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Multiple Search Paths and the General-To-Specific Methodology 
 

Paul Turner 
Loughborough University 

United Kingdom 
 

 
Increased interest in computer automation of the general-to-specific methodology has resulted from 
research by Hoover and Perez (1999) and Krolzig and Hendry (2001). This article presents simulation 
results for a multiple search path algorithm that has better properties than those generated by a single 
search path. The most noticeable improvements occur when the data contain unit roots. 
 
Key words: Multiple search paths, general-to-specific, Monte Carlo simulation. 
 
 

Introduction 
The general-to-specific methodology introduced 
by Davidson, et al. (1978) and discussed by 
Gilbert (1986) is now a well established part of 
the technical toolkit of applied econometricians. 
The idea of this approach is to begin with a 
deliberately over-parameterized model, examine 
its properties (particularly those of the residuals) 
to ensure that it is data congruent and then to 
progressively simplify the model to obtain a 
parsimonious specification. Arguably, the main 
advantage of this approach is that, provided the 
original over-parameterized model is data 
congruent, tests of restrictions are always 
conducted against a statistically well specified 
alternative model. This contrasts with the 
alternative specific-to-general approach in which 
the alternative model is frequently badly 
specified, thereby invalidating the testing 
procedure. 

A typical situation facing a modeler can 
be illustrated as follows. The modeler begins 
with a general model of the form which relates 
two variables of interest y and x which follow a 
dynamic relationship disturbed by a random 
error u: 
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Economic theory suggests that an equilibrium 
relationship exists between the variables y and x. 
However, theory typically indicates little about 
the short-run dynamic relationship between the 
variables. Therefore, beginning with (1)1, 
exclusion restrictions for the right-hand side 
variables are tested and these are progressively 
eliminated until either the null 0 : 0iH β =  is 
rejected or the model begins to show signs of 
misspecification in the form of serial correlation 
in the residuals, heteroscedasticity, non-
normality etc. When a parsimonious 
specification is found then the model is often re-
written in a more convenient form such as the 
error-correction representation. 

One of the problems which arises with 
the general-to-specific methodology is the 
search path involved in moving from the general 
model (1) to a parsimonious specification is not 
unique. Typically, the general model contains a 
large number of highly co-linear variables. 
Exclusion of large numbers of variables at an 
early stage is a dangerous strategy since 
variables that may be insignificant in the most 
general model may become significant as other 
co-linear variables are excluded. Most advocates 
of this methodology therefore recommend 
proceeding gradually, eliminating a few 
variables at each stage of the specification 
search, until the final specification is obtained. 
However, the number of possible search paths 



MULTIPLE SEARCH PATHS AND THE GENERAL-TO-SPECIFIC METHODOLOGY 

506 
 

may become large even in a relatively small 
model. Suppose, for example, that the true 
model requires a total of n restrictions on the 
most general model. It follows that there are !n  
separate search paths which involve the 
elimination of one variable at each stage and 
which will succeed in getting from the general 
model to the final, correct specification. If the 
elimination of several variables at once is 
allowed then the number of search paths 
increases still further. 

Another problem arising within the 
general-to-specific methodology is that there is 
always the chance of making a Type II error 
during the process of the specification search 
and a variable which should be present in the 
final specification is eliminated at some stage. 
The result of this is typically that other variables, 
which ideally would have been excluded in the 
final specification, are retained as proxies for the 
missing variable. The resulting final 
specification is therefore over-parameterized. It 
is difficult to identify cases such as this from 
real world data where the investigator does not 
have the luxury of knowledge of the data 
generation process. However, it is 
straightforward to demonstrate this phenomenon 
using Monte Carlo analysis of artificial data sets. 

In the early years of general-to-specific 
analysis it was argued that the only solution to 
the problems discussed above was to rely on the 
skill and knowledge of the investigator. For 
example, Gilbert (1986) argued the following: 
 

How should the econometrician set 
about discovering congruent 
simplifications of the general 
representation of the DGP …. Scientific 
discovery is necessarily an innovative 
and imaginative process, and cannot be 
automated. (p.295) 

 
However, more recent research by Hoover and 
Perez (1999), Hendry and Krolzig (2001) and 
Krolzig and Hendry (2001) has suggested that 
automatic computer search algorithms can be 
effective in detecting a well specified 
econometric model using the now established 
‘general-to-specific’ methodology. This has 
been facilitated by the introduction of the PC-
GETS computer package which will 

automatically conduct a specification search to 
obtain the best data congruent model based on a 
given data set. 

The purpose of this paper is to 
investigate the properties of a simple automatic 
search algorithm in uncovering a correctly 
specified parsimonious model from an initially 
overparameterized model. The algorithm works 
by estimating multiple search paths and 
choosing the final specification which minimizes 
the Schwartz criterion. This is compared with a 
naïve search algorithm in which the least 
significant variable in the regression is 
successively eliminated until all remaining 
variables are significant at a pre-determined 
level. 
 

Methodology 
The main problem encountered in conducting 
multiple search paths is the number of possible 
search paths that might be legitimately 
investigated. For example, consider a model in 
which the final specification involves twelve 
exclusion restrictions relative to the original 
model (not an unusual situation when working 
with quarterly data). In this case there are 
12! 479,001,600=  possible search paths 
involving the progressive elimination of one 
variable at each stage. Therefore, even with the 
power of modern computing, consideration of 
every possible search path is simply not an 
option. However, the situation is not as 
impossible as it may first appear. Many search 
paths will eventually converge on the same final 
specification and the problem is simply to ensure 
that enough are tried so as to maximize the 
chance of obtaining the correct specification. 
The pseudo-code below sets out the algorithm 
used in this research to achieve this. 
 

FOR j = 1 to R, where R is a predetermined 
number of iterations. 

REPEAT UNTIL ˆ
i

ct tβ >  where ct  is a 

predetermined critical value for all 
1,..,i N=  where N is the number of 

variables included in the equation. 
 

Estimate equation. 
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FOR each variable in the model 

examine 
î

tβ . IF 
î

ct tβ <  AND 

0.5γ >  where γ  is a random drawing 
from a uniform distribution with the 
interval [ ]0,1  THEN eliminate 

associated variable and re-estimate 
equation. ELSE IF 0.5γ <  THEN 
retain variable. 

IF ˆ
i

ct tβ >  for all i then STOP and 

record the variables included in the 
equation as well as the value of the 
Schwartz criterion. Otherwise go back 
to previous step. 

FOR j = 1 to R, compare the value of the 
Schwartz criterion for each final specification 
and choose the specification with the lowest 
value 

 
The data generation process takes the 

form of the familiar partial adjustment model. 
This formulation is consistent with a cost 
minimization process in which agents minimize 
a quadratic cost function which includes costs of 
adjustment as well as costs of being away from 
equilibrium. The equation used to generate the 
data takes the form: 
 

10.5 0.25

:1,...,
t t t ty x y u

t T
−= + +

                (2) 

 
where : 1,...,tu t T=  are iid standard normal 
random variables. The x variable is generated in 
two alternative ways. In the first : 1,...,tx t T=  
are also iid standard normal random variables 
with ( )cov , 0t tx u = . In the second, 1t t tx x ε−= +  

where : 1,...,t t Tε =  are iid standard normal 

variables with ( )cov , 0t tx ε = . Thus in case 1 the 

relationship is one between stationary variables 
while, in case 2, it is between ( )1I  variables. 

Using (2) to generate the data and (1) as 
the starting point for a specification search, the 
search algorithm discussed above is applied as 
well as the naïve search algorithm of simply 
eliminating the least significant variable at each 
stage of the search process. Ten thousand 
specification searches2 are carried out using 

seeded pseudo-random numbers generated by 
the EViews regression package and the results of 
each search are classified according to the 
classification set out by Hoover and Perez 
(1999) as shown below: 
 
A: Final model = True Model 
B: True Model ⊂  Final Model and ˆ ˆFinal Trueσ σ<  

C: True Model ⊂  Final Model and ˆ ˆFinal Trueσ σ>  

D: True Model ⊄  Final Model and ˆ ˆFinal Trueσ σ<  

E: True Model ⊄  Final Model and ˆ ˆFinal Trueσ σ>  
 
Thus the final specification is classified as to 
whether it matches the true model (case A), 
contains all the variables included in the true 
model and has a lower standard error (case B), 
contains all the variables included in the true 
model but has a higher standard error (case C), 
omits at least one variable from the true model 
but has a lower standard error (case D) or omits 
at least one variable from the true model and has 
a higher standard error (case E). 
 

Results 
Table 1 presents the results for the multiple 
search path algorithm when the data are 
stationary. In all cases 100R = , that is 100 
different specification searches were carried out 
and the equation with the lowest Schwartz 
criterion3 was chosen. Examination of Table 1 
indicates that both the sample size and the 
choice of critical value used in the specification 
search are important factors. If the sample size is 
small 100T =  then 5%

c ct t=  performs better than 
1%

c ct t=  value in terms of identifying the true 
model more often (case A) and avoiding the 
elimination of variables that should be present in 
the true model (case E). However, as the sample 
size increases, this situation is reversed and in 
large samples with 500T =  then 1%

c ct t=  

performs much better than 5%
c ct t= . Note that 

case C is never observed in any of the 
simulations carried out. 

Does the multiple search path algorithm 
offer any gains over a naïve specification 
search? Examination of the results in Table 2 
suggests that this is the case. In all cases the 
multiple search path algorithm identifies the true 
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model more often. Moreover, as the sample size 
gets large, the frequency with which the multiple 
search path algorithm identifies the true model 
appears to be converging towards 100% with 

1%
c ct t= . This is not the case for the naïve 

algorithm in which, with the same specification, 
the true model was identified in only 67.6% of 
the simulations. 

Next, the effects of working with non-
stationary data was considered. Here the x 
variable is generated as a random walk series 
with the implication that the y variable also 
contains a unit root. However, the specification 
of an equilibrium relationship between the 
variables ensures that they are co-integrated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This means that it is still reasonable to conduct a 
specification search in levels of the series even 
though individually each series contains a unit 
root. The results for the multiple search path 
algorithm are given in Table 3. 

The results from Table 3 are very 
similar to those for non-stationary data shown in 
Table 1. The actual percentages differ slightly 
but the general pattern remains the same. If the 
sample size is small then 5%

c ct t=  performs 

better than 1%
c ct t= . However, as the sample size 

gets larger, this situation is reversed with case A 
converging towards 100% (when 1%

c ct t= ) as the 
sample size becomes large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Multiple Search Paths General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x and u are independently generated iid processes) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 52.4 48.2 76.4 83.3 80.9 93.0 

B 15.2 4.0 17.3 5.7 19.1 6.9 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 14.7 10.8 2.8 2.5 0.0 0.0 

E 17.7 37.0 3.5 8.5 0.0 0.0 

 
 
 

Table 2: Single Search Path General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x and u are independently generated iid processes) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 36.5 34.2 49.4 60.3 51.4 67.6 

B 18.5 3.3 27.5 6.0 29.4 7.1 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 24.3 17.4 12.2 14.9 9.6 12.9 

E 20.7 45.1 10.9 18.8 9.6 12.4 
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Finally, the multiple search path 
algorithm is contrasted with the naïve algorithm 
for the case of non-stationary data. The results 
for the naïve algorithm are shown in Table 4. 
These indicate that the naïve algorithm performs 
extremely badly when applied to non-stationary 
data. Case A is achieved in at best one quarter of 
the simulations, even with a large sample 

500T =  and irrespective of the critical value 
employed. This suggests that the real value of a 
multiple search path algorithm may lie in its 
application to the modeling of non-stationary 
series. Since this is very often the case with 
econometric model building, it suggests that the 
approach may have considerable practical value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
In this article the use of a multiple search path 
algorithm for the general-to-specific approach to 
econometric analysis has been investigated. It 
has been shown that this algorithm has 
significant advantages over a naïve approach to 
specification searches. Moreover the relative 
advantage of this approach increases when 
dealing with non-stationary data. Since non-
stationary data is the norm rather than the 
exception in econometric model building, it is 
arguable that a multiple search path approach 
offers real advantages to the applied 
econometrician. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Multiple Search Paths General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x is a random walk process and u is a stationary iid process) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 54.4 49.8 81.2 85.2 88.9 94.7 

B 10.1 2.7 11.5 4.4 11.1 5.2 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 19.8 14.7 4.7 4.7 0.0 0.1 

E 15.8 32.9 2.6 5.7 0.0 0.0 

 
 

Table 4: Single Search Path General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x is a random walk process and u is a stationary iid process) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 17.2 16.4 20.9 27.8 14.8 21.5 

B 16.7 2.3 29.8 3.9 33.3 7.5 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 39.3 32.3 25.5 32.4 26.6 36.9 

E 26.8 49.0 23.8 35.9 25.3 34.1 
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Notes 
1The lag length in equation (1) is set at 4 for 
illustrative purposes only. This is often the case 
when dealing with quarterly data but alternative 
lag lengths are frequently employed for data 
with different frequencies. 
2The specification searches were carried out 
using an EViews program which is available 
from the author on request. 
3In fact, examination of the results indicates that 
many different specification search paths 
converge on the true model. The problem is not 
one of picking a single search path which gives 
the correct result but rather one of avoiding 
rogue search paths which give the wrong result. 
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