.02* 5.86 

2.0 (1.61, 2.49) 1.75e+003* 723.43* 48.01* 12.80 11.61 3.90 92.98* 10.08 

2.5 (1.82, 2.79) 532.08* 273.65* 61.18* 26.098* 22.16* 4.35 64.56* 20.42* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.4: Simulation Results for 40% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.66, 1.46) 2.26 1.87 0.96 0.53 0.58 0.17 1.86 0.66 

1.5 (1.20, 1.73) 4.03 3.02 1.38 1.31 1.28 0.67 2.61 1.46 

2.0 (1.40, 2.04) 17.73* 9.68 3.77 2.71 2.68 1.85 6.30 2.68 

2.5 (1.90, 3.21) 10.75 27.79* 6.48 3.99 3.90 2.16 3.84 4.04 

20 

1.0 (0.83, 0.97) 21.23* 8.40 3.17 2.69 2.79 2.85 9.66 2.70 

1.5 (0.84, 0.69) 8.90 2.35 1.63 - - 2.89 4.66 79.64* 

2.0 (1.07, 2.07) 42.96* 22.27* 8.79 3.94 3.62 1.38 24.15* 2.86 

2.5 (1.70, 3.58) 40.06* 26.74* 9.49 3.32 3.24 0.34 8.61 1.42 

30 

1.0 (0.76, 1.02) 75.62* 31.05* 6.16 3.57 3.64 5.07 28.62* 4.84 

1.5 (0.92, 1.27) 35.83* 15.13 2.78 0.62 0.62 0.95 14.79 0.71 

2.0 (1.41, 2.89) 267.73* 126.08* 47.17* 27.79* 28.18* 13.98 103.35* 35.84* 

2.5 (1.36, 2.30) 81.23* 39.25* 9.82 2.59 2.16 1.75 22.33* 1.91 

50 

1.0 (1.04, 1.57) 150.54* 63.48* 8.05 1.16 0.99 0.98 39.99* 0.59 

1.5 (1.17, 1.65) 70.74* 33.93* 9.43 4.40 3.46 1.46 26.17* 1.39 

2.0 (1.51, 2.50) 200.58* 95.75* 22.46* 8.65 7.25 2.60 38.05* 5.88 

2.5 (1.34, 2.36) 115.07* 62.35* 23.13* 8.98 7.79 4.56 50.28* 8.02 

100 

1.0 (0.87, 1.29) 232.718 99.50* 14.12 3.43 3.24 2.03 88.05* 3.19 

1.5 (1.06, 1.70) 303.13* 134.46* 35.92* 14.85 12.96 7.92 119.83* 10.78 

2.0 (1.26, 1.87) 144.32* 74.04* 21.62* 9.68 8.51 2.94 50.29* 6.50 

2.5 (1.51, 3.11) 1.78e+003* 742.21* 77.04* 11.73 8.38 4.45 181.85* 4.43 

150 

1.0 (0.79, 0.91) 33.33* 14.98 3.49 1.57 1.44 0.68 28.07* 1.4e+003* 

1.5 (1.03, 1.62) 795.95* 330.68* 27.73* 4.15 3.65 1.85 160.24* 3.04 

2.0 (1.60, 3.65) 2.18e+004* 8.6e+003* 221.00* 20.44* 15.72 9.98 623.30* 5.46 

2.5 (1.31, 2.38) 1.2e+003* 571.42* 81.64* 18.53* 14.69 12.03 232.37* 16.67 

200 

1.0 (0.75, 1.00) 206.88* 87.74* 11.31 2.48 2.36 2.94 91.17* 7.66 

1.5 (1.06, 1.55) 210.87* 103.49* 25.11* 6.13 4.77 0.47 95.82* 2.48 

2.0 (1.24, 2.04) 1.68e+003* 699.68* 62.48* 13.81 12.28 5.15 225.91* 10.27 

2.5 (1.60, 3.65) 2.18e+004* 8.69e+003* 221.00* 20.44* 15.72 9.98 623.30* 5.46 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.5: Simulation Results for 50% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.60, 0.48) 1.40 0.02 0.19 - - 0.13 0.16 17.86* 

1.5 (1.10, 2.10) 43.97* 19.56* 5.32 1.60 1.47 0.94 17.22* 1.33 

2.0 (1.00, 1.75) 27.08* 13.12 6.53 4.48 4.46 2.63 17.72* 4.57 

2.5 (0.62, 0.83) 8.88 4.02 2.78 2.54 2.54 2.08 6.72 62.37* 

20 

1.0 (0.66, 0.82) 10.80 4.24 0.93 0.29 0.32 0.28 5.81 241.12* 

1.5 (0.56, 0.79) 20.75* 8.55 2.43 0.77 0.80 0.81 11.44 0.66 

2.0 (0.85, 1.29) 59.76* 24.70* 4.43 0.95 0.99 1.61 24.03* 0.93 

2.5 (1.21, 2.50) 169.46* 74.33* 13.89 3.18 2.60 0.72 44.27* 3.36 

30 

1.0 (0.42, 0.55) 16.33 6.96 3.94 2.75 2.59 1.97 10.81 121.28* 

1.5 (0.85, 1.51) 74.89* 73.14* 14.97 3.17 2.85 2.90 78.40* 2.11 

2.0 (1.03, 2.24) 232.29* 113.74* 26.09* 9.27 8.85 3.24 106.43* 9.77 

2.5 (1.41, 3.10) 225.50* 107.76* 28.80* 9.25 7.93 2.21 60.34* 11.61 

50 

1.0 (0.64, 0.91) 89.04* 37.10* 6.18 0.95 0.89 1.01 42.96* 1.12 

1.5 (0.89, 1.61) 42.06* 22.55* 8.57 2.36 2.33 2.33 30.61* 1.65 

2.0 (0.92, 2.06) 1.09e+003* 448.56* 51.15* 5.58 4.49 4.26 371.95* 2.83 

2.5 (1.30, 2.75) 551.89* 241.91* 37.23* 8.70 7.04 1.51 104.44* 7.85 

100 

1.0 (0.57, 0.82) 107.32* 46.20* 14.72 4.27 3.34 2.21 66.71* 0.87 

1.5 (0.78, 1.17) 284.75* 118.19* 20.75* 3.50 3.12 5.04 124.37* 2.16 

2.0 (1.10, 2.27) 822.90* 358.46* 49.51* 10.05 8.64 0.52 204.08* 7.83 

2.5 (1.25, 2.68) 577.43* 281.76* 68.86* 15.87* 11.79 1.33 195.13* 15.77 

150 

1.0 (0.61, 0.83) 94.65* 44.15* 17.37* 8.16 6.78 3.50 68.03* 1.8e+003* 

1.5 (0.91, 1.55) 877.63* 371.87* 52.36* 11.54 9.98 3.97 305.59* 7.01 

2.0 (1.28, 2.68) 8.3e+003* 3.3e+003* 179.29* 38.23* 35.12* 8.73 758.37* 38.32* 

2.5 (1.16, 2.43) 1.6e+003* 713.45* 94.96* 12.30 8.31 1.29 386.70* 6.23 

200 

1.0 (0.65, 0.90) 116.46* 55.23* 16.14 4.99 4.20 1.02 85.16* 7.88 

1.5 (0.82, 1.30) 210.40* 104.89* 29.59* 6.11 5.12 0.14 147.99* 2.77 

2.0 (1.23, 2.95) 4.4e+004* 1.7e+004* 312.14* 13.44 10.50 8.88 2.4e+003* 5.87 

2.5 (1.28, 2.68) 8.3e+003* 3.3e+003* 179.29* 38.23* 35.12* 8.73 758.37* 38.32* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.6: Simulation Results for 60% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.44, 0.52) 3.33 1.14 0.45 0.29 0.36 0.33 1.73 31.31* 

1.5 (0.60, 0.93) 0.93 0.60 0.07 0.17 0.08 0.30 0.42 0.70 

2.0 (0.80, 1.73) 11.61 5.97 2.33 0.59 0.59 0.43 7.49 0.50 

2.5 (0.77, 1.69) 5.19 4.88 2.81 2.01 2.48 0.85 4.85 2.08 

20 

1.0 (0.35, 0.36) 2.66 0.61 0.09 0.06 0.09 0.13 0.91 36.26* 

1.5 (0.57, 0.81) 17.04* 7.31 2.20 0.56 0.50 0.29 10.51 0.13 

2.0 (0.95, 2.26) 522.66* 215.30* 25.74* 2.22 1.70 1.57 181.72* 0.61 

2.5 (1.36, 4.13) 102.70* 58.03* 20.07* 3.54 2.50 1.39 29.57* 4.79 

30 

1.0 (0.48, 0.56) 16.46 6.57 3.45 2.69 2.58 2.17 10.16 129.52* 

1.5 (0.79, 1.31) 70.10* 33.22* 14.84 8.04 7.31 3.93 50.71* 6.55 

2.0 (0.99, 1.98) 550.56* 116.98* 30.89* 9.87 8.45 2.89 98.09* 9.03 

2.5 (1.00, 2.59) 100.29* 464.03* 56.83* 7.57 6.21 2.37 407.44* 5.59 

50 

1.0 (0.37, 0.38) 8.58 2.31 0.53 0.44 0.52 0.52 3.41 104.71* 

1.5 (0.55, 1.30) 155.03* 66.52* 12.75 0.66 0.65 3.41 89.77* 2.93 

2.0 (0.91, 2.12) 370.66* 171.86* 44.30* 12.42 11.59 5.35 230.82* 12.37 

2.5 (1.12, 2.94) 4.8e+003* 1.95e+003* 118.24* 10.88 8.87 3.87 893.32* 5.71 

100 

1.0 (0.52, 0.87) 2.1e+003* 862.93* 59.97* 1.48 1.60 6.54 796.85* 4.73 

1.5 (0.57, 1.27) 1.7e+003* 729.47* 89.54* 4.64 3.85 7.12 1.01e+003* 3.43 

2.0 (0.82, 1.96) 4.2e+003* 1.75e+003* 121.95* 9.62 7.23 4.40 1.47e+003* 3.86 

2.5 (1.09, 2.79) 1.5e+003* 718.16* 136.83* 21.88* 18.27* 5.12 747.44* 14.69 

150 

1.0 (0.41, 0.50) 64.26* 25.91* 5.86 0.79 0.63 0.71 35.15* 2.02e+003* 

1.5 (0.68, 1.25) 426.14* 196.29* 58.20* 12.82 9.72 3.99 306.42* 7.49 

2.0 (1.07, 2.72) 9.1e+003* 3.87e+003* 298.17* 34.00* 27.98* 4.46 3.27e+003* 8.91 

2.5 (0.81, 1.69) 2.5e+003* 1.06e+003* 120.97* 8.71 5.49 3.67 1.05e+003* 5.61 

200 

1.0 (0.51, 0.87) 882.24* 369.87* 63.28* 4.00 2.63 3.03 482.26* 1.13 

1.5 (0.55. 0.93) 965.77* 409.93* 55.95* 6.49 5.24 2.93 498.47* 3.36 

2.0 (0.86, 1.74) 650.33* 329.36* 110.74* 30.81* 25.08* 5.69 573.57* 21.21* 

2.5 (1.07, 2.72) 9.1e+003* 3.87e+003* 298.17* 34.20* 27.98* 4.46 2.37e+003* 18.91* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.7: Simulation Results for 70% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.60, 1.15) 29.65* 13.37 5.27 1.86 1.71 0.83 22.54* 1.39 

1.5 (0.50, 0.72) 11.8 5.37 3.54 2.84 2.83 2.07 8.99 82.23* 

2.0 (0.90, 2.32) 10.40 8.74 4.82 1.22 1.18 0.11 7.89 1.36 

2.5 (0.80, 1.73) 4.99 6.31 3.49 1.88 2.47 0.71 4.64 51.86* 

20 

1.0 (0.36, 0.57) 1.80 0.85 0.21 0.13 0.07 0.42 0.82 1.68 

1.5 (0.27, 0.33) 4.68 1.65 0.60 0.22 0.24 0.20 2.22 52.16* 

2.0 (0.57, 1.25) 23.82* 13.34 7.45 3.91 4.25 1.51 23.59* 3.71 

2.5 (1.10, 3.98) 293.96* 133.96* 31.52* 6.20 6.52 0.91 149.41* 1.67 

30 

1.0 (0.39, 0.61) 39.03* 17.02* 5.44 0.83 0.62 0.29 25.18* 0.13 

1.5 (0.72, 2.06) 109.55* 54.26* 20.14* 5.12 5.25 0.85 101.27* 1.79 

2.0 (0.82, 2.29) 790.34* 335.52* 50.67* 7.50 6.50 1.20 490.86* 14.03 

2.5 (0.50, 0.74) 23.87* 11.81 5.61 2.66 2.38 1.22 19.68* 442.47* 

50 

1.0 (0.41, 0.78) 477.66* 198.32* 30.46* 1.24 0.87 0.91 267.62* 0.33 

1.5 (0.47, 0.92) 202.94* 88.76* 31.60* 8.81 7.51 3.60 157.73* 5.92 

2.0 (0.56, 1.14) 159.68* 71.58* 18.19 1.70 1.46 1.53 112.87* 0.87 

2.5 (0.87, 3.55) 1.29e+003* 542.57* 70.87* 6.72 7.13 8.29 675.26* 104.59* 

100 

1.0 (0.29, 0.39) 61.89* 26.49* 14.07 7.28 6.18 4.32 39.15* 486.00* 

1.5 (0.43, 0.77) 242.08* 110.12* 30.088 5.98 4.92 1.25 181.32* 2.70 

2.0 (0.71, 2.01) 1.1e+003* 4.62e+003* 290.16* 13.95 11.20 2.57 6.0e+003* 8.88 

2.5 (0.81, 2.12) 4.8e+003* 2.01e+003* 174.84* 23.30* 21.50* 5.88 2.3e+003* 29.29* 

150 

1.0 (0.40, 0.71) 311.81* 146.78* 46.22* 5.37 5.81 1.57 270.69* 1.45 

1.5 (0.49, 0.93) 396.50* 189.83* 60.48* 19.02* 17.47* 6.49 335.32* 13.90 

2.0 (0.73, 1.86) 7.0e+003* 2.92e+003* 327.54* 29.06* 21.54* 5.85 3.8e+003* 24.25* 

2.5 (0.57, 1.18) 749.89* 336.53* 89.94* 20.35* 16.90 4.70 589.06* 12.55 

200 

1.0 (0.29, 0.38) 75.97* 33.90* 11.71 1.88 1.36 0.40 50.56* 2.3e+003* 

1.5 (0.56, 1.34) 1.9e+004* 7.99e+003* 304.89* 13.25 11.95 2.23 8.0e+003* 6.22 

2.0 (0.73, 1.94) 4.6e+003* 1.98e+003* 227.50* 30.41* 27.78* 5.59 2.7e+003* 15.97 

2.5 (0.73, 1.86) 7.0e+003* 2.92e+003* 327.54* 29.06* 21.54* 5.85 3.8e+003* 24.35* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.8: Simulation Results for 80% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.22, 0.44) 0 0.64 0.31 0.03 0.28 0.10 0.0032 0 

1.5 (0.50, 1.16) 3.17 3.24 2.05 0.51 0.67 0.07 2.91 31.48* 

2.0 (0.60, 1.82) 2.81 4.41 2.74 0.44 0.79 0.46 2.21 0.40 

2.5 (0.50, 1.16) 3.17 3.24 2.05 0.51 0.67 0.07 2.91 31.48* 

20 

1.0 (0.31, 0.67) 108.52* 46.91* 14.89 2.32 1.98 0.82 86.19* 1.54 

1.5 (0.40, 1.30) 1.80 2.65 1.54 0.56 0.39 8.46 1.17 64.35* 

2.0 (0.70, 2.32) 139.56* 64.29* 18.14* 2.61 2.33 0.16 134.54* 6.49 

2.5 (0.65, 2.55) 184.74* 81.78* 20.07* 2.28 3.38 0.94 173.58* 10.92 

30 

1.0 (0.11, 0.18) 24.48* 10.85 5.71 1.27 1.09 0.65 15.83 208.91* 

1.5 (0.34, 1.01) 53.98* 24.48* 8.24 0.46 0.47 3.31 41.92* 9.42 

2.0 (0.46, 1.29) 452.56* 189.90* 33.05* 2.09 1.79 0.32 337.42* 0.36 

2.5 (0.31, 0.57) 79.11* 35.05* 12.03 2.12 1.70 0.64 59.23* 0.94 

50 

1.0 (0.19, 0.29) 41.41* 18.28* 9.89 3.64 3.10 1.96 27.61* 328.00* 

1.5 (0.39, 1.05) 580.55* 247.89* 47.62* 4.17 3.73 0.27 481.91* 2.36 

2.0 (0.42, 0.82) 167.33* 76.05* 29.76* 9.56 8.86 3.91 144.92* 4.1e+003* 

2.5 (0.38, 0.85) 38.27* 20.88* 11.31 3.89 4.04 1.42 37.61* 2.45 

100 

1.0 (0.22, 0.36) 247.15 105.64 29.37* 1.74 1.19 0.93 147.52* 7.6e+003* 

1.5 (0.29, 0.56) 863.01* 362.55* 57.75* 1.83 1.08 0.27 513.18* 0.10 

2.0 (0.44, 1.30) 1.86e+004* 7.6e+003* 540.37* 12.36 10.00 2.66 1.2e+004* 11.11 

2.5 (0.54, 1.83) 1.59e+006* 6.2e+005* 7.1e+003* 9.56 7.22 2.52 6.2e+005* 1.50 

150 

1.0 (0.23, 0.41) 365.82* 160.49* 51.41* 5.92 4.22 1.42 256.57* 9.9e+003* 

1.5 (0.29, 0.55) 755.46* 331.02* 71.96* 4.16 2.68 0.42 543.71* 0.52 

2.0 (0.45, 1.12) 9.3e+003* 3.8e+003* 369.57* 20.28* 16.55 3.03 6.4e+003* 26.67* 

2.5 (0.48, 1.32) 1.7e+004* 7.2e+003* 530.55* 17.27* 13.11 2.32 1.1e+004* 17.63* 

200 

1.0 (0.22, 0.41) 1.46e+003* 611.40* 86.64* 3.60 3.36 1.53 776.13* 2.75 

1.5 (0.36, 0.84) 6.9e+003* 2.8e+003* 280.71* 9.29 6.20 0.34 4.5e+003* 7.44 

2.0 (0.42, 1.30) 4.1e+005* 1.6e+005* 4.4e+003* 12.41 8.16 4.40 2.1e+005* 1.73 

2.5 (0.45, 1.12) 9.3e+003* 3.8e+003* 369.57* 20.28* 16.55 3.03 6.4e+003* 26.57* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Applications to Real Data Sets 
The selected processes were fitted using 

theoretical principles and by understanding the 
simulation outcomes. Theoretical explanations 
of a discrete process are reviewed as follows: 
Generally, a process with two outcomes (see 
Lord, et al., 2005, for details) follows a 
Bernoulli distribution. To be more specific, 
consider a random variable, which is NOA. Each 
time a vehicle enters any type of entity (a trial) 
on a given transportation network, it will either 
be involved in an accident or it will not. 

Thus, X~B(1,p), where p is the 
probability of an accident when a vehicle enters 
any transportation network. In general, if n 
vehicles are passing through the transportation 
network (n trials) they are considered records of 
NOA in n trials, thus, X~B(n,p). However, it was 
observed that the chance that a typical vehicle 
will cause an accident is very small out when 
considering the millions of vehicles that enter a 
transportation network (large number of n trials). 
Therefore, a B(n,p) model for X is approximated 
by a P(λ) model, where λ represents expected 
number of accidents. This approximation works 
well when λs are constant, but it is not 
reasonable to assume that λ across drivers and 
road segments are constant; in reality, this varies 
with each driver-vehicle combination. 
Considering NOA from different roads with 
different probabilities of accidents for drivers, 
the distribution of accidents have often been 
observed over-dispersed: if this occurs, P(λ) is 
unlikely to show a good fit. In these 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cases, the negative binomial model can improve 
statistical fit to the process. In the literature, it 
has been suggested that over-dispersed processes 
may also be characterized by excess zeroes 
(more zeroes than expected under the P(λ) 
process) and zero-inflated models can be a 
statistical solution to fit these types of processes. 
 
Traffic Accident Data 

The first data set analyzed was the 
number of accidents (NOA) causing death in the 
Dhaka district per month; NOA were counted 
for each of 64 months for the period of January 
2003 to April 2008 and the data are presented in 
Table 4.1.1 and in Figure 4.1.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1: Dataset Properties 

Type Time Period n Data Source 

The number of traffic accidents (NOA) 
in the Dhaka district per month 

Jan-2003 to 
April-2008 

64 
months 

The Daily Star 
Newspaper 

The number of peoples visiting 
(NOPV) Dhaka BMSSU per day 

April-2007 to 
July-2007 

74 days BMSSU, Dhaka. 

The number of earthquakes (NEQ) in 
Bangladesh per year 

1973 to 2008 
37 

years 
http://neic.usgs.gov/cgi-

bin/epic/epic.cgi  

The number of hartals (NOH) in the 
city of Dhaka per month 

Jan-1972 to 
Dec-2007 

432 
months 

Dasgupta (2001) and the 
Daily Star Newspaper 

Table 4.1.1: Probability 
Distribution of NOA 

NOA 
Observed 
Months 

0 0.12 
1 0.24 
2 0.17 

3 0.22 
4 0.17 
5 0.05 

6 0 
7 0.02 

Total 64 months 
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A total of 141 accidents occurred during the 
considered periods (see Figure 4.1.1) and the 
rate of accidents per month was 2.2 (see Table 
4.1.2). Figure 4.1.1 also shows that since 2004 
the rates have decreased. Main causes of road 
accidents identified according to Haque, 2003 
include: rapid increase in the number of 
vehicles, more paved roads leading to higher 
speeds, poor driving and road use knowledge, 
skill and awareness and poor traffic 
management. The observed and expected  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

frequencies with GOF statistic values are 
tabulated and shown in Table 4.1.2. The sample 
mean and variance indicate that the data shows 
over dispersion; about 16% of zeroes are present 
in the NOA data set. According to the GOF 
statistic, the binomial model fits poorly, whereas 
the Poisson and the negative binomial appear to 
fit. The excellent fits of different models are 
illustrated in Figure 4.1.2; based on the figure 
and the GOF statistic, the negative binomial 
model was shown to best fit NOA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.1: NOA by Year 
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Table 4.1.2: Observed and Fitted Frequencies of NOA 

NOA 0 1 2 3 4 5 6 7 Chi-Square 
GOF 

Statistic 
Observed 
Months 

10 16 10 14 10 3 0 1 

Bmom 6.8 18.2 20.3 12.7 4.8 1.0 0.1 0 150.93* 

Bml 4.5 14.6 20.1 15.3 7.0 1.9 0.2 0 63.08* 

Poisson 7.0 15.5 17.1 12.5 6.9 3.0 1.1 0.3 8.02 

NBmom 8.4 15.7 15.8 11.5 6.9 3.3 1.4 0.5 6.43 

NBml 8.5 15.7 15.8 11.4 6.6 3.3 1.4 0.6 6.39 

ZIPmom 9.7 13.6 15.8 12.3 7.1 3.3 1.3 0.4 6.01 

ZIPml 10.0 16.5 16.8 11.4 5.8 2.3 0.8 0.2 9.90 

ZINBml 10.0 16.8 13.5 9.4 6.0 3.6 2.0 1.1 8.11 

Mean = 2.2 and Variance = 2.6 
Parameter Estimates: )mom(p̂B = 0.27, )ml(p̂B = 0.31, 

)ml/mom(ˆPλ = 2.2, )mom(p̂NB =0.84, 

)ml(k̂
NB = 11.96, )mom(p̂NB = 0.83, 

)ml(k̂
NB = 11.09, )mom(p̂ZIP = 0.84,

)mom(ˆZIPλ = 2.32,

)ml(p̂ZIP = 0.84,
)ml(ˆZIPλ = 2.03, 

)ml(ˆZINBθ = 0.84, )ml(p̂ZINB = 0.53, 
)ml(k̂

ZINB =2.49 

Note: See footnotes, Table 3.1 
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Number of Patient Visits (NOPV) at Hospital 

The number of patient visits (NOPV) 
data were collected from the medical unit of the 
Dhaka BMSSU medical hospital for the period 
of 26 April 2007 to 23 July 2007, where the 
variable of interest is the total number of 
patients visit in BMSSU per day. The frequency 
distribution for NOPV is reported in Table 4.2.1, 
which shows that the patients visiting rate per 
day is 142.36; this equates to a rate of 14.23 per  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
working hour (see Table 4.2.2). Expected 
frequencies and GOF statistic values were 
tabulated and are shown in Table 4.2.2 and 
Figure 4.2.2 shows a bar chart of observed vs. 
expected frequencies. Tabulated results and the 
chart show that the negative binomial model and 
the ZTNB model (ZTNB model had the best fit) 
fit NOPV data well compared to other models. 
Based on this analysis, the ZTNB model is 
recommended to accurately fit NOPV per day. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.2: Distribution of NOA for Different Models 
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Table 4.2.1: Frequency 
Distribution of NOPV 

NOPV 
Observed 

Days 

51-83 1 

84-116 12 

117-149 32 

150-182 23 

183-215 6 

 

Figure 4.2.1: Trend to Visits in BMSSU per Day 
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Table 4.2.2: Observed and Fitted Frequencies of NOPV 

NOPV 51-83 84-116 117-149 150-182 183-215 
Chi-Square 

GOF Statistic Observed 
Days 

1 12 32 23 6 

Bmom 0 0.02 66.22 7.75 0 1.5e+013* 

Bml 0 0.02 66.22 7.75 0 1.5e+013* 

Poisson 0 1.33 55.69 16.94 0.02 1.46e+005* 

NBmom 0.92 14.17 32.27 20.58 5.28 0.7196 

NBml 1.08 14.56 31.54 20.35 5.55 0.8453 

ZIPmom 73.03 0 0 0 0 - 

ZIPml 0 1.33 55.69 16.94 0.02 1.46e+005* 

ZINBml 0 0 0 0 0 - 

ZTPml 0 1.33 55.69 16.94 0.02 1.46e+005 

ZTNBml 1.08 14.56 31.54 20.35 5.55 0.84 

Mean =142.36 and Variance =831.87 
Parameter estimates: )mom(p̂B = 0.65,

)ml(P̂
B = 0.65,

)ml/mom(ˆPλ = 140.78, )mom(p̂NB = 

0.16, 
)mom(k̂

NB = 26.82, )ml(p̂NB = 0.16,
)ml(k̂

NB = 26.82, )mom(p̂ZIP = 0.01,
)mom(ˆZIPλ = 

1.08e+004, )ml(p̂ZIP = 1.0,
)ml(ˆZIPλ = 0.14, 

)ml(ˆZINBθ = 1.0, )ml(p̂ZINB = 0.14, 

)ml(k̂
ZINB = 831.87, 

)ml(ˆZTPλ = 140.78, )ml(p̂ZTNB = 0.14 and 
)ml(k̂

ZTNB =831.87 

Note: See footnotes, Table 3.1 

Figure 4.2.2: Distribution of NOPV for Different Models 
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Earthquake Data 
The third variable of interest is the 

number of earthquakes (NEQ) that occurred in 
Bangladesh from 1973 to January 2008 (based 
on available data). This data set was extracted 
from the http://earthquake.usgs.gov site and is 
presented in Table 4.3.1. The number of 
earthquakes per year is presented in Figure 4.3.1 
and their magnitudes are displayed in Figure 
4.3.2. The frequency distribution of earthquakes 
in Bangladesh is shown in Table 4.3.1. Table 
4.3.2 shows a total of 127 earthquakes occurred 
in Bangladesh during the selected time period  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and that the average yearly earthquake rate is 
3.43. The observed frequencies, the expected 
frequencies and the GOF statistic values for 
NEQ data are reported in Table 4.3.2. Sample 
mean and variance equal 3.43 and 10.19 
respectively (shows over dispersion). It was 
found that the negative binomial model fits this 
data well (see Figure 4.3.3), whereas other 
models indicate lack of fit. Thus, based on this 
study, the distribution of NEQ follows the 
negative binomial distribution with a proportion 
of earthquakes equaling 0.29 per year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.1: Number of Earthquakes in Bangladesh per Year 
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Figure 4.3.2: Earthquake Magnitudes 
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Table 4.3.1: Frequency Distribution of NEQ 

NEQ 0 1 2 3 4 5 6 7 or More 

Number of Years 7 6 7 1 0 4 2 9 
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Table 4.2.2: Observed and Fitted Frequencies of NOPV 

NEQ Ob. Bmom Bml Poisson NBmom NBml ZIPml ZIPml ZINBml 

0 7 0.78 0.51 1.05 4.96 6.35 12.32 7.00 7.00 

1 6 3.58 2.65 3.73 6.26 6.20 0.60 3.22 0.0002 

2 7 7.45 6.27 6.57 5.68 5.27 1.62 5.60 0.0009 

3 1 9.31 8.88 7.73 4.78 4.26 2.89 6.48 0.0026 

4 0 7.75 8.38 6.82 3.80 3.35 3.86 5.62 0.0065 

5 4 4.52 5.54 4.81 2.92 2.59 4.12 3.90 0.0137 

6 2 1.88 2.61 2.83 2.18 1.98 3.67 2.26 0.0258 

7 4 0.56 0.88 1.42 1.60 1.50 2.80 1.12 0.0443 

8 3 0.11 0.20 0.62 1.16 1.13 1.86 0.48 0.0708 

9 1 0.01 0.03 0.24 0.83 0.85 1.10 0.18 0.1064 

10 0 0 0 0.08 0.59 0.63 0.59 0.06 0.1518 

11 1 0 0 0.02 0.41 0.47 0.28 0.02 0.2071 

GOF Statistic 1.9e+004* 7.7e+003* 97.72* 16.23 15.25 77.09* 83.67* 2.28e+005 

Mean =3.43 and Variance =10.19 
Parameter estimates: )mom(p̂B = 0.29, )ml(p̂B = 0.32, )ml/mom(ˆPλ = 3.52, )mom(p̂NB = 0.34,

)mom(k̂
NB = 1.86, 

)ml(p̂NB = 0.27, 
)ml(k̂

NB = 1.35, )mom(p̂ZIP = 0.65, )mom(ˆZIPλ = 5.33, )ml(p̂ZIP = 0.80, )ml(ZIPλ
 = 3.47, 

)ml(ˆZINBθ = 0.80, )ml(p̂ZINB = 0.25, 
)ml(k̂

ZINB = 10.19. 

Note: See footnotes, Table 3.1 

Figure 4.3.3: Distribution of NEQ for Different Models 
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Hartal (Strike) Data 
The fourth variable is the number of 

hartals (NOH) per month observed in Dhaka city 
from 1972 to 2007. Data from 1972 to 2000 was 
collected from Dasgupta (2001) and from 2001-
2007 was collected from the daily newspaper, 
the Daily Star. Historically, the hartal 
phenomenon has respectable roots in Ghandi’s 
civil disobedience against British colonialism 
(the word hartal, derived from Gujarati, is 
closing down shops or locking doors). In 
Bangladesh today, hartals are usually associated 
with the stoppage of vehicular traffic, closure of 
markets, shops, educational institutions and 
offices for a specific period of time to articulate 
agitation (Huq, 1992). When collecting monthly 
NOH data, care was taken to include all events 
that were consistent with the above definition of 
hartal (e.g., a hartal lasting 4 to 8 hours was 
treated as a half-day hartal, 9 to 12 hours as a 
full-day hartal; for longer hartals, each 12 hour 
period was treated as a full-day hartal). 
Historical patterns of hartals in Dhaka city, 
NOH with respect to time are plotted in Figure 
4.4.1, and the frequency distribution of NOH is 
shown in Table 4.4.1. Between 1972 and 2007,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

413 hartals were observed and the monthly 
hartal rate is 0.96 per month (see Table 4.4.2). 
Figure 4.4.1 shows the NOH for two periods: 
1972-1990 (post-independence) and 1991-2007 
(parliamentary democracy). It has been observed 
that the NOH have not decreased since the 
Independence in 1971. Although there were 
relatively few hartals in the early years 
following independence, the NOH began to rise 
sharply after 1981, with 101 hartals between 
1982 and 1990. Since 1991(during the 
parliamentary democracy), the NOH have 
continued to rise with 125 hartals occurring from 
1991-1996. Thus, the democratic periods (1991-
1996 and 2003-2007) have experienced by far 
the largest number of hartals. Lack of political 
stability was found to be the main cause for this 
higher frequency of hartals (for details, see 
Beyond Hartals, 2005, p. 11). From Table 4.4.1, 
it may be observed that the hartal data contains 
about 60% of zeroes. Table 4.4.2 indicates that 
NOH process displays over-dispersion with a 
variance to mean > 1. According to data in this 
study (Table 4.4.2), the negative binomial 
distribution to model NOH with 31% chance of 
hartal per month is recommended. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.1: Total Hartals in Dhaka City: 1972-2007 
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Table 4.4.1: Frequency 
Distribution of NOH 

NOH 
Number of 

Months 

0 257 

1 86 

2 41 

3 14 

4 9 

5 8 

6 10 

7 or More 7 
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Table 4.4.2: Observed and Fitted Frequencies of NOH 

NOH 0 1 2 3 4 5 6 7 8 9 Chi-Square 
GOF 

Statistic 
Observed 
Months 

257 86 41 14 9 8 10 3 2 2 

Bmom 179.76 165.54 67.75 16.17 2.48 0.25 0.01 0.008 0 0 1.8e+007* 

Bml 157.23 168.18 79.95 22.17 3.95 0.47 0.03 0.001 0 0 5.4e+006* 

Poisson 166.06 158.76 75.89 24.18 5.78 1.10 0.17 0.02 0 0 1.5e+004* 

NBmom 267.77 72.94 36.01 20.43 12.35 7.73 4.96 3.23 2.13 1.42 11.78 

NBml 259.92 78.32 38.61 21.50 12.66 7.70 4.78 3.01 1.91 1.23 10.79 

ZIPmom 296.82 24.80 34.51 32.01 22.27 12.39 5.75 2.28 0.79 0.24 194.87* 

ZIPml 257 127.66 38.34 7.67 1.15 0.13 0.01 0.00 0.00 0.00 7.3e+005* 

ZINBml 257.00 64.28 46.11 28.80 16.65 9.17 4.87 2.53 1.28 0.64 27.88* 

Mean =0.96 and Variance =3.35 
Parameter estimates:

)mom(P̂
B = 0.09, 

)ml(P̂
B = 0.10, 

)ml/mom(ˆPλ = 0.95, )mom(p̂NB = 0.28,
)mom(k̂

NB = 0.38,

)ml(p̂NB = 0.31, 
)ml(k̂

NB = 0.44, )mom(p̂ZIP = 0.31, 
)mom(ˆZIPλ = 2.78, )ml(p̂ZIP = 0.40, 

)ml(ˆZIPλ = 0.60,  

)ml(ˆZINBθ = 0.40, )ml(p̂ZINB = 0.56 and 
)ml(k̂

ZINB =2.26 

Note: See footnotes, Table 3.1 

Figure 4.4.2: Distribution of NOH for Different Models 
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Conclusion 
This study reviewed some discrete models and 
compared them by assuming different amounts 
of zeroes in a sample. The following models 
were considered: the binomial model, the 
Poisson model, the negative binomial model and 
the zero-inflated and truncated models. A 
simulation study was conducted to observe the 
effects of excess zeroes on selected models, 
where data was generated from the Poisson 
model. This simulation study indicated that both 
the negative binomial and the ZIP models were 
useful to model discrete data with excess zeroes 
in the sample.  Other models fit data containing 
excess zeroes poorly. Real-life examples were 
also used to illustrate the performance of the 
proposed models. All processes exhibited over-
dispersion characteristic and could be fit well by 
the negative binomial model, with the exception 
of number of patients per day visiting a medical 
hospital, this data was better fit by ZTNB. 
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