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Estimating Model Complexity of Feed-Forward Neural Networks 
 

Douglas Landsittel 
University of Pittsburgh 

 
 
In a previous simulation study, the complexity of neural networks for limited cases of binary and 
normally-distributed variables based the null distribution of the likelihood ratio statistic and the 
corresponding chi-square distribution was characterized. This study expands on those results and presents 
a more general formulation for calculating degrees of freedom. 
 
Key words: Degrees of freedom, null distribution, chi-square distribution. 
 
 

Introduction 
Feed-forward neural networks are commonly 
utilized as a statistical tool for classification and 
prediction of high-dimensional and/or 
potentially highly non-linear data. Their 
popularity stems from an implicitly non-linear 
and flexible model structure, which does not 
require explicit specification of interactions or 
other non-linear terms, and can universally 
approximate any function (Ripley, 1996). In 
cases where epidemiologic data or the 
underlying theory of the specific problem 
suggest a complex association, but the exact 
nature of such associations is not well 
understood, neural networks represent a more 
flexible methodology for potentially modeling 
such associations. One significantly negative 
consequence of this implicit non-linearity and 
flexible model structure, however, is the 
resulting inability to quantify model complexity. 
The typical approach of counting model terms 
does not provide a rationale basis for quantifying 
the effective model dimension because the 
model parameters are inherently correlated to 
varying degrees. 
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Previous work has sought to quantify 

model degrees of freedom for other nonlinear or 
nonparametric models through use of the hat 
matrix. For scatterplot smoothers, local 
regression, and other nonparametric models, 
Hastie and Tibshirani (1990) and others directly 
calculated the trace of the hat matrix to estimate 
degrees of freedom. In cases where the hat 
matrix cannot be explicitly specified, such as 
more complex models or model selection 
procedures, Ye (1998) proposes the generalized 
degrees of freedom, which estimates the 
diagonal terms based on the sensitivity of fitted 
values to changes in observed response values. 
To address random effects, hierarchical models, 
and other regression methods, Hodges and 
Sargent (2001) extended degrees of freedom 
using a re-parameterization of the trace of the 
hat matrix and subsequent linear model theory. 

Other publications have specifically 
addressed the issue of model complexity for 
neural networks. For instance, Moody (1992) 
calculated the effective number of model 
parameters based on approximating the test set 
error as a function of the training set error plus 
model complexity. A number of other articles 
(Liu, 1995; Amari & Murata, 1993; Murata, 
Yoshizawa, & Amari, 1991) have presented 
theorems to quantify model complexity, but, 
without a framework for practically applying 
such methods, none have been utilized in 
practice. Others have taken a more 
computational approach (as summarized by 
Ripley, 1996; and Tetko, Villa, & Livingstone, 
1996) using methods such as cross-validation, 
eliminating variables based on small (absolute) 
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parameter values, or eliminating variables with a 
small effect on predicted values (i.e. sensitivity 
methods). Bayesian approaches have also been 
proposed (Ripley, 1996; Paige & Butler, 2001) 
for model selection with neural networks. 
Despite the noted advances, implementation of 
such methods has been limited by either 
computational issues, dependence on the 
specified test set, or lack of distributional theory. 
As a result, there are no established procedures 
for variable selection or determination of the 
optimal network structure (e.g. the number of 
hidden units) with neural networks. 

Previously, a simulation study was 
conducted to investigate the distribution of the 
likelihood ratio statistic with neural networks. In 
the present study, simulations are conducted to 
empirically describe the distribution of the 
likelihood ratio statistic under the null 
assumption of the intercept model (versus the 
alternative of at least one non-zero covariate 
parameter). All simulations are conducted with a 
single binary response; in contrast, the 
previously cited literature primarily focuses on 
continuous outcomes. In cases where the 
likelihood ratio can be adequately approximated 
by a chi-square distribution, the degrees of 
freedom can be used to quantify neural network 
model complexity under the null. Derivation of 
the test statistic null distribution is pursued 
through simulation approaches, rather than 
theoretical derivations, because of the 
complexity of the network response function and 
the lack of maximum likelihood or other 
globally optimal estimation. 

The two main objectives of this 
simulation study are to: (1) verify that the chi-
square distribution provides an adequate 
approximation to the empirical test statistic 
distribution in a limited number of simulated 
cases, and (2) quantify how the distribution, 
number of covariates and the number of hidden 
units affects model degrees of freedom. 
Adequacy of the chi-square approximation will 
be judged by how close the α -level based on 
the simulation distribution (i.e., the percent of 
the test statistic distribution greater than the 
corresponding chi-square quantile) is to various 
percentiles of the chi-square distribution. The 
variance, which should be approximately twice 

the mean under a chi-square distribution, is also 
displayed for each simulation condition. 
 

Methodology 
The Feed-Forward Neural Network Model 

This study focuses strictly on a single 
Bernoulli outcome, such as presence or absence 
of disease. All neural network models utilized a 
feed-forward structure (Ripley, 1996) with a 
single hidden layer so that 
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where ŷ  is the predicted value for the kth 
observation with covariate values xk
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function, 
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=

+ , is referred to as 

the jth hidden unit. The response function of the 
neural network model can thus be viewed as a 
logistic of these hidden unit values. In terms of 
further terminology, the parameters 0 1, ,..., Hv v v  

are referred to as the connections between the 
hidden and output layer and each set of other 
parameters, 1 2, ,...,j j jpw w w , are referred to as 

the connections between the inputs and hidden 
units, where there are p covariate values specific 
each of the p hidden units. This described model 
structure often leads to categorization of neural 
networks as a black box technique. None of the 
parameter values directly correspond to any 
specific main effect or interaction. Further, the 
degree of non-linearity cannot be explicitly 
determined from the number of hidden units or 
any easily characterized aspect of the model. 

The optimal model coefficients were 
calculated via back-propagation (Rumelhart, et 
al., 1995) and the nnet routine in S-Plus 
(Venables & Ripley, 1997), which iteratively 
updates weights using a gradient descent-based 
algorithm. For a Bernoulli outcome, 
optimization is based on the minimization of the 
deviance (D), 
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ܦ = −2∑ ሾݕ݈݃(ݕො) + (1 − 1)݈݃(ݕ − ො)ሿ(ୀଵ)ݕ  (2) 
 
with a penalty term for the sum of the squared 
weights (referred to as weight decay). Weight 
decay, represented by λ in Equation 3, is 
commonly utilized to improve optimization and 
generalization of the resulting model by 
minimizing the penalized likelihood (PL) 
ܮܲ  = ܦ + ∑ߣ ଶݒൣ + ଶ൧ு(ୀଵ)ݓ         (3) 
 
For this study, λ  = 0.01 was utilized in all 
simulations based on previous experience and 
recommendations by Ripley (1996) established 
on Bayesian arguments and the range of the 
logistic function. 
 
Quantifying Model Complexity through 
Simulations 

All simulations utilized a feed-forward 
neural network with one hidden layer and a 
single binary outcome with a varying number of 
predictor variables. All variables were randomly 
generated (via S-Plus), with the predictor 
variables being simulated independently of the 
binary outcome, as to generate results under the 
null hypothesis of no association. Separate sets 
of simulations were conducted for a variety of 
conditions, including binary versus continuous 
predictors, a varying number of predictor 
variables, and a varying number of hidden units. 
For each condition, 500 data sets were each 
simulated, each with 2,000 observations (to 
approximate asymptotic results). 

To quantify model complexity of the 
given neural network under the given set of 
conditions, the likelihood ratio statistic for 
model independence was calculated, which 
serves to quantify the model complexity under 
the null of no association between outcome and 
predictors. The simulations result in a 
distribution of likelihood ratios which should 
follow a chi-square distribution with the mean 
equal to the degrees of freedom. The mean of 
that distribution can then be used to quantify 
model complexity under the null. However, 
correspondence to a given chi-square 
distribution must be verified. In the absence of 
any current theoretical justification for the 
expected distribution, percentiles of the chi-

square distribution were compared to the 
corresponding α-levels of the simulated 
distribution (of likelihood ratios). Simulated α -

levels ( ( )S
qα ) were then defined as the 

percentage of simulated values greater than qth 
percentile of the corresponding chi-square 
distribution. For instance, the nominal α -level 
for the simulated distribution is given by 
 

( )( )2
0.05 0.05
s P LR LRα χ= ≥              (4) 

 
where LR represents the likelihood ratio. 
Simulated α -levels are then compared to the 
chi-square percentiles at significance levels of 
0.75, 0.50, 0.25, 0.10, and 0.05. Q-Q plots are 
also presented to quantify agreement with the 
appropriate chi-square distribution. 
 
Methods for Estimating Model Degrees of 
Freedom 

After verifying the expected 
correspondence to a chi-square distribution for a 
given set of conditions, a new method was 
utilized to estimate the degrees of freedom for 
other sets of conditions. Since these methods 
vary substantially for binary versus continuous 
predictors, the corresponding methods are first 
presented separately, after their respective 
simulation results, and then merged into a single 
approach. The actual methodology is presented 
within the results section since these methods 
are intuitively motivated by the simulation 
results, and are thus easier to understand within 
that context. 
 

Results 
Simulation Results for Binary Input Variables 

Results presented in Table 1 were 
generated using independently distributed binary 
inputs. All neural network models were fit using 
a weight decay of 0.01; for each result pertaining 
to binary inputs, the maximum number of terms, 
including all main effects and interactions, for k 
inputs equals 2k – 1. The number of model 
parameters for a model with h hidden units 
equals h(k + 1) + (h + 1). 
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Table 1: Likelihood Ratio Statistic for All Binary Inputs 

Inputs 
(Max # Terms) 

Hidden 
Units 

#Parameters 
Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

2 
(3) 

2 9 2.86 5.81 0.75 0.52 0.26 0.06 0.03 

5 21 3.04 5.73 0.74 0.50 0.26 0.09 0.04 

10 41 3.15 5.98 0.76 0.51 0.25 0.10 0.04 

3 
(7) 

2 11 7.04 15.90 0.75 0.49 0.22 0.09 0.04 

5 26 6.93 12.37 0.74 0.51 0.25 0.11 0.07 

10 51 7.24 13.97 0.75 0.50 0.26 0.10 0.06 

4 
(15) 

2 13 11.94 22.05 0.74 0.50 0.25 0.11 0.08 

5 31 14.87 28.99 0.76 0.50 0.26 0.09 0.06 

10 61 14.96 31.33 0.76 0.50 0.23 0.08 0.04 

5 
(31) 

2 15 18.36 31.03 0.75 0.50 0.26 0.13 0.08 

5 36 30.25 62.22 0.75 0.48 0.25 0.10 0.05 

10 71 31.82 69.57 0.74 0.50 0.22 0.09 0.06 

6 
(63) 

2 17 25.07 44.05 0.71 0.49 0.28 0.14 0.07 

5 41 50.63 108.5 0.76 0.51 0.23 0.09 0.04 

10 81 63.70 147.5 0.76 0.50 0.24 0.08 0.03 

7 
(127) 

2 19 30.92 57.98 0.74 0.50 0.26 0.10 0.05 

5 46 69.93 138.4 0.75 0.54 0.24 0.10 0.05 

10 91 117.3 245.6 0.75 0.50 0.25 0.10 0.05 

8 
(255) 

2 21 38.75 77.43 0.74 0.51 0.25 0.08 0.04 

5 51 88.95 161.2 0.73 0.49 0.27 0.13 0.06 

10 101 168.3 318.0 0.74 0.50 0.27 0.11 0.05 

9 
(511) 

2 23 45.76 110.9 0.79 0.51 0.20 0.06 0.02 

5 56 107.7 202.9 0.75 0.54 0.25 0.10 0.05 

10 111 214.4 394.9 0.74 0.50 0.24 0.11 0.06 

10 
(1023) 

2 25 51.76 117.9 0.77 0.51 0.22 0.07 0.03 

5 61 126.1 248.5 0.74 0.51 0.24 0.10 0.05 

10 121 257.5 546.5 0.75 0.48 0.25 0.10 0.05 

Mean Simulated α -levels 0.75 0.50 0.25 0.10 0.05 
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Table 1 shows the simulated distribution 
of the likelihood ratio test for independence is 
closely followed by a chi-square distribution. In 
a large percentage of the cases, all of the 
simulated α-levels were within 1-3% of the 
expected percentiles. No systematic differences 
were evident in the results. Figures 1a and 1b 
illustrate two examples where: (1) the simulated 
distribution varied a few percent from the 
expected percentiles (2 inputs and 2 hidden  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

units), and (2) the simulated distribution fell 
extremely close to the corresponding chi-square 
distribution (7 inputs and 10 hidden units). Both 
figures show noticeable variability at the upper 
end of the distribution; however, it should be 
noted that these few points are primarily within 
only the top 1% of the distribution, and thus 
have little effect on most of the resulting 
significance levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1a: Example Q-Q plot (with 2 Binary Inputs, 2 HUs and 0.01 WD) 
Illustrating Greater Variability from the Expected Chi-square Distribution 
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Figure 1b: Example Q-Q plot (with 7 Binary Inputs, 10 HUs and 0.01 WD) 
Illustrating a Close Correspondence with the Expected Chi-square Distribution 
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Table 2 shows additional simulation results for 
other cases (with at most 10 inputs) where the 
number of model parameters (p) is less than the 
maximum number of terms (m). Results again 
showed that the simulated α-levels were very 
close the expected percentiles. Q-Q plots for 
these cases (not shown here) resulted in similar 
findings as displayed in Figures 1a and 1b. No 
additional simulations are shown here for two, 
three or four inputs because these cases all 
corresponded to models where p > m, and will 
therefore produce a known degrees of freedom 
(3, 7, and 15 for 2, 3 and 4 inputs, respectively). 
Simulations were conducted, but not shown 
here, to verify that such results would hold for 4 
hidden units (since p was only slightly greater 
than m in the case of 3 hidden units); results 
verified the expected finding (of 15 degrees of 
freedom). Other combinations leading to a 
known degrees of freedom (with p > m) were 
also excluded from the table (including 5 inputs 
with 6-9 hidden units and 6 inputs with 8-9 
hidden units). 
 
Estimating Degrees of Freedom for Binary Input 
Variables 
The above results indicate that the model 
degrees of freedom for strictly binary inputs 
appear to intuitively depend on two factors: 

(1) the maximum number of possible main 
effects and interactions = (2k – 1), and 

(2)  the number of model parameters = h(k 
+ 1) + (h + 1). 

In cases where the number of model parameters 
is sufficient to fit all main effects and 
interactions, the degrees of freedom is equal to 
that maximum number of terms. For example, 
regardless of the number of hidden units, the 
degrees of freedom (df) are approximately 3.0 
for two binary inputs and approximately 7.0 for 
three binary inputs. For four binary inputs, two 
hidden units (and subsequently 13 parameters) 
are insufficient to fit all 15 terms and result in 
approximately 12 df. 

In such cases, where the number of 
model parameters is less than the maximum 
number of terms, the df is generally in between 
(or at least very close to) the number of model 
parameters (p) and the maximum number of 
terms (m). Exactly where the df falls depends on 
how close the number of model parameters is to 

the maximum number of terms. In general, the 
ratio of degrees of freedom by number of model 
parameters may be expressed as a function of m 
– p. To produce a linear relationship, it is more 
convenient (with binary inputs) to express df/p 
as a function of log2(m-p). The simulated 
degrees of freedom from Table 1 was used to 
derive a relationship, and Figure 2 shows a plot 
of the simulated data from Table 1 (with 2, 5 or 
10 hidden units) overlaid with the linear 
regression line 
 

( )20.6643 0.1429df log m pp = + × − .  (5) 

 
Figure 2 shows a general trend between the 
difference in m – p and the degrees of freedom 
(divided by the number of parameters), but also 
illustrates some variability between the 
simulated values and the subsequent estimates. 
To evaluate the significance of these 
discrepancies, the estimated df were compared to 
the simulated distribution of the likelihood ratio 
statistic (for model independence). Results are 
shown in Table 3. 

Results indicate that the estimated df 
usually approximates the simulated value within 
an absolute error of a few percent. For example, 
most of the conditions (11 of 16) result in a 5% 
significance level between 0.03 and 0.07; the 
largest discrepancy is an absolute difference of 
0.04 from the true 5% level. The 10% 
significance level corresponds to somewhat 
larger errors, with the estimated p-values as high 
as 0.17 and as low as 0.02. The 75th, 50th and 
25th percentiles showed similar findings with 
occasionally substantial discrepancies. 

The above rule for estimating the df, 
based on the previously fit linear regression of 
df/p as a function of log2(m – p), was also 
evaluated with respect to its adequacy to predict 
model complexity for new cases (with 3, 4, or 6-
9 hidden units). Figure 3 shows a plot of these 
additional simulated data overlaid with the linear 
same regression line df/p = 0.6643 + 
0.1429·log2(m – p). 

Figure 3 shows the trend between the 
difference in m – p and the df (divided by the 
number of parameters), but again illustrates 
variability between the simulated values and the  
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Table 2: Additional Simulated Likelihood Ratio Statistics with All Binary Inputs 

Inputs 
(Max # Terms) 

Hidden 
Units 

#Parameters 
Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

5 
(31) 

3 22 23.84 47.66 0.73 0.50 0.26 0.10 0.06 

4 29 28.69 54.80 0.74 0.50 0.26 0.12 0.06 

6 
(63) 

3 25 34.57 67.28 0.74 0.49 0.25 0.10 0.06 

4 33 42.81 96.51 0.77 0.51 0.24 0.08 0.03 

6 49 55.86 109.8 0.74 0.50 0.26 0.09 0.05 

7 57 59.60 110.0 0.77 0.49 0.26 0.11 0.05 

7 
(127) 

3 28 45.93 92.58 0.75 0.50 0.23 0.10 0.05 

4 37 58.06 111.6 0.75 0.50 0.24 0.10 0.05 

6 55 82.27 148.3 0.75 0.49 0.26 0.11 0.06 

7 64 92.84 175.6 0.74 0.51 0.27 0.10 0.05 

8 73 102.5 189.5 0.75 0.51 0.25 0.09 0.06 

9 82 111.7 224.0 0.76 0.51 0.24 0.10 0.06 

8 
(255) 

3 31 54.90 101.0 0.75 0.50 0.26 0.11 0.07 

4 41 73.02 148.2 0.75 0.52 0.23 0.08 0.04 

6 61 107.8 223.0 0.75 0.49 0.24 0.09 0.05 

7 71 124.8 258.3 0.76 0.50 0.25 0.10 0.03 

8 81 139.7 238.2 0.71 0.52 0.28 0.12 0.06 

9 91 155.0 268.0 0.73 0.52 0.24 0.13 0.08 

9 
(511) 

3 34 65.13 135.0 0.77 0.50 0.24 0.10 0.05 

4 45 87.02 179.6 0.76 0.51 0.25 0.09 0.04 

6 67 131.4 228.8 0.73 0.51 0.27 0.10 0.06 

7 78 152.3 286.6 0.74 0.50 0.25 0.10 0.06 

8 89 171.8 338.5 0.74 0.51 0.26 0.11 0.05 

9 100 194.7 303.6 0.72 0.50 0.27 0.14 0.08 

10 
(1023) 

3 37 75.5 163.5 0.76 0.51 0.25 0.08 0.03 

4 49 100.9 190.8 0.73 0.52 0.26 0.10 0.05 

6 73 152.7 297.1 0.77 0.50 0.24 0.10 0.05 

7 85 178.5 341.9 0.74 0.51 0.24 0.09 0.06 

8 97 204.8 430.0 0.77 0.51 0.24 0.08 0.04 

9 109 230.0 425.7 0.74 0.52 0.25 0.10 0.06 

Mean Simulated α -levels 0.75 0.51 0.25 0.10 0.05 
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Figure 2: Plot of the Degrees of Freedom for Binary Inputs (2, 5, and 10 Hidden Units) as a 
Function of the Difference between Maximum Number of Terms and Number of Parameters 

 Log Base 2 of m - p

de
gr

ee
s 

of
 fr

ee
do

m
 / 

p

2 4 6 8 10

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Table 3: Comparison of Estimated to Simulated Degrees of Freedom with All Binary Inputs 

Max # of 
Terms 

(Inputs) 

# of 
Parameters 

Hidden 
Units 

Simulated 
df 

Estimated 
df 

Simulated α-levels using the Estimated df 

0.75 0.50 0.25 0.10 0.05 

15 
(4) 

13 2 11.94 10.49 0.66 0.41 0.19 0.07 0.05 

31 
(5) 

15 2 18.36 18.54 0.74 0.49 0.25 0.12 0.07 

63 
(6) 

17 2 25.07 24.71 0.73 0.51 0.30 0.15 0.08 

41 5 50.63 53.36 0.67 0.40 0.16 0.05 0.02 

127 
(7) 

19 2 30.92 30.96 0.74 0.50 0.26 0.10 0.05 

46 5 69.93 72.23 0.69 0.46 0.18 0.07 0.03 

91 10 117.3 127.7 0.50 0.25 0.09 0.02 0.01 

255 
(8) 

21 2 38.75 37.57 0.78 0.56 0.30 0.11 0.05 

51 5 88.95 89.80 0.71 0.47 0.25 0.11 0.06 

101 10 168.3 172.0 0.67 0.42 0.21 0.07 0.03 

511 
(9) 

23 2 45.76 44.63 0.82 0.56 0.24 0.08 0.03 

56 5 107.7 107.9 0.75 0.53 0.24 0.10 0.05 

111 10 214.4 210.8 0.80 0.57 0.30 0.15 0.08 

1023 
(10) 

25 2 51.76 52.21 0.76 0.49 0.21 0.07 0.03 

61 5 126.1 126.9 0.72 0.49 0.23 0.09 0.05 

121 10 257.5 250.2 0.84 0.61 0.36 0.17 0.09 

Mean Estimated α -levels 0.72 0.57 0.24 0.10 0.05 
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subsequent estimates. Further, results do not 
show any systematic difference from the 
previous set of findings (as graphed in Figure 2). 
To evaluate the significance of these 
discrepancies, the estimated df were compared to 
the simulated distribution of the likelihood ratio 
statistic (for model independence). Results are 
shown in Table 4. 

Results again indicate that the estimated 
degrees of freedom usually approximated the 
simulated value within an absolute error of a few 
percent. For example, most of the conditions (20 
of 30) resulted in a 5% significance level 
between 0.03 and 0.07; with two exceptions, the 
largest discrepancy is an absolute difference of 
0.04 from the true 5% level. The 10% 
significance level, however, again corresponds 
to somewhat larger errors, with the estimated p-
values being as high as 0.34 and as low as 0.04; 
most results (19 of 30), however, were between 
0.07 and 0.13. The 75th, 50th and 25th percentiles 
showed similar findings with occasionally 
higher discrepancies. 

The above results identify some 
complications and discrepancies that arise when 
using this method to estimate the model df for 
strictly binary inputs. First, the subsequent 
simulations show only a fair degree of 
correspondence between the predicted and 
simulated df. The majority of conditions led to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
percentiles within an absolute difference of a 
few percent, but other conditions led to more 
substantial discrepancies. Secondly, the 
established rules under this method led to some 
logical inconsistencies in the predicted df. For 
example, with 5 inputs, the predicted df for 3 
hidden units (24.58) is actually larger than that 
predicted for 4 hidden units (23.41). This 
apparent contradiction arises from the fact that 
the df are essentially predicted by scaling the 
number of parameters by a function of the 
difference between the maximum number of 
terms and the number of model parameters. 
While this approach has some intuitive appeal - 
and generally leads to an increase in the degrees 
of freedom as the number of hidden units 
increases (for a given number of input variables) 
- no guarantee exists that this pattern will hold 
universally. 

Due to this, some corrections are 
therefore needed for predicting the model df in 
these scenarios. To do so, when a decrease is 
observed with an increase in hidden units, it is 
possible to simply take the average of the 
previous result with the next number of hidden 
units. For example, for the case of 5 inputs with 
4 hidden units, the previous result (24.58 for 3 
hidden units) would be averaged with the next 
result (31 for 5 hidden units) to obtain 27.79, 
which is much closer to the simulated result of  

Figure 3: Plot of the Degrees of Freedom for Binary Inputs (3, 4, and 6-9 Hidden Units) as a 
Function of the Difference between Maximum Number of Terms and Number of Parameters 
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Table 4: Comparison of Estimated to Simulated Degrees of Freedom with Binary Inputs 

Max #of 
Terms 

(Inputs) 

# of 
Parameters 

(Hidden 
Untis) 

Simulated 
df 

Estimated 
df 

Simulated α-levels using the Estimated df 

0.75 0.50 0.25 0.10 0.05 

31 
(5) 

22 3 23.84 24.58 0.69 0.46 0.22 0.08 0.05 

29 4 28.69 23.41 0.91 0.77 0.55 0.34 0.21 

63 
(6) 

25 3 34.57 35.36 0.71 0.45 0.22 0.08 0.05 

33 4 42.81 45.06 0.69 0.42 0.17 0.05 0.02 

49 6 55.86 59.21 0.63 0.38 0.17 0.05 0.03 

57 7 59.60 58.92 0.79 0.52 0.28 0.13 0.06 

127 
(7) 

28 3 45.93 45.13 0.78 0.53 0.26 0.11 0.06 

37 4 58.06 58.90 0.73 0.47 0.22 0.09 0.04 

55 6 82.27 85.03 0.68 0.41 0.20 0.07 0.04 

64 7 92.84 97.18 0.63 0.38 0.17 0.05 0.02 

73 8 102.5 108.5 0.61 0.35 0.14 0.04 0.02 

82 9 111.7 118.8 0.59 0.33 0.12 0.04 0.02 

255 
(8) 

31 3 54.90 55.18 0.74 0.49 0.25 0.11 0.06 

41 4 73.02 72.59 0.76 0.54 0.24 0.09 0.05 

61 6 107.8 106.77 0.78 0.52 0.26 0.11 0.06 

71 7 124.8 123.50 0.78 0.53 0.28 0.11 0.04 

81 8 139.7 139.96 0.70 0.51 0.27 0.12 0.06 

91 9 155.0 156.13 0.71 0.50 0.23 0.11 0.07 

511 
(9) 

34 3 65.13 65.82 0.75 0.48 0.22 0.09 0.04 

45 4 87.02 86.89 0.76 0.51 0.26 0.09 0.04 

67 6 131.4 128.7 0.79 0.58 0.33 0.14 0.09 

78 7 152.3 149.4 0.79 0.57 0.31 0.14 0.08 

89 8 171.8 170.0 0.77 0.55 0.29 0.13 0.06 

100 9 194.7 190.5 0.78 0.58 0.34 0.20 0.12 

1023 
(10) 

37 3 75.5 77.16 0.72 0.46 0.21 0.06 0.02 

49 4 100.9 102.1 0.71 0.49 0.23 0.09 0.04 

73 6 152.7 151.7 0.78 0.53 0.26 0.11 0.06 

85 7 178.5 176.4 0.77 0.55 0.28 0.11 0.07 

97 8 204.8 201.0 0.82 0.59 0.31 0.12 0.07 

109 9 230.0 225.6 0.80 0.60 0.32 0.14 0.08 

Mean Estimated α -levels 0.74 0.50 0.25 0.11 0.06 
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28.69 (and provides better correspondence to the 
simulated distribution of likelihood ratios). The 
other example arises with 6 inputs and 7 hidden 
units, where the estimated value of 58.92 would 
be replaced by 61.11 (which is slightly further 
away from the simulated result of 59.6). 
 
Simulation Results for Continuous Input 
Variables 

Results shown in Table 5 were 
generated using independently distributed 
continuous inputs from a standard normal 
distribution. All neural network models were fit 
using a weight decay of 0.01. Table 5 shows that 
the simulated distribution of the likelihood ratio 
test for independence again closely followed a 
chi-square distribution. In a large percentage of 
the cases, all of the simulated α-levels were 
within a few percent of the expected percentiles. 
No systematic differences were evident in the 
results. Figures 4a and 4b show two examples 
where: (1) the simulated distribution varied a 
few percent from the expected percentiles (2 
inputs and 2 hidden units), and (2) the simulated 
distribution fell extremely close to the 
corresponding chi-square distribution (2 inputs 
and 10 hidden units). Both figures show 
noticeable variability in at least one extreme end 
of the distribution; however, these few points 
have little effect on the resulting significance 
levels that would be of practical interest. 

Table 6 shows additional results for 
other cases with 3 or 8 hidden units and up to 10 
inputs. Results again showed simulated α-levels 
very close to the expected percentiles. Q-Q plots 
(not shown here) showed similar findings as in 
Figures 4a and 4b. 
 
Estimating Degrees of Freedom for Continuous 
Input Variables 

As opposed to the case of binary inputs, 
the degrees of freedom (df) for continuous input 
variables do not have any specific limiting 
value. Therefore, it was assumed that the df 
would be a continuous (and probably linear) 
function of the number of hidden units. Further, 
it was assumed that the result would increase by 
some constant amount with an increase in the 
number of input variables. Using the results in 
Table 5, the relationship 

( )[ ]523 +−××= khdf  is obtained, which 
appears to hold well across those results (with 2, 
5, and 10 hidden units). Since the specific values 
from Table 5 were not used to derive this 
relationship (other than observing the general 
trend), subsequent results combine simulations 
from Tables 5 and 6 (i.e., 2-10 inputs and 2, 3, 5, 
8 and 10 hidden units). Figure 5 shows the 
relationship between the simulated and 
estimated df from the results in Tables 5 and 6. 
The plot illustrates a close correspondence 
between the simulated and estimated results, 
especially for smaller degrees of freedom. 

Results in Table 7 show somewhat 
greater variability in the df and subsequent 
significance levels. Only the 5% significance 
level showed no systematic error, with most of 
the simulations giving a result (for 5% 
significance) within 2% of the correct level (e.g., 
between 3% and 7%). The variability in 
significance levels can be attributed to either the 
difference between the simulated and estimated 
df and/or the variability from a chi-square 
distribution. In most cases, the estimated df was 
at least slightly higher than the simulated result. 
 
Simulation Results for both Binary and 
Continuous Input Variables 

Table 8 shows results for both binary 
and continuous input variables. For each of these 
simulations, the number of hidden units was 
kept constant at 2, the number of continuous 
inputs was specified as 2, 5, or 10, and the 
number of binary inputs was varied between 2 
and 10. The degrees of freedom (df) in 
parentheses in the first two columns of the table 
are the estimated values for model complexity 
(as described in the previous sections of this 
report). The additional df (column 5) gives the 
difference between the simulated df (when 
combining a given number of continuous and 
binary inputs) and the sum of estimated df 
(totaled from columns 1, 2 and 3). 

The results in Table 8 illustrate several 
key issues. First, the simulation results show 
substantially more variability than predicted by 
the chi-square distribution, which is most likely 
a consequence of sub-optimal results from the 
minimization (of the deviance) routine in S-Plus. 
Secondly, a definite trend exists between the  
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number of continuous and binary variables and 
the additional df gained (or lost) when 
combining a given number of (continuous and 
binary) input variables. 

At this point, the observed trends could 
be used to derive estimates of model complexity 
for the cases in Table 8 and for other cases with 
larger numbers of hidden units and other 
combinations of continuous and binary inputs 
(as done previously when separately considering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

continuous or binary inputs). However, the lack 
of correspondence with the chi-square 
distribution, and the subsequent need for 
improved model fitting (e.g., more global 
optimization procedures) would invalidate any 
subsequent findings. Therefore, modifications of 
the S-Plus procedures need to be pursued for 
these cases before any specific rules can be 
effectively formulated for the case of both 
continuous and binary inputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Likelihood Ratio Statistic for Model Independence with Continuous Inputs 

Inputs 
Hidden 
Units 

# 
Parameters 

Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

2 
2 9 10.8 25.0 0.74 0.51 0.25 0.08 0.03 
5 21 26.2 60.5 0.75 0.51 0.23 0.08 0.04 

10 41 49.8 99.4 0.75 0.50 0.25 0.09 0.05 

3 
2 11 16.6 33.6 0.74 0.51 0.26 0.10 0.04 
5 26 41.0 71.2 0.74 0.52 0.26 0.11 0.06 

10 51 82.5 171.2 0.76 0.50 0.24 0.10 0.05 

4 
2 13 22.2 40.0 0.77 0.53 0.25 0.09 0.04 
5 31 55.4 111.0 0.75 0.51 0.27 0.10 0.04 

10 61 115.3 216.9 0.75 0.49 0.26 0.11 0.06 

5 
2 15 27.7 57.9 0.77 0.51 0.25 0.07 0.03 
5 36 69.3 131.4 0.75 0.51 0.26 0.09 0.04 

10 71 144.8 293.4 0.75 0.50 0.24 0.10 0.05 

6 
2 17 33.4 65.4 0.76 0.54 0.27 0.08 0.04 
5 41 83.0 164.3 0.74 0.50 0.25 0.10 0.05 

10 81 176.7 341.1 0.74 0.53 0.24 0.09 0.05 

7 
2 19 38.7 100.1 0.77 0.51 0.21 0.07 0.02 
5 46 98.3 202.0 0.75 0.50 0.27 0.08 0.04 

10 91 205.2 375.8 0.75 0.51 0.25 0.11 0.05 

8 
2 21 44.8 101.1 0.78 0.52 0.23 0.08 0.04 
5 51 112.5 220.8 0.74 0.49 0.24 0.11 0.06 

10 101 239.0 476.9 0.75 0.51 0.25 0.10 0.04 

9 
2 23 49.9 142.2 0.79 0.53 0.19 0.05 0.02 
5 56 127.4 239.9 0.74 0.48 0.26 0.11 0.06 

10 111 269.0 487.6 0.73 0.50 0.27 0.11 0.05 

10 
2 25 54.6 166.1 0.80 0.49 0.19 0.05 0.03 
5 61 140.8 280.2 0.76 0.49 0.24 0.12 0.06 

10 121 299.5 546.4 0.75 0.51 0.26 0.10 0.04 

Mean Simulated α -levels 0.75 0.51 0.25 0.09 0.04 
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Table 6: Additional Simulated Likelihood Ratio Statistics with Continuous Inputs 

Inputs 
Hidden 
Units 

# 
Parameters 

Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

2 
3 13 15.9 35.4 0.76 0.51 0.23 0.08 0.04 

8 33 40.3 82.8 0.76 0.51 0.23 0.10 0.04 

3 
3 16 24.4 42.0 0.74 0.51 0.29 0.10 0.05 

8 41 65.9 135.7 0.73 0.49 0.25 0.11 0.06 

4 
3 19 32.9 60.6 0.73 0.53 0.27 0.10 0.05 

8 49 90.5 171.1 0.75 0.49 0.25 0.10 0.06 

5 
3 22 41.2 85.7 0.76 0.53 0.26 0.07 0.04 

8 57 115.2 200.1 0.73 0.51 0.26 0.11 0.06 

6 
3 25 48.9 84.4 0.73 0.51 0.29 0.13 0.05 

8 65 139.3 231.3 0.72 0.49 0.29 0.13 0.06 

7 
3 28 57.0 100.7 0.75 0.52 0.24 0.12 0.06 

8 73 160.9 299.5 0.73 0.49 0.27 0.11 0.06 

8 
3 31 64.9 140.9 0.75 0.50 0.25 0.10 0.04 

8 81 187.3 376.1 0.75 0.50 0.24 0.10 0.05 

9 
3 34 74.3 158.7 0.78 0.47 0.24 0.09 0.05 

8 89 211.4 421.9 0.75 0.50 0.25 0.11 0.05 

10 
3 37 81.4 171.6 0.76 0.50 0.22 0.09 0.06 

8 97 235.5 392.1 0.74 0.50 0.27 0.13 0.06 

Mean Simulated α -levels 0.75 0.50 0.25 0.10 0.05 
 

Figure 5: Plot of the Estimated by Simulated Degrees Of Freedom for 
Continuous Inputs and 2, 5 and 10 Hidden Units 
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Table 7: Estimated and Simulated Degrees of Freedom with Continuous Inputs 

Inputs 
Hidden 
Units 

# Parameters 
Simulated 

df 
Estimated 

df 
Simulated α-levels using the Estimated df 

0.75 0.50 0.25 0.10 0.05 

2 

2 9 10.8 10 0.79 0.58 0.32 0.11 0.05 
3 13 15.9 15 0.80 0.57 0.28 0.11 0.05 
5 21 26.2 25 0.80 0.58 0.28 0.11 0.06 
8 33 40.3 40 0.77 0.53 0.24 0.11 0.04 

10 41 49.8 50 0.75 0.49 0.25 0.08 0.05 

3 

2 11 16.6 16 0.77 0.55 0.30 0.13 0.06 
3 16 24.4 24 0.76 0.54 0.31 0.12 0.06 
5 26 41.0 40 0.77 0.57 0.30 0.13 0.07 
8 41 65.9 64 0.78 0.55 0.31 0.15 0.08 

10 51 82.5 80 0.81 0.58 0.30 0.14 0.07 

4 

2 13 22.2 22 0.77 0.54 0.26 0.10 0.04 
3 19 32.9 33 0.73 0.53 0.27 0.10 0.05 
5 31 55.4 55 0.76 0.52 0.28 0.10 0.05 
8 49 90.5 88 0.81 0.56 0.31 0.13 0.09 

10 61 115.3 110 0.85 0.62 0.39 0.20 0.11 

5 

2 15 27.7 28 0.76 0.49 0.24 0.07 0.03 
3 22 41.2 42 0.73 0.49 0.23 0.07 0.03 
5 36 69.3 70 0.73 0.49 0.25 0.09 0.04 
8 57 115.2 112 0.79 0.59 0.34 0.16 0.09 

10 71 144.8 140 0.83 0.62 0.34 0.16 0.09 

6 

2 17 33.4 34 0.73 0.50 0.24 0.07 0.03 
3 25 48.9 51 0.65 0.43 0.22 0.09 0.03 
5 41 83.0 85 0.68 0.44 0.20 0.07 0.03 
8 65 139.3 136 0.79 0.60 0.36 0.18 0.08 

10 81 176.7 170 0.84 0.67 0.36 0.17 0.10 

7 

2 19 38.7 40 0.72 0.45 0.17 0.05 0.01 
3 28 57.0 60 0.65 0.40 0.16 0.07 0.04 
5 46 98.3 100 0.71 0.46 0.23 0.06 0.03 
8 73 160.9 160 0.75 0.50 0.29 0.13 0.06 

10 91 205.2 200 0.83 0.61 0.34 0.17 0.08 

8 

2 21 44.8 46 0.74 0.47 0.19 0.06 0.03 
3 31 64.9 69 0.63 0.36 0.15 0.05 0.01 
5 51 112.5 115 0.69 0.43 0.19 0.08 0.04 
8 81 187.3 184 0.80 0.57 0.30 0.14 0.07 

10 101 239.0 230 0.86 0.67 0.39 0.19 0.09 

9 

2 23 49.9 52 0.73 0.45 0.14 0.03 0.01 
3 34 74.3 78 0.68 0.36 0.16 0.05 0.02 
5 56 127.4 130 0.69 0.41 0.21 0.09 0.04 
8 89 211.4 208 0.80 0.57 0.31 0.14 0.07 

10 111 269.0 260 0.84 0.65 0.41 0.20 0.11 

10 

2 25 54.6 58 0.70 0.37 0.11 0.03 0.01 
3 37 81.4 87 0.61 0.34 0.12 0.04 0.02 
5 61 140.8 145 0.68 0.40 0.17 0.07 0.04 
8 97 235.5 232 0.79 0.57 0.32 0.17 0.09 

10 121 299.5 290 0.86 0.66 0.40 0.19 0.10 

Mean Simulated α -levels 0.76 0.52 0.27 0.11 0.05 
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Categorical Input Variables 

Additional simulations were conducted 
for categorical variables. In theory, a categorical 
variable with 3 levels should produce fewer 
degrees of freedom than 2 binary inputs, since 
the 3 levels would be coded as 2 binary inputs, 
but would not have an interaction between the 2 
levels. Simulations (not shown here) provided 
evidence of this type of relationship, but 
simulation results differed substantially from the 
expected chi-square distribution. Therefore, as in  
the  cases  of  both  binary  and  continuous 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inputs, further work on these types of data are 
being delayed until a better optimization routine 
can be implemented with S-Plus or with another 
programming language. 
 

Conclusions 
One issue that was not addressed was the 
correlation of the input variables. All 
simulations were run with independently 
generated data. Comparing the current findings 
to previous analyses with some overlap 
(Landsittel, et al., 2003) indicates that the 

Table 8: Likelihood Ratios with Continuous and Binary Inputs and 2 Hidden Units 
Continuous 

Inputs 
(df) 

Binary 
Inputs 

df 
Mean 

Likelihood 
Ratio 

Additional 
df 

Simulated α-levels 

0.75 0.50 0.25 0.10 0.05 

2 
(10) 

2 3.0 19.7 6.7 0.73 0.52 0.27 0.10 0.05 
3 7.0 24.8 7.8 0.76 0.51 0.26 0.08 0.04 
4 10.5 31.0 10.5 0.75 0.54 0.24 0.08 0.03 
5 18.5 36.7 8.2 0.78 0.53 0.25 0.06 0.03 
6 24.7 42.4 7.7 0.78 0.54 0.22 0.06 0.02 
7 31.0 47.7 6.7 0.77 0.51 0.22 0.06 0.02 
8 37.6 54.0 6.8 0.78 0.49 0.22 0.07 0.02 
9 44.6 58.4 3.8 0.81 0.49 0.19 0.06 0.02 

10 52.2 64.1 1.9 0.80 0.47 0.18 0.04 0.02 

5 
(28) 

2 3.0 38.0 7.0 0.76 0.51 0.23 0.06 0.02 
3 7.0 43.6 8.6 0.79 0.53 0.20 0.05 0.02 
4 10.5 47.9 9.4 0.80 0.47 0.20 0.05 0.02 
5 18.5 52.9 6.4 0.80 0.50 0.18 0.06 0.02 
6 24.7 59.5 6.8 0.82 0.48 0.17 0.06 0.02 
7 31.0 64.3 5.3 0.84 0.44 0.18 0.04 0.02 
8 37.6 69.5 3.9 0.79 0.47 0.19 0.05 0.01 
9 44.6 73.6 1.0 0.80 0.46 0.19 0.05 0.02 

10 52.2 79.1 -1.1 0.82 0.45 0.17 0.04 0.01 

10 
(58) 

2 3.0 64.4 3.4 0.81 0.46 0.18 0.05 0.02 
3 7.0 69.4 4.4 0.82 0.47 0.18 0.04 0.01 
4 10.5 72.2 3.7 0.80 0.50 0.18 0.05 0.02 
5 18.5 78.1 1.5 0.78 0.47 0.19 0.06 0.03 
6 24.7 83.0 0.3 0.79 0.46 0.16 0.06 0.02 
7 31.0 89.1 0.1 0.78 0.48 0.17 0.04 0.02 
8 37.6 94.7 -1.1 0.78 0.46 0.17 0.05 0.01 
9 44.6 98.6 -4.0 0.79 0.46 0.20 0.05 0.01 

10 52.2 103.3 -6.9 0.79 0.45 0.15 0.04 0.01 

Mean Simulated α -levels 0.79 0.49 0.20 0.06 0.02 
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degrees of freedom (df) may be somewhat lower 
with moderately correlated data, which is 
somewhat intuitive since correlated variables, to 
some degree, add less information than 
independently distributed variables. Rather than 
consider this further complication, it was 
decided that all simulations should use 
independent data as a starting point, and the 
effects of correlation should be addressed 
separately in a future manuscript. 

Another limitation encountered here was 
the failure of the S-Plus routine to achieve 
acceptably optimal results in minimizing the 
deviance. Because the simulations with only 
binary, or only continuous inputs led to close 
correspondence with the chi-square distribution 
(which allows the use of the mean as the df), it 
would be expected that this would hold for 
models with both binary and continuous inputs. 
The failure to achieve this result is most likely a 
function of the (only locally optimal) routines. 
Future work will address this point through 
investigating other optimization routines (e.g., 
genetic algorithms), and incorporating those 
routines into the current approaches and 
methodology. 

To the best of our knowledge, these 
studies are the first to use df under the null as a 
measure of model complexity. Unlike 
generalized linear models or other standard 
regression methods, the model complexity may 
vary substantially for different data sets. In 
terms of the general applicability of this 
approach, the complexity under the null may 
provide a more appropriate penalty for 
subsequent use in model selection in many 
scenarios, as higher complexity may be desirable 
if the true underlying association is highly non-
linear. In contrast to a measure such as the 
generalized df, where the complexity tends to 
increase substantially when fit to data with some 
observed association, the complexity under the 
null only penalizing the model for incorrectly 
fitting non-linearity when none exists. Using an 
AIC-type statistic with generalized or effective 
df, for example, would highly penalize the 
neural network model for accurately fitting a 
highly non-linear association, and likely make it 
very difficult to select an adequately complex 
model. 

Despite these limitations, the results 
contribute significantly to our understanding of 
neural network model complexity by providing 
explicit equations to quantify complexity under 
a range of scenarios. Once improved methods 
are implemented to better optimize more 
complex models (where there was significant 
variability from the expected chi-square 
distribution), the derived equations for df can be 
tested across a much wider range of models. 
Assuming results hold for other scenarios (to be 
tested after achieving more global optimization), 
the estimated df can be implemented in practice 
for model selection via AIC or BIC statistics. 
Such approaches would serve as a favorable 
alternative to any of the ad-hoc approaches 
currently being utilized in practice. 
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