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On Type-II Progressively Hybrid Censoring

Debasis Kundu Avijit Joarder Hare Krishna
Indian Institute of Technology, Reserve Bank of India, C.C.S. University,
Kanpur, India Mumbai, India Meerut, India

The progressive Type-II censoring scheme has become quite popular. A drawback of a progressive
censoring scheme is that the length of the experiment can be very large if the items are highly reliable.
Recently, Kundu and Joarder (2006) introduced the Type-II progressively hybrid censored scheme and
analyzed the data assuming that the lifetimes of the items are exponentially distributed. This article
presents the analysis of Type-II progressively hybrid censored data when the lifetime distributions of the
items follow Weibull distributions. Maximum likelihood estimators and approximate maximum
likelihood estimators are developed for estimating the unknown parameters. Asymptotic confidence
intervals based on maximum likelihood estimators and approximate maximum likelihood estimators are
proposed. Different methods are compared using Monte Carlo simulations and one real data set is
analyzed.

Key words: Maximum likelihood estimators; approximate maximum likelihood estimators; Type-I
censoring; Type-II censoring; Monte Carlo simulation.

Introduction R, units are removed. Extensive work has been
The Type-II progressive censoring scheme has

: conducted on this particular scheme during the
become very popular. It can be described as p £

follows: id o d d last ten years; see Balakrishnan and Aggarwala
ollows: consi er n units mm a stu y an (2000) and Balakrishnan (2007).
suppose m < n is fixed before the experiment, Unfortunately the major problem with

in addition, m other integers, R,,.., R are also the Type-II progressive censoring scheme is that

fixed so that R +.. +R +m=n. At the time the time length of the experiment can be very
Pt T ) large. Due to this problem, Kundu and Joarder

of the first failure, for example, Y, . R, of the (2006) introduced a new censoring scheme
remaining units are randomly removed. named Type-II Progressively Hybrid Censoring,
Similarly, at the time of the second failure, for which ensures that the length of the experiment
example, Y, . R, of the remaining units are cannot exceed a pre-specified time point 7 .

The detailed description and advantages of the
Type-II progressively hybrid censoring is
presented in Kundu and Joarder (2006) (see also
Childs, Chandrasekar & Balakrishnan, 2007); in

randomly removed and so on. Finally, at the
time of the m—th failure, Y the remaining

m:m:n?>

both publications the authors assumed the
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be obtained by solving a non-linear equation and
a simple iterative scheme is proposed to solve
the non-linear equation. Approximate maximum
likelihood estimators (AMLEs), which have
explicit expressions are also suggested. It is not
possible to compute the exact distributions of the
MLEs, so the asymptotic distribution is used to
construct confidence intervals. Monte Carlo
simulations are used to compare different
methods and one data analysis is performed for
illustrative purposes.

Type-II Progressively Hybrid Censoring Scheme
Models
If it is assumed that the lifetime random

variable Y has a Weibull distribution with
shape and scale parameters & and A
respectively, then the probability density

function (PDF) of Y is

fy(yiey)= ﬂ(lja_l e‘@]a ;

0,
i\ y=

(1)

where >0, A >0 are the natural parameter

space. If the random variable Y has the density
function (1), then X =1In Y has the extreme

value distribution with the PDF

Ear
MH o
o

fX(x;,u,O'):le J: —ocl X <ec, (2)
(02

where #£=InA, 0 =1/a. The density function

as described by (2) is known as the density
function of an extreme value distribution with
location and scale parameters 4 and O

respectively. Models (1) and (2) are equivalent
models in the sense that the procedure developed
under one model can be easily used for the other
model. Although, they are equivalent models,
(2) can be the easier with which to work
compared to model (1), because in model (2) the
two parameters 4 and O appear as location

and scale parameters. For #=0 and o =1,

model (2) is known as the standard extreme
value distribution and has the following PDF

Iz (z; 0,1) = e(z_e:); —oc< z <oc,

3)

535

Type-II Progressively Hybrid Censoring Scheme
Data

Under the Type-II progressively hybrid
censoring scheme, it is assumed that 7 identical
items are put on a test and the lifetime
distributions of the # items are denoted by

Y,.Y. m<n

R,,..,R, are m pre-fixed integers satisfying

The integer is pre-fixed,

R+...+R +m=n, and T is a pre-fixed

time point. At the time of the first failure
Y., R of the remaining units are randomly

removed. Similarly, at the time of the second
failure Y, , R, of the remaining units are

2:m:n
removed and so on. If the m—th failure Y,

occurs before time 7', the experiment stops at
time point Y, . If, however, the m -th failure

does not occur before time point 7" and only J
failures occur before T (where 0<J <m),

then at time 7 all remaining R; units are
removed and the experiment terminates. Note
that R, =n—(R, +...+ R,)—J. The two cases

are denoted as Case | and Case II respectively
and this is called the censoring scheme as the
Type-II progressively hybrid censoring scheme
(Kundu and Joarder, 2006).

In the presence of the Type-II
progressively hybrid censoring scheme, one of
the following is observed

Case I:
Yopmsoos Yoty it Y <T, 4)
or
Case II:
{)]l:m:n""’YJ:m:n}; lf YJ:m:n < T < YJ+l:m:n . (5)

For Case II, although Y,
but ¥V, <T<Y

J:m:n J+lim:n

1S not observed,

+lm:n
means that the J—th

failure took place before 7' and no failure took
place  between Y, and T (ie,

J:mmn
Y Y ) are not observed.

J+lm:n? > " mimin
The conventional Type-1 progressive
censoring scheme needs the pre-specification of

R,,.,R, and also T,...,T, (see Cohen 1963,
1966 for details). The choices of 7},..,7 are not
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trivial. For the conventional Type-II progressive
censoring scheme the experimental time is
unbounded. In the proposed censoring scheme
the choice of T depends on how much
maximum experimental time the experimenter
can afford to continue and also the experimental
time is bounded.

Maximum Likelihood Estimators (MLEs)
Based on the observed data,
likelihood function for Case I is

" m a-l —[fi(ng) Yimn a}
Z(Q,A)ZKI(ZJ H(yi:m:nJ e = (,1) ’

A) = A
(6)

the

and for Case II, the MLE is

I(a,A)=K, ( J lf[(y”"" ja—le{i‘(lﬂe )[}ma*m[%ﬂ

if J>0,(7)
_,,(Zj”
=e ‘M| it J=0(8)
where
m[ i—1 ]
K1:1:[1 n—El(l+Rk)
and ) _
J[ i-1
K2:1:[1 kZl(l+R) ,

both are constant.
The logarithm of (6) and (7), can be
written without the constant terms as

L) d(lna_lnz)+(a_1)[iln - —dlnl}—;a W),

=1

©)
Here d =m, W(a) = z (1 + Ri)yi‘:zm:n and
i=1
J *
d=J, W(@)=2 (+R)y},, +R,T" for

i=1
Case-I and Case-II respectively. It is assumed
that d >0, otherwise the MLEs do not exist.
Taking derivatives with respect to o
and A of (9) and equating them to zero results
in
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oL(a,A) d @,
__u¥ /4 0, 10
A T @) (1o
a“f” d +21ny,mn ~dini~— M)+ Walni=0
(11)
Herea V(a) = Zm: (1 + Ri)yi.i{m:n ln yi:m:n and

i=1

J

V(ie)=>(1+R e, Iny,,. +R,T"InT,
i=1

for Case-I and Case-II respectively. Note that

W(x)
d

A" = =u(a) (say) (12)

and the MLE of & can be obtained by solving

a=ha), (13)
where
W)= —— d 1 .
- Zi=1 In Yimn + m W(a)

A simple iterative scheme is proposed to
obtain the MLE of & from (13). Starting with

an initial guess of ¢, for example, a'”, obtain
" = h(a'™) and proceed in this way to obtain
"™ = h(a™). The iterative procedures stops

when ‘0{("“) —a™

<€, which is some pre-

assigned tolerance limit. Once the MLE of « is
obtained the MLE of A can be obtained from
(12). Since the MLE’s, when they exist, are not
in compact forms, the following approximate
MLE’s and its’ explicit expressions are
proposed.

B

Approximate Maximum Likelihood Estimators
(AMLESs)

Using  the
=lny, and S=

notations
InT, the likelihood

equation of the observed data x, _ for Case-lis

wmn

following

lmn
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O i=l k=1
(15)
where ,
Zi:m:n = (xi:m:n —,U)/O', V = (S—/,l)/O',
g(x)zex_ex, é(x) =¢, p=InA and
oc=l/a.

Ignoring the constant term, the following log-
likelihood results from (15) is

L(Aw)=1n[l(xw)}=ﬂnh10+§h(g(z,-m))+:§1€- In(G(z,,,))

(16)

From (16) the following approximate MLE’s of
U and O are obtained (see Appendix 1),

(¢,—c,—m)6+d, 5= —B+\B*—44C

¢ 24

fi=
(17)
where

m m m
— H; — H; — H;
¢ =X D", ¢; =X Dpie", dy =1 DX,,,,0",
i= i=

im:n
i=1

d2 = iDz)(zzmneﬂ’ > d3 = iDuuz)(zmneﬂl > A4 =m Crs
i=1 i=1
Bzcl(d3+m)_()—dl(cz+m), C=d}—cd,,

#i=G7'(p)=In(=Ing,), p=i/ln+1),
q,=1—p,and D, =1+R, for i=1,---,m.
For Case-Il, ignoring the constant term,
the log-likelihood is obtained as
L(u0) =m[1(ﬂ,a)]=41na+ém( &(Zim)) éz@ In(G(z3,))+ Ry InG(V).
(18)

In this case the approximate MLE’s are (see
Appendix 2)

_(a-a-J)6+d,  _ _p 4B —adC
ﬂ: - , O= -
q 24
(19)
where,
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ci = ZiJ:lDieﬂi +Rje'u; ,

¢y = X1 Dipiet +R;ﬂjeﬂj ;

d} =7 DX pnet + R} SekT

dy =) DX P, neti + RS S2eMT
d3 = YLD X et + R;,ujSe'“;,
A = Jey, B'=c{(dg+J)?)—d{(c'2+J),
C'=df —cidy-

Here 4, and D, are the same as above for
i=1sJ, 1 =G (p)) =In(~Ing)),

p,=(p,+p,.)/2 and ¢, =1-p).

Results
Because the performance of the different
methods cannot be compared theoretically,
Monte Carlo simulations are used to compare
the performances of the different methods
proposed for different parameter values and for
different sampling schemes. The term different

sampling schemes mean different sets of R 's

and different 7' values. The performances of
the MLEs and AMLEs estimators of the
unknown parameters are compared in terms of
their biases and mean squared errors (MSEs) for
different censoring schemes. The average
lengths of the asymptotic confidence intervals
and their coverage percentages are also
compared. All computations were performed
using a Pentium IV processor and a FORTRAN-
77 program. In all cases the random deviate
generator RAN2 was used as proposed in Press,
etal. (1991).

Because A is the scale parameter, all
cases A =1 have been taken in without loss of
generality. For simulation purposes, the results
are presented when 7T is of the form T Y% The
reason for choosing 7 in that form is as
follows: if & represents the MLE or AMLE of
o, then the distribution of &/& becomes
independent of & in the case for A=1. For
that purpose the result is reported only for & =1

without loss of generality, however, these results
can be used for any other & also.
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Type-II progressively hybrid censored
data is generated for a given set n,m,R,,...,R

and T by using the following transformation
for exponential distribution as suggested in
Balakrishnan and Aggarwala (2000).

Z, =nk

Lm:n

ZZ = (n - Rl - 1)(E2:m:n - El:m:n)

Z =(n-R—..—R,_ —m+1)E, —E

m:m:n m—lm:n )

(20)

It is known that if E,'s are ii.d. standard
exponential, then the spacing Z,'s are also i.i.d.

standard exponential random variables. From
(20) it follows that

1
El:m:n :_Z]
n
1 1
2mn T Z2+_Zl
n—R -1 n
E,..= : Zm+...+lZI.
7 on—-R-..—R,_,—m+l n
21

Using (21) and parameters & and A,
Type-1I progressively hybrid censored data for
the Weibull distribution can be generated for a

given n,m,R,..R , Y  .,..Y . If
Y .. <T, then Case I results and the
corresponding sample is
{(¥ s R)sees X, JROYIEY, ST, then
Case II results and J is found such that
Y,  <T<Y,,, . The corresponding Type-II
hybrid censored sample is

{(Yl:m:n > Rl )’ tet (YJ:m:n > RJ )} and R; 2 Where R;
is same as defined before.
Consider different n,m and T . Two

different sampling schemes have been used,
namely,

Scheme 1:
R=..=R,_,=0and R =n—m.
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Scheme 2:
R=..=R _,=land R =n-2m+1.

Note that Scheme 1 is the conventional
Type-1I censoring scheme and Scheme 2, is a
typical progressive censoring scheme. In each
case the MLEs and AMLEs are computed as
estimates of the unknown parameters. The 95%
asymptotic confidence intervals are calculated
based on MLEs by replacing the MLEs by
AMLEs. The process was replicated 1,000
times. Average estimates, MSEs and average
confidence lengths with coverage percentages
were reported in Tables 1-8.

Based on Tables 1-4 (for MLEs) and
Tables 5-8 (for AMLEs), the following
observations are made: As expected, for fixed
n, as m increases the biases and the MSEs
decrease for both @ and A, however, for fixed
m as n increases this may not be true. This
shows that the effective sample size (m) plays

an important role when considering the actual
sample size (n). It is also observed that the

MLEs for schemes 1 and 2 behave quite
similarly in terms of biases and MSEs, unless
both n and m are small. The performances in
terms of biases and MSEs improve as T
increases. Similar results are also observed for
AMLE:s.

Comparing different confidence
intervals in terms of average lengths and
coverage probabilities, it is generally observed
that both the methods work well even for small
n and m . For both methods, it is observed that
the average confidence lengths decrease as n
increases for fixed m, or vice versa. For both
the MLE and AMLE methods, scheme 1 and
scheme 2 behave very similarly although the
confidence intervals for scheme 1 tend to be
slightly shorter than scheme 2.

Data Analysis
Kundu and Joarder (2006) analyzed the
following two data sets obtained from Lawless
(1982) using exponential distributions.

Data Set 1
In this case n=36 and, if
m=10,T=2600, R =R,=...=R; =2,R, =8,

then the Type II progressively hybrid censored
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sample is: 11, 35, 49, 170, 329, 958, 1,925,
2,223, 2,400, 2,568. From the above sample
data, D=m=10 is obtained, which yields &
and A of based on MLEs and AMLEs are
(=6297T73x10"", 1=8113.80176), (6=6.33116x10"", 1=6511.83036)
respectively. Using the above estimates the 95%
asymptotic confidence interval for & and A is
obtained based on MLEs and AMLEs which are

(6.29773x107",6.29882x107"),
(8113.40869,8114.19482)

and
(6.33116x107",6.33176x107"),
(6511.4344,6512.2264)
respectively.
Data Set 2
Consider m =10, T'=2000, and R,'s
are same as Data Set 1. In this case the

progressively hybrid censored sample obtained

as: 11, 35, 49, 170, 329, 958, 1,925 and
D=J=7. The MLE and AMLEs of & and
A are

(G =4.77441x107", A= 25148.8613) and

(@=4.77589%x10"", A =23092.3759)
respectively. From the above estimates the 95%
asymptotic confidence intervals are obtained for
o and A based on MLEs and AMLEs, which
are

(4.77383%107",4.77499x107"),

(25148.5078,25149.2148)
and
(4.77529%x107",4.77649%x107"),

(23092.0219,23092,7299)

respectively.
In both cases it is clear that if the tested

hypothesis is H, : ¢ =1, it will be rejected, this

implies that in this case the Weibull distribution
should be used rather than exponential.

Conclusion
This article discussed the Type-II progressively
hybrid censored data for the two parameters
Weibull distribution. It was observed that the
maximum likelihood estimator of the shape
parameter could be obtained by using an
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iterative procedure. The proposed approximate
maximum likelihood estimators of the shape and
scale parameters could be obtained in explicit
forms. Although the exact confidence intervals
could not be constructed, it was observed that
the asymptotic confidence intervals work
reasonably well for MLEs. Although the
frequentest approach was used, Bayes estimates
and credible intervals can also be obtained under
suitable priors along the same line as Kundu
(2007).
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Table 1: MLE Estimate for T = 0.75

N.M.

Scheme 1

Scheme 2

30, 15

1.0968(0.0862), 1.2913(94.5)
1.0358(0.1611),1.6019(89.1)

1.0751(0.0838), 1.1898(93.5)
1.0760(0.2937), 1.6015(88.8)

40, 20

1.0898(0.0623), 1.0099(96.6)
1.0111(0.0934), 1.2453(92.3)

1.0750(0.0626), 1.0167(94.9)
1.413(0.1321), 1.3662(90.7)

60, 20

1.1046(0.0644), 1.1701(92.3)
0.9777(0.0962), 1.6693(88.5)

1.0916(0.0554), 1.0255(94.7)
0.9842(0.0902), 1.4432(91.2)

60, 30

1.0473(0.0342), 0.7386(96.5)
1.0109(0.0653), 0.9055(92.7)

1.0385(0.0364), 0.7681(95.1)
1.0350(0.0962), 1.0315(90.9)

80, 30

1.0566(0.0344), 0.7918(95.6)
0.9913(0.0633), 1.0782(92.5)

1.0435(0.0302), 0.7074(96.1)
1.0081(0.0731), 0.9630(92.6)

80, 40

1.0401(0.0252), 0.6275(97.3)
1.0060(0.0449), 0.7670(93.2)

1.0301(0.0269), 0.6501(95.6)
1.0261(0.0614), 0.8732(91.7)

100, 40

1.0471(0.0256), 0.6620(97.4)
0.9904(0.0406), 0.878(93.4)

1.0323(0.0219), 0.5932(96.4)
1.0096(0.0465), 07985(93.8)

100, 50

O RIS VRN R[/IM R[N RIN RN RIS R

1.0369(0.0209), 05544(96.2)
0.9996(0.0292), 0.6760(93.6)

1,0281(0.0232), 0.5811(95.6)
1.0185(0.0418), 0.7800(93.0)

Table 2: MLE Estimate for T = 1.00

N.M.

Scheme 1

Scheme 2

30, 15

1.1102(0.0841), 1.2367(96.0)
0.9982(0.1171), 1.5080(92.1)

1.0719(0.0730), 1.0287(95.6)
1.0383(0.1397), 1.3333(91.2)

40, 20

1.0983(0.0600), 0.9891(97.7)
0.9864(0.0629), 1.2035(93.7)

1.0704(0.0518), 0.8833(96.4)
1.0179(0.0817), 1.1445(92.1)

60, 20

1.1046(0.0644), 1.1701(92.3)
0.9781(0.0982), 1.6692(88,5)

1.0933(0.0550), 1.0249(95.2)
0.9776(0.0793), 1.4394(91.6)

60, 30

1.0539(0.0329), 0.7320(97.0)
0.9945(0.0510), 0.8876(94.2)

1.0358(0.0291), 0.6855(95.9)
1.0157(0.0616), 0.8892(92.3)

80, 30

1.0567(0.0344), 0.7918(95.7)
0.9906(0.0605), 1.0781(92.5)

1.0487(0.0291), 0.7049(96.9)
0.9926(0.0553), 0.9508(93.9)

80, 40

1.0456(0.0246), 06214(97.8)
0.9927(0.0331), 0.7531(94.1)

0.0313(0.0225), 0.5879(97.0)
1.0110(0.0429), 0.7624(92.2)

100, 40

1.0473(0.0255), 0.6621(97.4)
0.9895(0.0385), 0.8781(93.4)

1.0396(0.0211), 0.5788(97.4)
0.9936(0.0364), 0.7655(94.0)

100, 50

O RIN VRIS [/ RN RN Ry RINR

1.0397(0.0205), 0.5493(96.9)
0.9927(0.0243), 0.6653(94.0)

1.0252(0.0190), 0.5216(94.7)
1.0120(0.0301), 0.6773(93.5)
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Table 3: MLE Estimate for T = 1.50

N.M.

Scheme 1

Scheme 2

30, 15

1.1130(0.0833),1.2367(96.3)
0.9857(0.0820), 1.5075(92.7)

1.0727(0.0630), 0.9343(95.8)
1.0196(0.1079), 1.2004(92.7)

40, 20

1.0992(0.0599), 0.9886(97.8)
0.9841(0.0600), 1.2025(93.6)

1.0682(0.0430), 0.7962(97.5)
1.0025(0.0593), 1.0237(94.4)

60, 20

1.1046(0.0644), 1.1701(92.3)
0.9781(0.0982), 1.6692(88.5)

1.0932(0.0550), 1.0248(95.2)
0.9779(0.0807), 1.4394(91.6)

60, 30

1.0544(0.0327), 0.7320(97.2)
0.9920(0.0451), 0.8875(94.2)

1.0366(0.0259), 0.6251(94.9)
1.0054(0.0498), 0.8042(93.0)

80, 30

1.0567(0.0344), 0.7918(95.7)
0.9906(0.0605), 1.0781(92.5)

1.0492(0.0288), 0.7051(97.0)
0.9900(0.0503), 09508(93.8)

80, 40

1.0458(0.0245), 0.6215(97.8)
0.9919(0.0312),0.7531) (94.1)

1.0308(0.0192), 0.5357(96.8)
1.0031(0.0319), 0.6896(93.6)

100, 40

1.0473(0.0255),0.6621(97.4)
0.9895(0.0385), 08781(93.4)

1.0407(0.0209), 0.5785(97.7)
0.9901(0.0322), 0.7645(94.0)

100, 50

ORI QN |/IN RN RN R]RINRINR

1.0397(0.0205), 0.5492(96.9)
0.9928(0.0243), 0.6652(94.0)

1.0277(0.0156), 0.4768(94.7)
1.0008(0.0231), 0.6138(94.7)

Table 4: MLE Estimate for T =

2.00

N.M.

Scheme 1

Scheme 2

30, 15

1.1130(0.0833),1.2367(96.3)
0.9857(0.0820), 1.5075(92.7)

1.0754(0.062), 0.9106(96.1)
1.0045(0.0882), 1.1750(92.6)

40, 20

1.0992(0.0599), 0.9886(97.8)
0.9841(0.0600), 1.2025(93.6)

1.0695(0.0423),0.7720(95.8)
0.9966(0.0538), 0.9983(94.6)

60, 20

1.1046(0.0644), 1.1701(92.3)
0.9781(0.0982), 1.6692(88.5)

1.0932(0.0550),1.0248(95.2)
0.9779(0.0807), 1.4394(91.6)

60, 30

1.0544(0.0327), 0.7320(97.2)
0.9920(0.0451), 0.8875(94.2)

1.0379(0.0248), 0.6054(95.6)
1.0004(0.0433), 0.7836(94.2)

80, 30

1.0567(0.0344), 0.7918(95.7)
0.9906(0.0605), 1.0781(92.5)

1.0492(0.0288), 0.7051(97.0)
0.9900(0.0503), 0.9508(93.8)

80, 40

1.0458(0.0245), 0.6215(97.8)
0.9919(0.0312),0.7531) (94.1)

1.0321(0.0176),0.5179(96.6)
0.9986(0.0283), 0.6709(94.1)

100, 40

1.0473(0.0255),0.6621(97.4)
0.9895(0.0385), 08781(93.4)

1.0407(0.0209), 0.5785(97.7)
0.9901(0.0322), 0.7645(94.0)

100, 50

S RIN QI /RN QI /Iy Ry /IR

1.0397(0.0205), 0.5492(96.9)
0.9928(0.0243), 0.6652(94.0)

1.0286(0.0149), 0.4608(94.6)
0.9986(0.0219), 0.5969(94.1)
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Table 5: Approximate MLE Estimate for T = 0.75

N.M.

Scheme 1

Scheme 2

30, 15

1.0873(0.0847), 1.2073(94.2)
1.0354(0.1640), 1.4941(89.1)

1.0814(0.0889), 1.2070(93.3)
1.0104(0.3033), 1.5970(88.6)

40, 20

1.0832(0.0615), 0.9924(96.2)
1.01103(0.0941), 1.2224(92.2)

1.0837(0.06559), 1.0651(95.4)
0.9752(0.1333), 1.4107(91.3)

60, 20

1.0998(0.0638), 1.1226(92.1)
0.9792(0.0968), 1.6005(88.4)

1.0915(0.0554), 1.0236(94.5)
0.9435(0.0823), 1.4270(92.8)

60, 30

1.0432(0.0340), 0.7349(96.5)
1.0102(0.0655), 0.900(92.7)

1.0486(0.0386), 0.7959(95.5)
0.9679(1.0962), 1.0530(92.1)

80, 30

1.0533(0.0342), 07870(95.5)
0.9920(0.0635), 1.0714(92.5)

1.0492(0.0308), 0.7288(96.4)
0.9520(0.0688), 0.9797(94.7)

80, 40

1.0372(0.0251), 0.6253(97.1)
1,0054(0.0450), 0.7640(93.2)

1.0409(0.0284), 0.6735(96.3)
0.9588(0.0620), 0.8914(92.2)

100, 40

1,0447(0,0255), 0,6593(97.2)
0.9906(0.0407), 08743(93.4)

1.0417(0.0227), 0.6140(97.4)
0.9463(0.0453), 08151(94.8)

100, 50

ORI /I [ /I [/ Ry R R

1.0346(0.0208), 0.5529(96.2)
0.9991(0.0292), 0.6739(93.6)

1.0392(0.0243), 0.6029(96.4)
0.9512(0.0421), 0.7976(93.9)

Table 6: Approximate MLE Estimate for T = 1.00

N.M.

Scheme 1

Scheme 2

30, 15

1.1003(0.827),1.1683(95.3)
0.9968(0.1177), 1.4208(92.0)

1.0921(0.0811), 1.0824(96.1)
0.9378(0.1395), 1.3736(92.3)

40, 20

1.0916(0.0592), 0.9731(97.4)
0.9851(0.0628), 1.1827(93.8)

1.0936(0.0582), 0.9316(97.0)
0.9175(0.0809), 1.1.822(94.3)

60, 20

1.0998(0.0638), 1.1226(92.1)
0.9797(0.0989), 1.6004(88.4)

1.0933(0.0550),1.0232(94.9)
0.9359(0.0703), 1.4234(93.4)

60, 30

1.0497(0.0327), 0.7283(97.0)
0.9936(0.0510), 0.8827(94.2)

1.0586(0.0326), 0.7217(96.7)
0.9150(0.0608), 0.9169(92.7)

80, 30

1.0534(0.0342), 0.7870(95.6)
0.9912(0.0607), 1.0712(92.5)

1.0555(0.0296), 0.7275(97.0)
0.9309(0.0476), 0.9685(96.6)

80, 40

1.0426(0.0244), 0.6193(97.7)
0.9921(0.0330), 0.7502(94.2)

1.0546(0.0251), 0.6189(97.2)
0.9102(0.0429), 0.7863(92.3)

100, 40

1.0448(0.0254), 0.6594(97.2)
0.9897(0.0385), 0.8743(93.4)

1.0518(0.0218), 0.6009(98.0)
0.9183(0.0311), 0.7825(95.7)

100, 50

ORI RN [/ /Iy /Iy Ry R R

1.0374(0.0204), 0.5478(96.8)
0.9922(0.0243), 0.6633(94.0)

1.0484(0.0211), 0.5489(95.6)
0.9112(0.0299), 0.6984(93.7)
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Table 7: Approximate MLE Estimate for T = 1.50

N.M.

Scheme 1

Scheme 2

30, 15

1.1030(0.0819), 1.1681(95.7)
0.9841(0.0820), 1.4202(92.7)

1.1153(0.0735), 1.0048(96.1)
0.8709(0.0978), 1.2553(93.6)

40, 20

1.0925(0.0592), 0.9726(97.6)
0.9827(0.0598), 1.1818(93.7)

1.1158(0.0519), 0.8603(96.9)
0.8541(0.0524), 1.0754(95.5)

60, 20

1.0998(0.0638), 1.1226(92.1)
0.9797(0.0989), 1.6004(88.4)

1.0932(0.0550), 1.0231(94.9)
0.9361(0.0712), 1.4233(93.4)

60, 30

1.0502(0.0325), 0.7284(97.1)
0.9910(0.0450), 0.8826(94.2)

1.0832(0.0313), 0.6753(95.1)
0.8563(0.0443), 0.8445(92.8)

80, 30

1.0534(0.0342), 0.7870(95.6)
0.9912(0.0607), 1.0712(92.5)

1.0560(0.0293), 0.7277(97.2)
0.9280(0.0424), 0.9684(96.6)

80, 40

1.0428(0.0244), 0.6193(97.7)
0.9912(0.0311), 0.7502(94.2)

1.0778(0.0232), 0.5787(95.8)
0.8540(0.0287), 0.7242(92.0)

100, 40

1.0448(0.0254), 0.6594(97.2)
0.9897(0.0385), 0.8743(93.4)

1.0532(0.0215), 0.6009(98.3)
0.9136(0.0262), 0.7816(96.8)

100, 50

N RIN RN /I RN /Iy R /IR

1.0374(0.0204), 0.5477(96.8)
0.9922(0.0243), 0.6632(94.0)

1.0748(0.0188), 0.5152(94.4)
0.8514(0.0205), 0.6447(91.6)

Table 8: Approximate MLE Estimate for T = 2.00

N.M.

Scheme 1

Scheme 2

30, 15

1.1030(0.0819), 1.1681(95.7)
0.9841(0.0820), 1.4202(92.7)

1.1337(0.0710), 0.9924(96.1)
0.8327(0.0690), 1.2439(95.0)

40, 20

1.0925(0.0592), 0.9726(97.6)
0.9827(0.0598), 1.1818(93.7)

1.1326(0.0512), 0.8454(96.0)
0.8245(0.0414), 1.0610(96.1)

60, 20

1.0998(0.0638), 1.1226(92.1)
0.9797(0.0989), 1.6004(88.4)

1.0932(0.0550), 1.0231(94.9)
0.9361(0.0712), 1.4233(93.4)

60, 30

1.0502(0.0325), 0.7284(97.1)
0.9910(0.0450), 0.8826(94.2)

1.0990(0.0302), 0.6630(94.8)
0.8269(0.0336), 0.8319(92.5)

80, 30

1.0534(0.0342), 0.7870(95.6)
0.9912(0.0607), 1.0712(92.5)

1.0560(0.0293), 0.7277(97.2)
0.9280(0.0424), 0.9684(96.6)

80, 40

1.0428(0.0244), 0.6193(97.7)
0.9912(0.0311), 0.7502(94.2)

1.0946(0.0217), 0.5678(94.6)
0.8247(0.0222), 0.7129(90.8)

100, 40

1.0448(0.0254), 0.6594(97.2)
0.9897(0.0385), 0.8743(93.4)

1.0532(0.0215), 0.6009(98.3)
0.9136(0.0262), 0.7816(96.8)

100, 50

S RIS RIS RN RN Ry {/In R R

1.0374(0.0204), 0.5477(96.8)
0.9922(0.0243), 0.6632(94.0)

1.0916(0.0185), 0.5053(92.4)
0.8245(0.0170), 0.6346(89.4)

543




ON TYPE-II PROGRESSIVELY HYBRID CENSORING

Lawless, J. F. (1982). Statistical models
and methods for lifetime data. New York:
Wiley.

Mann, N. R. (1971). Best linear
invariant estimation for Weibull parameters
under progressive censoring. Technometrics, 13,
521-533.

Press, W. H., Flannery, B. P,
Teukolsky, S. A., & Vetterling, W. T. (1991).

Numerical recipes: The art of scientific
computing. Cambridge, U.K.: Cambridge
University Press.

Thomas, D. R., & Wilson, W. M.

(1972). Linear order statistics estimation for the
two-parameter Weibull and extreme value
distribution from Type-II progressively censored
samples. Technometrics, 14, 679-691.

Appendix 1
For case-1, taking derivatives with respect to u

and o of L(u,0) as defined in (16), results in

aL(,u,O') 1{2 g(Z,m,,) Zg( [ }:
i=1 G(Z

i n g(ZI m:n )
(22)
aL(/I,G) _l g(Zi:m:n) _ Z g'(zi:m:n)_ _
all'l N 0-|:i21 Rizj:m:n é(zi:m:n) lz‘l S g(zt:m:n) m:| =0
(23)

Clearly, (22) and (23) do not have explicit

analytical solutions. Consider a first-order
Taylor approximation to g'(z,.)/g(z,.,.)
and g(z,,,)/G(z,,,) by expanding around
the actual mean 4, of the standardized order
statistic Zins where
#=G"(p)=In(=Ing,), and p,=i/(n+1),

q,=1-p, for i=1,..,m, similar to

Balakrishnan and Varadan (1991), David (1981)
or Arnold and Balakrishnan (1989). Otherwise,
the necessary procedures for obtaining

U, i=1,..,m, were made available by Mann

(1971) and Thomas and Wilson (1972). Note
that for i =1,...,m

g' (Zi:m:n )/g(Zi:m:n) = 0; = PiZimn (24)
g (Zi:m:n )/é(zi:m:n ) ~1- Q; + ﬂizi:m:n (25)

544

where,

o8 | 8" _(g'(ul-)f
Cog(w) T gy gk

=1+Ing,(1-In(-Ing,)),
2"(1) (g'(u,)]z —hng

B =|-

gy \ g(u)

Using the approximation (24) and (25) in (22)
and (23), results get

{Zm: Dt — iDi,uie”‘ - m} o+ Zm:DiXi:mme”‘ —,uZm: De" =0
i=1 i=1 i=1 i=1

(26)
and

Zm:De [ZD,UX e +mX)ﬂ

i=1

o (S ome s o
|

27

The above two equations (26) and (27) can be
written as

(¢,—c,—m)o+d, —puc, =0  (28)

Ao*+Bo+C =0 (29)

where

-\ 4
Z,] i Z_Zi Dﬂe d Z,] i i€
— 2 i
d2 _Z, 1DX1mn
dy= Z,”;l DuX,,,e", A=me, B=c(d, +mX)_d1 (¢, +m),

C=d-cd,
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and D, =1+ R, for i=1,..,m. The solution to

the preceding equations yields the approximate
MLE’s are

(¢,—c,—m)o+d

fi= ! (30)
¢

. —B++B*-44C

6= - 31)

Consider only positive root of 0O ; these
approximate estimators are equivalent but not
unbiased. Unfortunately, it is not possible to
compute the exact bias of I and & theoretically
because of intractability encountered in finding

the expectation of B> —4AC .

Appendix 2
For case-11, taking derivatives with respect to u

and 0 of L(u,0) as defined in (18), gives
(similar to Case-I)

3L(ﬂ {Z gz

+R é(V)} 0

(32)

Mzﬂim

8(zi) _iz,_ g‘(zm’”).#R'V&—j} =0.
ou =G, ’

2(zin) Gv)

(33)

Here again consider the first-order

Taylor approximation to g’(z,,..)/ g(Z..)
)/ G(z,
the actual mean g of the standardized order

statistic Z.

im:n?

and g(z, ) by expanding around

mn mn

where (£ 's are defined in

Appendix 1. Here g(V)/G(V) is also
exploded in the Taylor series around the point
,uj, where
Hy; =G (p;)z ln(—ln q;), Py =(ps+ Py )/2
and ¢, =1-p),.
Note that

g0

=BV (34)

g()
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&V)z s *

G0) o, +pV (35)
where
a*_g'(,u;)_ ) <#J)— g(ﬂ;) 2 =1+Ing,|1-In(-Ing
) ) [g(u;)” (1= (-ns)

Using the approximation (24), (25), (34) and
(35) in (32) and (33) gives

J . J . e
HZD,e"" +Rje" ] - [ZDI.,U,.e“’ + R u,e" j - J:|O'
i=1

i=l

z N J N

i=1 i=1
(36)
and

J . J . J . —
[JZ D" +Rje" }o’z + Hz De" +Rje" ][Z DuX,,.e" +R,u,Se" + JXHO‘
i=1 i=l i=1
J Y ., J N\
—[[ZD,X,M_,,e"' +R;Se" ](ZD, e + R et + Jﬂo'Jr[ZD,X, e + R Se" J
i=l

{ZDe +R e”’}[ZD ,mne'+R;Szeﬂ~7}=o.
(37)

The above two equations (36) and (37) can be
written as

(¢,—c,—J)o+d, —c,=0 (38)

Ao*+Bo+C' =0 (39)

where

' . % *
a :ZZ.JZIDie’u’ +RJeﬂJ,

R . x % g0
0= Zi=1Diﬂieﬂ’ + Ryt

Zl - lmne"+R;Se'uJ,
dy _zJ DXlzmn H LR, S%eM

. * % *
d3_zl 1D:uz iim:n€ I+RJIUJSe‘UJ’
A =Jei, B =ci(dy+JX)-di (e +7),

c :dlz—cidvz and D, =1+ R;, for
i=1,J.
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The solution to the preceding equations yields
the approximate MLE’s are

ﬂ:(cl—cz—:])0'+dl (40)
G

. —B'+\B?—44C

o= e (41)
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Consider only positive root of 0O ; these
approximate estimators are equivalent but not
unbiased. Unfortunately, it is not possible to
compute the exact bias of i and & theoretically
because of intractability encountered in finding

the expectation of B> —44'C” .
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