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Relationship between Internal Consistency and Goodness of Fit 
Maximum Likelihood Factor Analysis with Varimax Rotation 

 
Gibbs Y. Kanyongo James B. Schreiber

Duquesne University 
 

 
This study investigates how reliability (internal consistency) affects model-fitting in maximum likelihood 
exploratory factor analysis (EFA). This was accomplished through an examination of goodness of fit 
indices between the population and the sample matrices. Monte Carlo simulations were performed to 
create pseudo-populations with known parameters. Results indicated that the higher the internal 
consistency the worse the fit. It is postulated that the observations are similar to those from structural 
equation modeling where a good fit with low correlations can be observed and also the reverse with 
higher item correlations. 
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Introduction 
The purpose of the study is to investigate how 
reliability (internal consistency) affects model-
fitting in maximum likelihood exploratory factor 
analysis (EFA). The study seeks to accomplish 
this through integrating and extending the work 
of Kanyongo (2006) on reliability and number of 
factors extracted and Fabringer, Wegener, 
MacCallum, Strahan’s (1999) work on model-
fitting and the number of factors extracted in 
exploratory factor analysis. 
 
Internal Consistency 

Henson (2001) noted that reliability is 
often a misunderstood measurement concept. 
There are several forms of reliability 
coefficients, but some of the most commonly 
used are internal consistency estimates. Internal 
consistency estimates relate to item 
homogeneity, or the degree to which the items  
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on a test jointly measure the same construct 
(Henson, 2001). Thus, in the classical test 
theory, reliability is concerned with score 
consistency. The classical conceptualization of 
score reliability relates the concept of score 
consistency to true scores. Allen and Yen (1979) 
defined a person’s true score as the theoretical 
average obtained from an infinite number of 
independent testings of the same person with the 
same test. 

Many authors conceptualize three 
sources of measurement error within the 
classical framework: content sampling of items, 
stability across time, and interrater error 
(Henson, 2001). Content sampling refers to the 
theoretical idea that the test is made up of a 
random sampling of all possible items that could 
be on the test. If that is the case, the items should 
be highly interrelated because they assess the 
same construct of interest. This item 
interrelationship is typically called internal 
consistency, which suggests that the items on a 
measure should correlate highly with each other 
if they truly represent appropriate content 
sampling (Henson, 2001). If the items are highly 
correlated, it is theoretically assumed that the 
construct of interest has been measured to some 
degree of consistency, that is, the scores are 
reliable. 

Internal consistency estimates are 
intended to apply to test items assumed to 
represent a single underlying construct, thus, the 
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use of these estimates with speeded tests is 
inappropriate due to the confounding of 
construct measurement with testing speed. 
Furthermore, for tests that consist of scales 
measuring different constructs, internal 
consistency should be assessed separately for 
each scale (Henson, 2001). 
 
Exploratory Factor Analysis (EFA) 

The primary purpose of EFA is to arrive 
at a more parsimonious conceptual 
understanding of a set of measured variables by 
determining the number and nature of common 
factors needed to account for the pattern of 
correlations among the measured variables 
(Fabringer, et al., 1999). EFA is based on the 
common factor model (Thurstone, 1947). The 
model postulates that each measured variable in 
a battery of measured variables is a linear 
function of one or more common factors and one 
unique factor. 

Fabringer, et al. (1999) defined common 
factors as unobservable latent variables that 
influence more than one measured variable in 
the battery and accounts for the correlations 
among the measured variables, and unique 
factors as latent variables that influence only one 
measured variable in a battery and do not 
account for correlations among measured 
variables. Unique factors are assumed to have 
two components; a specific component and an 
error of measurement component, the 
unreliability in the measured variable. The 
common factor model seeks to understand the 
structure of correlations among measured 
variables by estimating the pattern of relations 
between the common factor(s) and each of the 
measured variables (Fabringer, et al., 1999). 
 
Previous Work 

Kanyongo investigated the influence of 
internal consistency on the number of 
components extracted by various procedures in 
principal components analysis. Internal 
consistency reliability coefficients are not direct 
measures of reliability, but are theoretical 
estimates based on classical test theory. IC 
addresses reliability in terms of consistency of 
scores across a given set of items. In other 
words, it is a measure of the correlation between 
subsets of items within an instrument. 

The study employed the use of Monte 
Carlo simulations to generate scores at different 
levels of reliability. The number of components 
extracted by each of the four procedures, scree 
plot, Kaiser Rule, Horn’s parallel analysis 
procedure and modified Horn’s parallel analysis 
procedure was determined at each reliability 
level. In his study, Kanyongo (2006) found 
mixed results on the influence of reliability on 
the number of components extracted. However, 
generally, when component loading was high, an 
improvement in reliability resulted in 
improvement of the accuracy of the procedures 
especially for variable-to-component ratio of 
4:1. 

The Kaiser procedure showed the 
greatest improvement in performance although it 
still had the worst performance at any given 
reliability level. When the variable-to-
component ratio was 8:1, reliability did not 
impact the performance of the scree plot, Horn’s 
parallel analysis (HPA) or modified Horn’s 
parallel analysis (MHPA) since they were 100% 
accurate at all reliability levels. When 
component loading was low, it was not clear 
what the impact of reliability was on the 
performance of the procedures. 

The work of Fabringer, et al. (1999) 
involved an examination of the use of 
exploratory factor analysis (EFA) in 
psychological research. They noted that a clear 
conceptual distinction exists between principal 
factor analysis (PCA) and EFA. When the goal 
of the analysis is to identify latent constructs 
underlying measured variables, it is more 
sensible to use EFA than PCA. Also, in 
situations in which a researcher has relatively 
little theoretical or empirical basis to make 
strong assumptions about how many common 
factors exist or what specific measured variables 
these common factors are likely to influence, 
EFA is probably a more sensible approach than 
confirmatory factor analysis (CFA). 

Fabringer, et al. (1999) pointed that in 
EFA; sound selection of measured variables 
requires consideration of psychometric 
properties of measures. When EFA is conducted 
on measured variables with low communalities, 
substantial distortion in results occurs. One of 
the reasons why variables may have low 
communalities is low reliability. Variance due to 
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random error cannot be explained by common 
factors; and because of this, variables with low 
reliability will have low communality and 
should be avoided. 

Fabringer, et al. (1999) also noted that 
although there are several procedures that are 
available for model-fitting in EFA, the 
maximum likelihood (ML) method of factor 
extraction is becoming increasingly popular. ML 
is a procedure used to fit the common factor 
model to the data in EFA. ML allows for the 
computation of a wide range of indices of the 
goodness of fit of the model. ML also permits 
statistical significance testing of factor loadings 
and correlations among and the computation of 
confidence intervals for these parameters 
(Cudeck & O’Dell, 1994). Fabringer, et al. 
(1999) pointed out that the ML method has a 
more formal statistical foundation than the 
principal factors methods and thus provides 
more capabilities for statistical inference, such 
as significance testing and determination of 
confidence intervals. 

In their work, Frabinger, et al. (1999) 
further stated that, ideally, the preferred model 
should not just fit the data substantially better 
than simple models and as well as more complex 
models. The preferred model should fit the data 
reasonably well in an absolute sense. A statistic 
used for assessing the fit of a model in ML 
factor analysis solutions is called a goodness of 
fit index. 

There are several fit indices used in ML 
factor analysis and one of them is the likelihood 
ratio statistic (Lawley, 1940). If sample size is 
sufficiently large and the distributional 
assumptions underlying ML estimation are 
adequately satisfied, the likelihood ratio statistic 
approximately follows a Chi-square distribution 
if the specified number of factors is correct in 
the population (Fabringer, et al., 1999). They 
noted that, if this is not the case, a researcher 
should exercise caution in interpreting the 
results because a preferred model that fits the 
data poorly might do so and because the data do 
not correspond to assumptions of the common 
factor model.Alternatively, it might suggest the 
existence of numerous minor common factors. 
Fabringer, et al. also suggested that “with 
respect to selecting one of the major methods of 
fitting the common factor model in EFA (i.e., 

principal factors, iterated principal factors, 
maximum likelihood), all three are reasonable 
approaches with certain advantages and 
disadvantages. Nonetheless, the wide range of fit 
indexes available for ML EFA provides some 
basis for preferring this method” (p.283). Since 
ML EFA has potential to provide misleading 
results when assumptions of multivariate 
normality are severely violated, the 
recommendation is that the distribution of the 
measured variables should be examined prior to 
using the procedure. If non-normality is severe 
(skew>2; kurtosis>7), measured variables 
should be transformed to normalize their 
distributions (Curran, West & Finch, 1996). 

Fabringer, et al. (1999) noted that the 
root mean square error of approximation 
(RMSEA) fit index and the expected cross-
validation index (ECVI) provide a promising 
approach for assessing fit of a model in 
determining the number of factors in EFA. They 
recommended that “In ML factor analysis; we 
encourage the use of descriptive fit indices such 
as RMSEA and ECVI along with more 
traditional approaches such as the scree plot and 
parallel analysis” (p.283). Based on this 
recommendation, this study uses these fit indices 
along with the scree plot and parallel analysis to 
assess the accuracy of determining the number 
of factor at a given level of reliability. 
 
Research Question 

The main research question that this 
study intends to answer is: As the internal 
consistency of a set of items increases, does the 
fit of the data to the exploratory factor analysis 
improve? To answer this question, a Monte 
Carlo simulation study was conducted which 
involved the manipulation of component 
reliability (ρxx’) loading (aij), variable-to-
component ratio (p:m). The number of variables 
(p) was made constant at 24 to represent a 
moderately large data set. 
 

Methodology 
The underlying population correlation matrix 
was generated for each possible p, p:m and aij 
combination, and the factors upon which this 
population correlation matrix was based were 
independent of each other. RANCORR program 
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by Hong (1999) was used to generate the 
population matrix as follows. 

The component pattern matrix was 
specified with component loading of .80 and 
variable-to-component ratio of 8:1. After 
specifying the component pattern matrix and the 
program was executed, a population correlation 
matrix is produced. After the population 
correlation matrix was generated as described in 
the above section, the MNDG program (Brooks, 
2002) was then used to generate samples from 
the population correlation matrix. Three data 
sets for reliability of .60, .80, and 1.00, each 
consisting of 24 variables and 300 cases were 
generated. Based on the variable-to-component 
ratio of 8:1, each dataset had 3 factors built in. 
 
Analysis 

An exploratory factor analysis, 
maximum likelihood, varimax rotation and a 
three factor specification, was used for each of 
the three data sets; coefficient alpha = .6, .8, and 
1.0. Two goodness-of-fit indices were chosen 
for this analysis RMSEA and ECVI. RMSEA 
was chosen because it is based on the predicted 
versus observed covariances which is 
appropriate given that nested models are not 
being compared.  

Hu and Bentler (1999) suggested 
RMSEA <= .06 as the cutoff for a good model 
fit. RMSEA is a commonly utilized measure of 
fit, partly because it does not require comparison 
with a null model. ECVI was chosen because it 
is based on information theory; the discrepancy 
between models implied and observed 
covariance matrices: the lower the ECVI, the 
better the fit. Finally, the Chi-square and degrees 
of freedom are provided for each analysis. The 
data were also submitted to a PCA using the 
scree plot and parallel analysis to assess the 
accuracy of determining the number of common 
factors underlying the data sets. 
 

Results 
The results in Table 1 show that the two 
measures of goodness-of-fit used in this study 
(RMSEA) and (ECVI) both display the same 
pattern; the smaller the alpha, the better the 
model fit. The best fit was obtained for alpha of 
0.6, RMSEA (0.025) and ECVI (1.44). As alpha 
increased from 0.6 to 1.0, both indices 

increased; an indication that the model fit 
became poor. Based on Hu and Bentler’s (1999) 
recommendation that the cutoff for a good fit be 
RMSEA <= 0.06, results here show that only 
alpha of 0.6 had a good fit. The goodness-of-fit 
indices therefore suggest that the three-factor 
model is acceptable at alpha value of 0.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Along with goodness-of-fit-indices, the dataset 
with the best fit was submitted to principal 
components analysis through the scree plot and 
parallel analysis. Results of the scree plot 
analysis are displayed in Figure 1 while parallel 
analysis results are shown in Table 2. The scree 
plot shows a sharp drop between the third and 
fourth eigenvalues; an indication that there were 
three distinct factors in the data sets. These 
results confirm the three-factor model as the best 
model for these data. 

To interpret results of parallel analysis, 
real data eigenvalues must be larger than random 
data eigenvalues for them to be considered 
meaningful eigenvalues. Table 2 shows that the 
first three eigenvalues expected for random data 
(1.55, 1.46 and 1.39) fall below the observed 
eigenvalues for all the three values of alpha. 
However, the forth eigenvalue of the random 
data (1.34) is greater than the observed 
eigenvalues of all the three alpha values. Again, 
the results further confirm the three-factor model 
as the best model. 
 

Conclusion 
Results in this study were inconsistent with our 
original ideas of the pattern of goodness of fit 
and internal consistency. It was anticipated that 
high internal consistency would yield a better fit.  

Table 1: Goodness-of-Fit Indices 

Alpha 
Chi-Square 

(df) 
RMSEA ECVI 

.6 
247.153 

(207) 
.025 1.44 

.8 
436.535 

(207) 
.061 2.07 

1.0 
736.385 

(207) 
.092 3.07 
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However, the findings seem logical because 
based on one author’s experience with structural 
equation modeling, a perfect fit can exist when 
all variables in the model were completely 
uncorrelated if the variances are not constrained. 
Also, the lower the correlations stipulated in the 
model, the easier it is to find good fit. The 
stronger the correlations, the more power there 
is within structural equation modeling to detect 
an incorrect model. In essence, the higher the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
correlations, the more likely it is to incorrectly 
specify the model and observe a poor fit based 
on the indices. Second, if correlations are low, 
the researcher may lack the power to reject the 
model at hand. 
Also, results seem to confirm what other 
researchers have argued in the literature. For 
example, Cudeck and Hulen (2001) noted that if 
a group of items has been identified as one-
dimensional, the internal consistency of the 

Figure 1: Results of the Scree Plot 
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Table 2: Parallel Analysis Results 
 Eigenvalues 

  1 2 3 4 

Random Data  1.55 1.46 1.39 1.34 

Real Data 

.6 3.87 3.63 3.31 1.07 

.8 4.66 4.59 4.12 1.32 

1.0 5.84 5.58 5.38 .96 
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collection of items need not be high for factor 
analysis to be able to identify homogenous sets 
of items in a measuring scale. Test reliability is a 
function of items. Therefore, if only a few items 
have been identified as homogeneous by factor 
analysis, their reliability may not be high. 

If ML with exploratory factor analysis 
including goodness-of-fit analyses are to be used 
more extensively in the future, a great deal of 
work must to be done to help researchers make 
good decisions. This assertion is supported by 
Fabringer, et al. (1999) who noted that, 
“although these guidelines for RMSEA are 
generally accepted, it is of course possible that 
subsequent research might suggest 
modifications” (p.280). 
 
Limitations of Current Research 

Since the study involved simulations, 
the major limitation of the study, like any other 
simulation study is that the results might not be 
generalizable to other situations. This is 
especially true considering the fact that the 
manipulation of the parameters for this study 
yielded strong internal validity thereby 
compromising external validity. However, 
despite this limitation, the importance of the 
findings cannot be neglected because they help 
inform researchers on the need to move away 
from relying entirely on internal consistency as a 
measure of dimensionality of data to an 
approach where other analyses are considered as 
well. This point was reiterated by Cudeck and 
Hulin (2001) who stated that a reliable test need 
not conform to a one-factor model and 
conversely items that fit a single common factor 
may have low reliability. 
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