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Detecting Lag-One Autocorrelation in 
Interrupted Time Series Experiments with Small Datasets 

 
Clare Riviello S. Natasha Beretvas 

University of Texas at Austin 
 

 
The power and type I error rates of eight indices for lag-one autocorrelation detection were assessed for 
interrupted time series experiments (ITSEs) with small numbers of data points. Performance of Huitema 
and McKean’s (2000) zHM statistic was modified and compared with the zHM, five information criteria and 
the Durbin-Watson statistic. 
 
Key words: Autocorrelation, information criteria, type I error, power. 
 
 

Introduction 
Educational research contains many examples of 
single-subject designs (Huitema, McKean, & 
McKnight, 1999). Single-subject designs, also 
known as interrupted time series experiments 
(ITSEs), are typically used to assess a 
treatment’s effect on special populations such as 
children with autism or developmental 
disabilities (Tawney & Gast, 1984). The design 
consists of repeated measures on an outcome for 
an individual during baseline and treatment 
conditions (A and B phases, respectively). Use 
of repeated measures on an individual is 
designed such that the subject acts as his/her 
own control; this also helps rule out the possible 
influence of potential threats to validity 
including history, practice, and maturation 
effects. 

With ITSE data, the pattern of scores 
over time is compared for the A (baseline) 
versus the B (treatment) phases. The comparison 
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can lead to inferences about the effect of 
introducing the treatment on the trend in the 
outcome scores. To describe the change in trend, 
the effect on the level of the scores and on the 
possible growth pattern must be assessed. 
Numerical descriptors of these trends are not 
well estimated given the number of repeated 
measures is as small as is commonly found in 
educational single-case design research (Busk & 
Marascuilo, 1988; Huitema, 1985). One of the 
sources of these estimation problems is related 
to the autocorrelated structure inherent in such 
designs (Huitema & McKean, 1991; White, 
1961; Kendall, 1954; Marriott & Pope, 1954). 

Several test statistics and indices 
recommended for identifying potential 
autocorrelation exist. Unfortunately these 
statistics are typically recommended only for 
datasets with a larger numbers of data points 
than are typically encountered with ITSEs. 
Huitema and McKean (2000) introduced a test 
statistic, zHM, to identify lag-one autocorrelation 
in small datasets. The Type I error rate of the 
zHM was within nominal levels and sufficient 
power was associated with this statistic. The 
current study introduces a modification of the 
zHM designed to enhance further its statistical 
power. This study assesses the Type I error rate 
and power of both versions of the zHM. The 
performance of the two zHM statistics is also 
compared with that of other test statistics and 
indices that are commonly used to identify 
autocorrelated residuals for models used to 
summarize trends for small ITSE datasets. 
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Autocorrelation 
One of the fundamental assumptions 

when using ordinary least squares estimation for 
multiple regression is that errors are 
independent. When the independence 
assumption does not hold, this leads to 
inaccurate tests of the partial regression 
coefficients (Huitema and McKean, 2000). For 
data consisting of repeated measures on an 
individual, it is likely that a model can explain 
some but not all of the autocorrelation. In 
addition, when the residuals in a regression 
model are autocorrelated the model must 
account for this to ensure accurate and precise 
estimation of parameters and standard errors. 
Thus, it is important to be able to detect 
autocorrelation so that the proper methods for 
estimating the regression model can be 
employed. 

This study is designed to focus solely on 
first-order (lag-one) autocorrelation. For a 
multiple regression model including k 
predictors, xi, of outcome y at time t using: 
 

tktkttt xxxy εββββ ++++= ...22110 .     (1) 

 
If there is a lag-one autocorrelation, ρ1, between 
residuals, then tε , the residual at time t, is 

related to 1−tε , the residual at time t−1 as 

follows: 

ttt a+= −11ερε                       (2) 

 
where 1ρ  is the autocorrelation between 
residuals separated by one time period. It is 
assumed that tε  and 1−tε  have the same 

variance, and at is assumed to follow a standard 
normal distribution. 
 
Estimating Lag-One Autocorrelation 

Several formulas are available for 
estimating the lag-one correlation coefficient, 

1ρ , for a time series consisting of N data points. 
The conventional estimator is calculated as 
follows: 
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where Y  is the simple average of the N values 
of y. Unfortunately, as evidenced by its common 
usage, the bias of 1r  is often ignored. The 
expected value of a lag-1 autocorrelation 
coefficient for a series consisting of N data 
points was analytically derived by Marriott and 
Pope (1954) to be: 
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It should be noted that the expression in 
Equation 2 only covers terms to order N−1 [thus, 

the term: )( 2−NO ]; there are additional terms 
for higher orders of the inverse of N. For large 
samples, these higher order terms tend towards 
zero. However, the ITSEs of interest in this 
study tend to involve short series where N is 
reasonably small and these higher order terms 
are thus not as negligible. Bias clearly exists in 
the estimation of the autocorrelation. 

Huitema and McKean (1991) listed four 
additional, fairly common estimators designed to 
reduce the bias observed in 1r . However, each of 
these is also highly biased for small data sets. 
Huitema and McKean (1991) suggested 
correcting for the bias in r1 by using 
 

N
rr 1
11 +=+                          (5) 

 
which, for smaller true values of ρ1 incorporates 
some of the noted bias evident in Equation 2. 
The authors showed that their modified 

estimator, +
1r , is unbiased when ρ1 equaled zero 

even for sample sizes as small as N = 6. 
Additionally, the authors found that the bias was 
lower for positive values of 1ρ  but higher for 
some negative values. 

When estimating the autocorrelation, it 
is also necessary to calculate the error variance 
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of the estimator because the estimator and its 
variance can be combined to produce a statistic 
that can be used to statistically test for the 
autocorrelation. Bartlett (1946) derived his 
variance formula for the variance of r1: 
 

Nr

2
12 1

1

ρσ −
= .                          (6) 

 
by ignoring terms of order N−2 or higher. This 
formula is commonly reduced to: 
 

Nr
1

ˆ 2
1

=σ                                (7) 

 
under the assumption of the null hypothesis that 
ρ1 = 0 (Huitema & McKean, 1991). Huitema 
and McKean (1991) asserted that the commonly 
used Bartlett variance approximation is not 
satisfactory for small sample sizes. Their 

simulation study indicated that 2
1

ˆ rσ  (see 

Equation 7) consistently overestimated the 
empirical variance. This overestimation 
performed quite badly for values of N of less 
than twenty with Bartlett’s variance 
approximation exceeding the empirical variance 
by 83% and 40% for N = 6 and N = 10, 
respectively. The authors explored the 
performance of Moran’s variance estimate: 
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which, under the null hypothesis (ρ1 = 0), gives 
precise error variance estimates. After looking at 
the performance of an autocorrelation test 

statistic using *2
1

ˆ rσ  as the error variance 

estimator, the authors concluded that *2
1

ˆ rσ  was 

not adequate for small sample sizes. In tests for 
positive values of autocorrelation, its results 
were too conservative except for large values of 
N. They recommended using: 
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(Marriot & Pope, 1954) as follows from 
Equation 4. Use of Equation 9 yielded values 
close to the empirical values of the variance of 
ρ1 estimates even for Ns as small as N = 6. 
 
Detecting Autocorrelation 

The main purpose of estimating the 
correlation coefficient and calculating its error 
variance is to detect the presence of 
autocorrelation in a data set. If data are known to 
be autocorrelated, then methods other than 
ordinary least squares should be used to more 
accurately estimate the regression coefficients 
and their standard errors. One of the more 
commonly used tests for autocorrelation in 
residuals is the Durbin-Watson test statistic: 
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where εt represents the residual at time t (see 
Equation 2). 

The procedure for carrying out this test 
can be confusing, thus the sequence of steps for 
testing the non-directional 0: 10 =ρH  is 

explained here. First both d and (4−d) should be 
compared with the upper bound ud . If both 

exceed this bound, then the null hypothesis is 
retained; otherwise, both d and (4−d) are 
compared with the lower bound, ld . If either 

falls below ld , then the null hypothesis is 

rejected and a non-zero lag one autocorrelation 
is inferred. If neither d nor (4−d) falls below ld , 

the test is inconclusive. The concept of an 
inconclusive region is unsettling and, although 
computer methods that provide exact p-values 
are now becoming available, most are slow or 
expensive (Huitema & McKean, 2000). 

It is in this context, that Huitema and 
McKean (2000) proposed an alternative test 
statistic that is simple to compute, 
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approximately normally distributed and does not 
have an inconclusive region. The test statistic 
was evaluated for its use to test residuals from 
ITSE models that have one to four phases. 
Huitema and McKean’s test statistic is defined 
as: 
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where P is the number of parameters in the time-
series regression model and N is the total 
number of observations in the time series. The 
authors found that 

N
Prr P +=+

1,1                        (13) 

 
provided an unbiased estimate of ρ1 and that the 
denominator of the test statistic (in Equation 12) 

approximates the empirical variance of +
Pr ,1  (see 

Equation 8). 
The zHM test statistic is a generalization 

of the test proposed in Huitema and McKean’s 
(1991) earlier work was designed for a single-
phase model of ITSE data. However, the authors 
failed to implement all of the suggestions from 
their previous study. Specifically, the authors 

did not use the corrected error variance, +2
1

ˆ rσ , 

(see Equation 9) that they had recommended. 

Instead they used *2
1

ˆ rσ  (see Equation 8). 

Because 1})]([1{ 2
1 ≤− rE , use of +2

1
ˆ rσ should 

lead to a smaller variance and thus a larger value 
of the test statistic and increased power over 

*2
1

ˆ rσ . 

 
Information Criteria 

As an alternative to using test statistics 
to detect autocorrelated residuals, it is also 
possible to estimate a model using ordinary least 
squares regression, estimate the same model 
assuming autocorrelated residuals, and then 
compare the fit of the two models. A post-hoc 

evaluation that compares the two models’ fit can 
be then be conducted using an information 
criterion such as Akaike’s Information Criterion 
(AIC): 
 

kLLogAIC 2)(2 +−=               (14) 
 
where L is the value of the likelihood function 
evaluated for the parameter estimates and k is 
the number of estimated parameters in a given 
model. The model with the smallest information 
criterion value is considered the best fitting 
model. 

As an alternative to the asymptotically 
efficient but inconsistent AIC, several more 
consistent model fit statistics have been 
proposed (Bozdogan, 1987; Hannon & Quinn, 
1979; Hurvich &Tsai, 1989; Schwarz, 1978). 
These include Swartz’s (1978) Bayesian 
criterion: 
 

kNLogLLogSBC )()(2 +−=       (15) 
 
where N is the number of observations, Hannon 
and Quinn’s (1979) information criterion 
 

))((2)(2 NLogkLogLLogHQIC +−= ;  (16) 
 
and Bozdogan’s (1987) consistent AIC 
 

kNLogLLogCAIC )1)(()(2 ++−= .  (17) 
 
In addition, Hurvich and Tsai (1989) developed 
a corrected AIC specifically for small sample 
sizes, which deals with AIC’s tendency to 
overfit models: 
 

1
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For each of these information criteria 
formulations, the smaller the value, the better the 
model fit. 

The AIC and SBC are supplied by 
default by most statistical software. For 
example, when using SAS’s PROC AUTOREG 
(SAS Institute Inc., 2003) to estimate an 
autoregressive model, the procedure also 
provides results under the assumption of no 
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autocorrelation in residuals (i.e., using ordinary 
least squares, OLS, estimation). The procedure 
automatically provides the AIC and SBC for the 
OLS and autoregressive models to enable a 
comparison of the fit of the two models. To date, 
no studies have been conducted to compare use 
of information criteria for identification of 
autocorrelated residuals for ITSE data with 
small sample sizes. 
 
Research Question 

This study is designed to introduce and 
evaluate use of the variance correction suggested 
by Huitema and McKean (1991) in a modified 
version of their test statistic, HMz . Specifically, 
the corrected test statistic being suggested and 
evaluated is: 
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Identification of lag-one autocorrelation (of 

residuals) was compared for the +
HMz  and HMz  

test statistics, the Durbin-Watson test statistic 
and the AIC, SBC, HQIC, CAIC, and AICC fit 
indices for conditions when 01 =ρ  and when 

01 ≠ρ . This study focused only on two-phase 
ITSE data. This design lies at the root of 
commonly used single-subject designs and 
provides an important starting point for this 
investigation. 
 

Methodology 
SAS code was used to generate data, estimate 
models, and summarize results (Fan, Felsovalyi, 
Keenan, & Sivo, 2001). Several design 
conditions were manipulated to assess their 
effect on the performance of the test statistics 
and fit indices. These conditions included the 
magnitude of the treatment’s effect on the level 
and linear growth, the degree of autocorrelation 
and the overall sample size of the ITSE data. 
 
Model and Assumptions 

The following two-phase, ITSE model 
(Huitema & McKean, 1991) was used to 
generate the data: 

ttAtttt dntdty εββββ ++−+++= )]1([3210

(20) 
 
where An  is the number of data points in the 

first phase (baseline phase A), td is the dummy 

variable coded with a zero for data points in the 
baseline phase and with a one for data points in 
the second phase, and tAt dnt )]1([ +−  is the 

centered interaction between time and treatment. 
The interaction term is centered in this way to 
provide a coefficient, β3, that represents the 
treatment’s effect on the slope (i.e., the 
difference in the linear growth between that 
predicted using the treatment phase data and that 
predicted using the baseline data). The 
coefficient, β2, represents the change in the 
intercept from the baseline to the treatment 
phase (specifically, the difference in the value of 
yt, when t = nA + 1, predicted using treatment 
versus baseline phase data). 

Thus, the β2 and β3 coefficients describe 
the effect of the treatment on the level and 
growth in y, respectively. The residuals (εt) were 
generated such that ttt a+= −11ερε  with 1ρ  

being the true lag-one autocorrelation between 
residuals separated by one time unit, and ta  was 

randomly and independently selected from a 
standard normal distribution. 

Because the focus in ITSE designs is on 
the effect of the intervention, the β2 and β3 
coefficients (see Equation 20) are of most 
interest. Thus, when generating the data in this 
simulation study, values of β0 (baseline data’s 
intercept) and of β1 (baseline data’s linear 
growth) were not manipulated but were fixed 
such that β0 was set to zero and β1 was set to a 
value of 0.2 in all scenarios. This modeled data 
with an intercept of zero (i.e., yt = 0 at t = 0) and 
a slight baseline trend. Values of 2β  and 3β , 

however, were varied to investigate their effect 
on detecting autocorrelation. Each parameter 
took on values 0, 0.2, and 0.4 in this fully 
crossed design. 

In order to evaluate how the model 
selection criteria performed over the range of 
possible values for ρ1, its value was varied to 
range from −0.8 up to 0.8 in increments of 0.2. 
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Finally, the number of data points, N, in the two 
phases for each scenario were varied to be 12, 
20, 30, 50, or 100 with the points being divided 
equally between the two phases so that nA = nB 
with values for each of: 6, 10, 15, 25, or 50. 

The simulation study thus entailed a 
fully crossed design consisting of three values of 

2β  crossed with three values of 3β , crossed 

with nine values of 1ρ , crossed with five values 
of N for a total of 405 combinations of 
conditions. One thousand datasets were 
generated for each of these 405 scenarios. 
 
Analyses 

After each dataset was generated, the 
regression model in Equation 20 was estimated 
using SAS’s PROC AUTOREG. This procedure 
estimates the model using both ordinary least 
squares (OLS) (assuming ρ1 = 0) and 
autoregressive methods (assuming ρ1 ≠ 0). The 
procedure provides values for the AIC and SBC 
for both models. HQIC, CAIC, and AICC were 
then calculated (see Equations 16, 17 and 18, 
respectively) using the log likelihood obtained 
from the AIC value. For each information 
criterion, a tally was kept describing when the 
autoregressive model’s information criterion 
was lower than that of the OLS model. PROC 
AUTOREG additionally provides the p-value for 
the Durbin-Watson test statistic. As with the 
AIC and SBC, a tally was kept of the proportion 
of trials for which this p-value led to a rejection 
of the null hypothesis that ρ1 = 0 (p < .05). 

The HMz  and +
HMz  were also calculated 

(see Equation 12 and 19, respectively) using the 
residuals from the OLS regression. The E(r1) in 
the denominator of Equation 19 was obtained by 
substituting +

Pr ,1
 for the unknown ρ1 in Equation 

6. Again, a tally was kept describing the 
proportion of trials for which the null hypothesis 
of no autocorrelation was rejected (p < .05). For 
conditions in which ρ1 ≠ 0, the tally by scenario 
for each of the eight model selection criteria 
provided the power to identify the correct 
model. For conditions in which ρ1 = 0, the tally 
provided the type I error rate. 
 
 
 

Results 
Type I Error Rates 

Table 1 contains Type I error rates by 
condition and criterion. Sample size appeared to 
have the strongest effect on type I error rates. 
The type I error rate was not greatly affected by 
the values of 2β  and 3β . Overall, the Type I 

error rates for HMz  and +
HMz  were the best of 

the eight criteria investigated. The rates were 
somewhat conservative for the smallest sample 
size conditions (N = 12) with values of 0.022 

and 0.035 for HMz  and +
HMz , respectively. The 

zHM maintained type I error rates at the nominal 
level across sample size conditions (with a 

maximum value of 0.051). The rates for +
HMz  

were slightly elevated (with values of 0.059) 
although the statistic performed much better 
than did the Durbin-Watson (DW) and the five 
information criteria (ICs) investigated. 

The Type I error rates of the five ICs 
(SBC, AIC, HQIC, CAIC and AICC) and for the 
DW statistic were generally inflated across the 
ρ1 = 0 conditions examined with the indices 
performing from worst to best as follows: AIC, 
HQIC, SBC, AICC, DW, CAIC. The Type I 
error rate inflation, however, decreased with 
increasing sample size. Only in the scenarios 
with the largest sample size (N = 100), were the 
CAIC and SBC’s Type I error rates acceptable if 
somewhat conservative. The CAIC’s Type I 
error rate performance was also acceptable 
(0.056) for conditions in which N was 50. 
 
Power 

Table 2 displays the power of the eight 
criteria used to evaluate the presence of lag-one 
autocorrelated residuals. In the presence of type 
I error inflation, the power of a criterion 
becomes somewhat moot. Thus, it should be 
kept in mind that the Type I error inflation noted 
for the DW and the five ICs. As would be 
expected, for all criteria the power was found to 
increase for larger sample sizes. Similarly, it was 
expected and found that as the magnitude of 1ρ  

increased so did the power to detect the ρ1 of the 

ICs and test statistics. The HMz  and +
HMz  

exhibited consistently better power levels than 
the SBC and DW for all positive values of ρ1.  
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Both of these test statistics had better power than 
all other indices when ρ1 ≥ 0.6. These results 
also supported the theoretical conclusion 

mentioned earlier that +
HMz  will always have 

more power than HMz . For negative values of 

ρ1, the ICs and DW statistic exhibited better 

power than the HMz  and +
HMz . And the ICs that 

performed worst in terms of type I error control 
performed best in terms of power. 

The power was also unaffected by the 
true values of 2β  and 3β . The power of HMz  

and +
HMz  was quite low (0.089 and 0.133, 

respectively) for the N = 12 conditions but the 
power levels become more comparable to those 
of the other criteria for larger N. However, only 

HMz  and +
HMz  had exhibited acceptable type I 

error rates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
The results of the simulation study support use 

of the zHM and +
HMz for identification of lag-one 

autocorrelation in small ITSE datasets. Both 
statistics maintain nominal rates of type I error 

control although +
HMz ’s rates seemed slightly 

inflated in the larger sample size conditions. 
Concomitant with the type I error control were 
found somewhat lower empirical power levels. 
However the type I error inflation of the five ICs 
and the DW prohibit their use for detection of 
autocorrelation in the conditions examined here 
and especially with ITSE data consisting of a 
small number of data points. 

A type I error in the current context 
means that an autoregressive model will be 
estimated unnecessarily. While this should have 
minimal effect on the estimation of the β 
coefficients in Equation 20, it will likely affect 
the standard error (SE) estimates used to test the  

Table 1: Type I Error Rates (False Detection) of Lag-One Autocorrelation 
by Criterion and Condition 

Condition Information Criterion Test Statistics (p < .05) 

Parm* True Value SBC AIC HQIC CAIC AICC DW HMz  
+
HMz  

ρ1 0 0.185 0.304 0.264 0.129 0.168 0.146 0.043 0.053 

β2 

0.4 0.185 0.303 0.265 0.128 0.172 0.143 0.044 0.054 

0.2 0.185 0.303 0.262 0.129 0.167 0.145 0.043 0.053 

0 0.185 0.305 0.264 0.129 0.166 0.149 0.042 0.052 

β3 

0.4 0.188 0.305 0.266 0.131 0.172 0.147 0.044 0.055 

0.2 0.187 0.306 0.264 0.129 0.165 0.147 0.043 0.052 

0 0.180 0.300 0.262 0.127 0.168 0.143 0.042 0.051 

N 

12 0.424 0.490 0.523 0.316 0.131 0.173 0.022 0.035 

20 0.228 0.343 0.316 0.155 0.182 0.164 0.047 0.059 

30 0.146 0.272 0.221 0.092 0.183 0.149 0.047 0.059 

50 0.087 0.225 0.157 0.056 0.178 0.132 0.051 0.058 

100 0.038 0.190 0.103 0.024 0.167 0.110 0.049 0.052 

*Parm. = Parameter 
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statistical significance of these coefficients. The 
current evaluation could be extended further by 
comparing estimation of the OLS versus 
autoregressive model coefficients and their SEs 
for different levels of autocorrelation. This could 
help inform the current study’s type I error and 
power results by indicating the magnitude of the 
effect of incorrect modeling of autocorrelation. 
For example, if only a small degree of accuracy 
and precision is gained by modeling the 
autocorrelation for a certain value of 1ρ , then it 
may not matter that the model selection criteria 
has low power at that value. Similarly, if an 
insubstantial degree of accuracy and precision 
results from false identification of 
autocorrelation, then the type I error inflation  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
noted in this study might be of minimal 
importance. 

As with most simulation studies, results 
are limited by the conditions investigated: the 
values of the 2β  and 3β  coefficients (see 

Equation 20) do not seem to have much effect 
on identification of ρ1, but it should be 
investigated whether this is really the case or 
whether it just appears that way from the limited 
range of values of 2β  and 3β  that were chosen 

in this study. One of the main limitations of this 
study is that it considers only the two-phase 
ITSE data and only investigated first-order 
autocorrelation. Another important limitation is 
that performance was evaluated only for a small 
subset of possible data trends. All conditions 
included a slight positive linear trend in 

Table 2: Power to Detect Lag-One Autocorrelation by Criterion and Condition 

Condition Information Criterion Test Statistic (p < .05) 

Parm* True Value SBC AIC HQIC CAIC AICC DW HMz  
+
HMz  

ρ1 

0.8 0.614 0.672 0.661 0.569 0.585 0.574 0.689 0.699 

0.6 0.530 0.609 0.594 0.480 0.516 0.500 0.621 0.633 

0.4 0.380 0.494 0.462 0.320 0.392 0.370 0.476 0.492 

0.2 0.169 0.299 0.258 0.120 0.194 0.164 0.204 0.218 

-0.2 0.499 0.670 0.616 0.399 0.503 0.473 0.188 0.212 

-0.4 0.830 0.894 0.883 0.765 0.769 0.765 0.489 0.526 

-0.6 0.952 0.970 0.968 0.926 0.896 0.904 0.697 0.734 

-0.8 0.988 0.992 0.993 0.981 0.963 0.968 0.830 0.865 

2β  

0.4 0.622 0.702 0.679 0.571 0.603 0.591 0.526 0.549 

0.2 0.619 0.699 0.681 0.569 0.601 0.590 0.523 0.546 

0 0.619 0.699 0.678 0.570 0.602 0.588 0.523 0.546 

3β  

0.4 0.622 0.701 0.680 0.570 0.602 0.590 0.524 0.547 

0.2 0.620 0.700 0.680 0.570 0.603 0.590 0.524 0.548 

0 0.618 0.699 0.679 0.570 0.602 0.589 0.525 0.547 

N 

12 0.515 0.560 0.579 0.440 0.287 0.323 0.089 0.133 

20 0.461 0.544 0.524 0.404 0.424 0.415 0.377 0.412 

30 0.571 0.670 0.636 0.515 0.605 0.570 0.564 0.585 

50 0.717 0.812 0.775 0.678 0.788 0.754 0.732 0.743 

100 0.836 0.914 0.883 0.813 0.908 0.887 0.860 0.863 
*Parm. = Parameter 
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baseline. In addition, the only model 
misspecification assessed was whether the 
residuals were autocorrelated. 

Future research should investigate use of 

the zHM and +
HMz  for further misspecified 

models including when a true non-linear trend is 
ignored to mimic asymptotic trends resulting 
from ceiling or floor effects. The performance of 
these statistics could also be assessed for ITSEs 
with more than two phases (e.g., for ABAB 
designs) as investigated by Huitema and 
McKean (2000). This study also only 
investigated conditions in which the treatment 
and baseline phases had equal numbers of data 
points (nB = nA). Single-subject studies 
frequently entail unequal sample sizes per phase 
and the effect of uneven n should be 
investigated. 

Based on the results of this study, 
researchers interested in modeling linear growth 
in ITSE data with a small number of data points 

should use +
HMz  or zHM  to test for the presence 

of lag-one autocorrelation. Researchers are 
cautioned against using the Durbin-Watson test 
statistic and the various information criteria 
evaluated here including the AIC, HQIC, SBC, 
AICC, DW and the CAIC for two-phase ITSEs 
with Ns less than 50. 
 

References 
Bartlett, M. S. (1946). On the theoretical 

specification and sampling properties of 
autocorrelated time-series. Journal of the Royal 
Statistical Society, 8, 27-41. 

Bozdogan, H. (1987). Model selection 
and Akaike’s information criterion (AIC): The 
general theory and its analytical extensions. 
Psychometrika, 52, 345-370. 

Busk, P. L., & Marascuilo, L. A. (1988). 
Autocorrelation in single-subject research: A 
counterargument to the myth of no 
autocorrelation. Behavioral Assessment, 10, 229-
242. 
 
 
 
 
 
 

Fan, X., Felsovalyi, A., Keenan, S. C., 
& Sivo, S. (2001). SAS for Monte Carlo studies: 
A guide for quantitative researchers. Cary, NC: 
SAS Institute, Inc. 

Hannon, E. J., & Quinn, B. G. (1979). 
The determination of the order of an 
autoregression. Journal of the Royal Statistical 
Society, Series B, 41, 190-195. 

Huitema, B. E. (1985). Autocorrelation 
in applied behavior analysis: A myth. 
Behavioral Assessment, 7, 107-118 

Huitema, B. E., & McKean, J. W. 
(1991). Autocorrelation estimation and inference 
with small samples. Psychological Bulletin, 110, 
291-304. 

Huitema, B. E., & McKean, J. W. 
(2000). A simple and powerful test for 
autocorrelated errors in OLS intervention 
models. Psychological Reports, 87, 3-20. 

Huitema, B. E., Mckean, J. W., & 
McKnight S. (1999). Autocorrelation effects on 
least-squares intervention analysis of short time 
series. Educational and Psychological 
Measurement, 59, 767-786. 

Hurvich, C. M., & Tsai, C. L. (1989). 
Regression and time series model selection in 
small samples. Biometrika, 76, 297-307. 

Kendall, M. G. (1954). Note on bias in 
the estimation of autocorrelation. Biometrika, 
41, 403-404. 

Marriott, F. H. C., & Pope, J. A. (1954). 
Bias in the estimation of autocorrelations. 
Biometrika, 41, 390-402. 

SAS Institute, Inc. (2003). SAS 
(Version 9.1) [Computer Software]. Cary, NC: 
SAS Institute, Inc. 

Schwarz, G. (1978). Estimating the 
dimension of a model. Annals of Statistics, 6, 
461-464. 

Tawney, L., & Gast, D. (1984). Single-
subject research in special education. 
Columbus, OR: Merrill. 

White, J. S. (1961). Asymptotic 
expansions for the mean and variance of the 
serial correlation coefficient. Biometrika, 48, 85-
94. 
 


	Journal of Modern Applied Statistical Methods
	11-1-2009

	Detecting Lag-One Autocorrelation in Interrupted Time Series Experiments with Small Datasets
	Clare Riviello
	S. Natasha Beretvas
	Recommended Citation


	Microsoft Word - toc_vol8_no2

