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Approximate Bayesian Confidence Intervals for the  
Mean of an Exponential Distribution  Versus Fisher Matrix Bounds Models  

Vincent A. R. Camara 
University of South Florida 

 
 
 
The aim of this article is to obtain and compare confidence intervals for the mean of an exponential 
distribution. Considering respectively the square error and the Higgins-Tsokos loss functions, 
approximate Bayesian confidence intervals for parameters of exponential population are derived.  Using 
exponential data, the obtained approximate Bayesian confidence intervals will then be compared to the 
ones obtained with Fisher Matrix bounds method. It is shown that the proposed approximate Bayesian 
approach relies only on the observations. The Fisher Matrix bounds method, that uses the z-table, does 
not always yield the best confidence intervals, and the proposed approach often performs better. 
 
Key words:  Estimation, loss functions, Monte Carlo simulation, statistical analysis. 
 

 
Introduction 

There is a significant amount of research in 
Bayesian analysis and modeling which has been 
published the last thirty-five years Harris B. 
1976, Higgins J. J. Tsokos 1976, Shafer R. E. 
1973. A Bayesian analysis implies the 
exploitation of suitable prior information and the 
choice of a loss function in association with 
Bayes’ Theorem. It rests on the notion that a 
parameter within a model is not merely an 
unknown quantity, but rather behaves as a 
random variable, which follows some 
distribution. In the area of life testing, it is 
indeed realistic to assume that a life parameter is 
stochastically dynamic. This assertion is 
supported by the fact that the complexity of 
electronic  and  structural  systems   is   likely  to  
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cause undetected component interactions 
resulting in an unpredictable fluctuation of the 
life parameter. Drake (1966) provided an 
account for the use of Bayesian statistics in 
reliability problems. He stated, 
 

He [a Bayesian] realizes… that his 
selection of a prior (distribution) to 
express his present state of knowledge 
will necessarily be somewhat arbitrary. 
But he greatly appreciates this 
opportunity to make his entire assumptive 
structure clear to the world…Why should 
an engineer not use his engineering 
judgment and prior knowledge about a 
parameter in the classical distribution he 
has picked? For example, if it is the mean 
time between failures (MTBF) of an 
exponential distribution that must be 
evaluated from some tests, he 
undoubtedly has some idea of what the 
value will turn out to be”. (315-320) 
 

Consider the exponential underlying 
model characterized by 
 
                    0,0;)( ;θθ θ ≥= − xexf x            (1) 
 
It is well known that once the underlying model 
is found to have an exponential distribution, 
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Fisher Matrix bounds method (Nelson, 1982) 
uses the Z-table and considers the following 
confidence interval [] for θ . 
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Λ  is the log-likelihood function of the 
exponential distribution (1). 

Fisher Matrix bounds method considers 
large samples to ensure the use of the Z-table.. 
With some studies that have been conducted 
with small samples it has been found that the 
assumption of normal approximations for 
estimates based on small sample sizes reduces 
the accuracy of confidence bounds (Hartley, 
2004). 

For the above model (1), approximate 
Bayesian confidence bounds for the parameter 

θ  and the population mean 
 

1
θ

  will be derived 

to challenge Fisher bounds method (2).  
       Although there is no specific analytical 
procedure that allows us to identify the 
appropriate loss function to be used, the most 
commonly used is the square error loss function. 
One of the reasons for selecting this loss 
function is because of its analytical tractability 
in Bayesian analysis. As it will be shown, 
selecting the square error loss does not always 

lead to the best approximate Bayesian 
confidence intervals. However, the obtained 
approximate Bayesian confidence intervals 
corresponding to the square error and the 
Higgins-Tsokos loss functions will be 
respectively used to challenge Fisher bounds 
method (2). The loss functions that will be used 
are given below, along with a statement of their 
key characteristics. 
 
Square Error Loss Function 

The popular square error loss function 
places a small weight on estimates near the true 
value and proportionately more weight on 
extreme deviation from the true value of the 
parameter. Its popularity is due to its analytical 
tractability in Bayesian modeling. The square 
error loss is defined as follows: 
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Higgins-Tsokos Loss Function: 

The Higgins-Tsokos loss function places 
a heavy penalty on extreme over- or 
underestimation. That is, it places an exponential 
weight on extreme errors. The Higgins-Tsokos 
loss function is defined as follows: 
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Assume that θ  behaves as a random 
variable that is being characterized by the Pareto 
probability density function given by 
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The Pareto prior has been selected because of its 
mathematical tractability. Using observations 
from exponential distributions, the Pareto will 
approximate prior (5) in such a way that good 
approximate Bayesian estimates of θ  are 
obtained. 
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Preliminaries 
Let 1x , 2x , …….,  nx  denote the 

observations of a given system that are being 
characterized by the exponential distribution (1). 
The following posterior distribution is obtained: 
 

           ..,)\(
1

1

1

1

b

de

exh

b

x
an

x
an

n

i

n

i

;θ

θθ

θθ
θ

θ

∫
∞ −

−−

−
−−

∑

∑
     (6) 

 
Methodology 

 
Approximate confidence bounds for θ  

With respectively the following 
approximate priors for the square error and the 
Higgins-Tsokos loss functions, good 
approximate Bayesian estimates of θ  are 
obtained. 
 
Approximate prior for the square error loss: 
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Approximate prior for the Higgins-Tsokos 
loss: 
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It’s easily shown that the approximate Bayesian 
estimate of the parameterθ , subject to the 
square error loss; is the same as the Bayesian 
estimate of θ  under the Higgins-Tsokos loss. 
They are equal to  

∑
=

n

i
ix

n

1

. 

 
Using respectively the approximate posterior 
distributions that correspond to (7) and (8), 
along with the equalities 2/1)|( αθ −=xLP ;  
and 2/)|( αθ =xUP ; , the following lower 
and upper confidence bounds for θ  are 
obtained:   
 
Approximate Bayesian confidence bounds of θ  
corresponding to the square error: 
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Approximate Bayesian confidence bounds of θ  
corresponding to the Higgins-Tsokos: 
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Approximate Bayesian confidence bounds 
for the exponential population mean 
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Thus, we respectively obtain the 
following )%1(100 α− empirical Bayes 
confidence bounds for the mean b of the 
exponential failure model, when the squared 
error and the Higgins-Tsokos loss functions 
are considered: 
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Numerical Results 

In order to compare the proposed 
approximate Bayesian approach to the Fisher 
Matrix bounds method, samples that have been 
obtained from exponentially distributed 
populations will be considered.  For the Higgins-
Tsokos loss function, consider 1,1 21 == ff . 
The lengths of the Fisher Matrix bounds and 
approximate Bayesian confidence intervals are 
respectively denoted by  Fl  ,    SEl     and   HTl . 
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Example 1 
Monte Carlo simulation has been used 

to generate the following 30 observations from 
the exponential distribution with mean equal to 
1. 
 
 
   0.9549716 ,       0.09670773 ,       0.09107758, 
   2.6951610 ,       1.47495800 ,       0.56762340 
   1.2636410,        1.60653000 ,       0 94337030, 
   0.5499995 ,       0.64000010  ,      0.62536590 
   1.4492260 ,       0.78403890  ,      1.08172600, 
   0.3108478,        1.47283200,        0.47580980 
   3.1378870 ,       0.11715670 ,       0.92341850, 
   0.5124997         0.22012280         3.81572700 
   0.5791140 ,       0.50421350 ,       0.14532570 , 

     0.7749708        1.07792000         1.08156300. 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Table 1: Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of the 

Exponential Population  Mean When the Population Mean is Equal to 1. 
Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  

(SE) 

Approx.Bayesian 

bounds  (HT) 

80% 0.7909 – 1.2621   0.9575 – 1.0298 0.9575 – 1.0298 

90% 0.7392 – 1.3503 0.9368 – 1.0317 0.9368 – 1.0317 

95% 0.6985 – 1.4289 0.9169 – 1.0326 0.9169 – 1.0326 

99% 0.6238 – 1.6002 0.8739 – 1.0334 0.8739 – 1.0334 

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 6.5172 6.5172 
90% 6.4394 6.4394 
95% 6.3128 6.3128 
99% 6.1216 6.1216  



APPROXIMATE BAYESIAN CONFIDENCE INTERVALS 146 

 
 
Example 2 

Monte Carlo simulation has been used 
to generate the following 30 observations from 
the exponential distribution with mean equal to 9 
 
 
2.0270,         4.0103,      30.0421,    0.1189,     2.7558.  
13.7441,       13.3840,    27.0930,    7.3750,     3.7323,  
23.4171,       0.06310.    5.6839,      8.7473,     10.2778,  
25.2331,       10.1903,    0.3761,      3.3068,     3.4954,  
6.9136,         1.8234,      16.3160,    2.4359,     19.9108,  
2.5285,         3.9314,      3.4645,      6.9229,     10.4509. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Table 2: Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of the 

Exponential Population  Mean When the Population Mean is Equal to 9. 
Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  

(SE) 

Approx.Bayesian 

bounds  (HT) 

80% 7.1184 – 11.3598 8.6182 – 9.2688 8.6182 – 9.2688 

90% 6.6534 – 12.1537 8.4315 – 9.2861 8.4315 – 9.2861 

95% 6.2873 – 12.8614 8.2527 – 9.2944 8.2527 – 9.2944 

99% 5.6144 – 14.4028 7.8655 – 9.3009 7.8655 – 9.3009 

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 6.5192 6.5192 
90% 6.4361 6.4361 
95% 6.3109 6.3109 
99% 6.1226 6.1226 
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Example 3 
Monte Carlo simulation has been used 

to generate the following 40 observations from 
the exponential distribution with mean equal to 
20 
 
 
   4.5046,      8.9119,     66.7603,    0.2643,     6.1241,  
   30.5425,    29.7423,   60.2067,    16.3891,   8.2941,  
   52.0380,    0.1402,     12.6309,    19.4385,   22.8395,  
   52.3378,    3.4389,     19.3268,    8.2350,     3.4737,  
   56.0736,    22.6451,   0.8359,      7.3484,     7.7675,  
   15.3635,    4.05222,   36.2578,    5.6189,     8.7365,  
   7.6990,      15.3844,   23.2242,    11.8542,   63.6975,  
   14.8772,    32.9585,   2.2127,      5,4132,     44.2462 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Table 3: Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of the Exponential 

Population Mean When  the Population Mean  is Equal to 20. 
Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  

(SE) 

Approx.Bayesian 

bounds  (HT) 

80% 16.5786 – 24.8507 19.6574 – 20.7619 19.6574 – 20.7619 

90% 15.6366 – 26.3479 19.3330 – 20.7907 19.3330 – 20.7907 

95% 14.8886 – 27.6715 19.0191 – 20.8045 19.0191 – 20.8045 

99% 13.4983 – 30.5216 18.3281 – 20.8153 18.3281 – 20.8153 

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 7.4894 7.4894 
90% 7.3480 7.3480 
95% 7.1596 7.1596 
99% 6.8443 6.8443 
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Example 4 
The following exponential data and 

results    were    obtained   by  Washington  State  
 

Department of Ecology while conducting 
research on the amount of lead concentration in 
certain types of fish found in the Spokane River. 
 

 
Lead (Pb) Concentrations in 1999 Spokane River Fish

Source:  WA State Dept. of Ecology report 
concentrations in parts per million (ppm) 

trout whitefish sucker Filets 
0.480 
0.071 
0.110 
0.320 
0.120 
0.220 
0.055 
0.320 
0.077 
0.081 
0.170 
0.130 
0.110 
0.081 
0.098 
0.180 
0.230 
0.082 
0.210 
0.200 
0.025 
0.038 

0.020 
0.020 
0.020 
0.020 
0.020 
0.065 
0.020 
0.037 
0.020 
0.036 

0.088 
0.210 
0.280 
0.030 
0.036 
0.047 
0.077 
0.069 
0.160 
0.088 
0.120 
0.054 
0.080 
0.059 
0.094 
0.059 
0.068 
0.020 
0.090 
0.046 

Mean 0.155 0.028 0.089 
std dev 0.110 0.015 0.063 

 
 
 

Table 4: Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of the Mean Lead 
Concentration in Trout. 

Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  
(SE) 

Approx.Bayesian 
bounds  (HT) 

80% 0.11791 - 0.20351 0.15280 – 0.169507 0.15301 – 0.16976 

90% 0.10896 – 0.22021 0.14820 – 0.16996 0.14839 – 0.17022 

95% 0.10199 – 0.23526 0.14386 – 0.17018 0.14404 – 0.17044 

99% 0.08936 – 0.26851 0.13471 – 0.17035 0.13487 – 0.17061 

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 5.1236 5.1104 
90% 5.1125 5.0961 
95% 5.0634 5.0481 
99% 5.0266 5.0125  
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Table 5. Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of the Mean Lead 

Concentration in Whitefish. 
Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  

(SE) 
Approx.Bayesian 

bounds  (HT) 
80% 0.01854 – 0.04167 0.02698 - 0.03429 0.02556 – 0.03204 

90% 0.01649 – 0.04684 0.02528 – 0.03452 0.02403 – 0.03224 

95% 0.01495 – 0.05166 0.02378 – 0.03464 0.02267 – 0.03234 

99% 0.01229 – 0.06285 0.02090 – 0.03472 0.02004  - 0.03241  

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 3.1641 3.5694 
90% 3.2846 3.6967 
95% 3.3802 3.7962 
99% 3.6584 4.0873 

 
 
 

 
Table 6. Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of the Mean Lead 

Concentration in Sucker. 
Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  

(SE) 
Approx.Bayesian 

bounds  (HT) 
80% 0.06666 – 0.11816 0.08742 – 0.09803 0.08799 – 0.09875 

90% 0.06136 – 0.12835 0.08454 – 0.09833  0.08507 – 0.09905 

95% 0.05725 – 0.13756 0.08183 – 0.09847 0.08234 – 0.09919 

99% 0.04984 – 0.15802        0.07618 – 0.09858 0.07662 – 0.09931 

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 4.8539 4.7862 
90% 4.8578 4.7918 
95% 4.8263 4.7661 
99% 4.8294 4.7677 
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Example 5 
The following exponential data 

represent a random sample of cycles to failure in 
ten-thousands for twenty heater switches subject 
to an overload voltage. 
 
 
     0.01,      0.034,      0.194,     0.567,      0.601,  
     0.712,    1.291,      1.367,     1.949,      2.37,   
     2.411,    2.875,      3.162,     3.28,        3.491,   
     3.686,    3.854,      4.211,     4.397,      6.473. 

 
 
Elfessi and Raineke (2001) conducted some 
studies on the above data and obtained the 
following the following maximum likelihood 
estimate and 95% confidence interval for the 
parameterθ :  0.4261 and      (0.2603, 0.6322). 
 

 
 
 
 
 
 
 
 
 
 
 

Table 1, Table 2 and Table 3 show that, 
in the first three examples, the proposed 
approximate Bayesian confidence intervals 
perform better than confidence interval obtained 
with Fisher Matrix bounds method. All seven 
Tables show that the proposed approximate 
Bayesian confidences intervals perform well. 
 

Conclusion 
 
Approximate Bayesian confidence intervals for  
parameters of exponential populations under two 
different loss functions have been derived. The 
loss functions that are employed are the square 
error and the Higgins-Tsokos loss functions.  
Based on the above numerical results, the 
following may be concluded: 
 

 
 
 
 
 
 
 
 
 
 
 

 
Table 7: Fisher Matrix Bounds and Approximate Bayesian Confidence Intervals of θ  

Confidence level  Fisher Matrix bounds Approx.Bayesian bounds  
(SE) 

Approx.Bayesian 
bounds  (HT) 

80% 0.32005 – 0.56732 0.38575 – 0.43256 0.38575 – 0.43256 

90% 0.29464 – 0.61626 0.38460 – 0.44733 0.38459 – 0.44733 

95% 0.27491 – 0.66049 0.38404 – 0.46210 0.38404 – 0.46210 

99% 0.23932 – 0.75871 0.38361 – 0.49639 0.38361 – 0.49639 

 
Confidence level 

 
( Fl  ) ÷  ( SEl ) ( Fl  ) ÷  ( HTl ) 

80% 5.2824 5.2824 
90% 5.1270 5.1262 
95% 4.9353 4.9395 
99% 4.6053 4.6053 
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1. When representative samples are 
considered, the Fisher Matrix bounds 
method used to construct confidence 
intervals for exponential parameters 
does not always yield the best coverage 
accuracy.  

 
2. The Fisher Matrix bounds method used 

to construct confidence intervals for the 
mean of an exponential population does 
not always yield the best coverage 
accuracy. In fact, in Table 1, Table 2 
and Table 3, each of the obtained 
approximate Bayesian confidence 
intervals contains the population mean 
and is strictly included in the 
corresponding confidence interval 
obtained with Fisher Matrix bounds 
method. 

 
3. Contrary to Fisher Matrix bounds 

method that uses the Z-table, the 
proposed approach relies only on the 
observations.    

 
4. With the proposed approach, 

approximate Bayesian confidence 
intervals for exponential population 
means are easily computed for any level 
of significance.  

 
5. Bayesian analysis contributes to 

reinforcing well-known statistical 
theories such as the estimation theory.  
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