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The progressive Type-II censoring scheme has become quite popular. A drawback of a progressive 
censoring scheme is that the length of the experiment can be very large if the items are highly reliable. 
Recently, Kundu and Joarder (2006) introduced the Type-II progressively hybrid censored scheme and 
analyzed the data assuming that the lifetimes of the items are exponentially distributed. This article 
presents the analysis of Type-II progressively hybrid censored data when the lifetime distributions of the 
items follow Weibull distributions. Maximum likelihood estimators and approximate maximum 
likelihood estimators are developed for estimating the unknown parameters. Asymptotic confidence 
intervals based on maximum likelihood estimators and approximate maximum likelihood estimators are 
proposed. Different methods are compared using Monte Carlo simulations and one real data set is 
analyzed. 
 
Key words: Maximum likelihood estimators; approximate maximum likelihood estimators; Type-I 
censoring; Type-II censoring; Monte Carlo simulation. 
 
 

Introduction 
The Type-II progressive censoring scheme has 
become very popular. It can be described as 
follows: consider  units in a study and 
suppose  is fixed before the experiment, 

in addition,  other integers,  are also 

fixed so that  At the time 

of the first failure, for example,  of the 

remaining units are randomly removed. 
Similarly, at the time of the second failure, for 
example,  of the remaining units are 

randomly removed and so on. Finally, at the 
time of the  failure,  the remaining 
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 units are removed. Extensive work has been 

conducted on this particular scheme during the 
last ten years; see Balakrishnan and Aggarwala 
(2000) and Balakrishnan (2007). 

Unfortunately the major problem with 
the Type-II progressive censoring scheme is that 
the time length of the experiment can be very 
large. Due to this problem, Kundu and Joarder 
(2006) introduced a new censoring scheme 
named Type-II Progressively Hybrid Censoring, 
which ensures that the length of the experiment 
cannot exceed a pre-specified time point . 
The detailed description and advantages of the 
Type-II progressively hybrid censoring is 
presented in Kundu and Joarder (2006) (see also 
Childs, Chandrasekar & Balakrishnan, 2007); in 
both publications the authors assumed the 
lifetime distributions of the items to be 
exponential. 

Because the exponential distribution has 
limitations, this article considers the Type-II 
progressively hybrid censored lifetime data, 
when the lifetime follows a two-parameter 
Weibull distribution. Maximum likelihood 
estimators (MLEs) of the unknown parameters 
are provided and it was observed that the MLEs 
cannot be obtained in explicit forms. MLEs can 

n
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be obtained by solving a non-linear equation and 
a simple iterative scheme is proposed to solve 
the non-linear equation. Approximate maximum 
likelihood estimators (AMLEs), which have 
explicit expressions are also suggested. It is not 
possible to compute the exact distributions of the 
MLEs, so the asymptotic distribution is used to 
construct confidence intervals. Monte Carlo 
simulations are used to compare different 
methods and one data analysis is performed for 
illustrative purposes. 
 
Type-II Progressively Hybrid Censoring Scheme 
Models 

If it is assumed that the lifetime random 
variable  has a Weibull distribution with 
shape and scale parameters  and  
respectively, then the probability density 
function (PDF) of  is 
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where  are the natural parameter 

space. If the random variable has the density 
function (1), then  has the extreme 
value distribution with the PDF 
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where ln , 1μ λ σ α= = . The density function 
as described by (2) is known as the density 
function of an extreme value distribution with 
location and scale parameters  and  
respectively. Models (1) and (2) are equivalent 
models in the sense that the procedure developed 
under one model can be easily used for the other 
model. Although, they are equivalent models, 
(2) can be the easier with which to work 
compared to model (1), because in model (2) the 
two parameters  and  appear as location 

and scale parameters. For  and  
model (2) is known as the standard extreme 
value distribution and has the following PDF 
 

( ) ( );0,1 ; .
zz e

Zf z e z−= − ∝< <∝        (3) 
 

Type-II Progressively Hybrid Censoring Scheme 
Data 

Under the Type-II progressively hybrid 
censoring scheme, it is assumed that  identical 
items are put on a test and the lifetime 
distributions of the  items are denoted by 

 The integer  is pre-fixed, 

 are  pre-fixed integers satisfying 

, and  is a pre-fixed 

time point. At the time of the first failure 
 of the remaining units are randomly 

removed. Similarly, at the time of the second 
failure  of the remaining units are 

removed and so on. If the  failure  

occurs before time , the experiment stops at 
time point . If, however, the -th failure 

does not occur before time point  and only  
failures occur before  (where ), 

then at time  all remaining  units are 

removed and the experiment terminates. Note 

that  The two cases 

are denoted as Case I and Case II respectively 
and this is called the censoring scheme as the 
Type-II progressively hybrid censoring scheme 
(Kundu and Joarder, 2006). 

In the presence of the Type-II 
progressively hybrid censoring scheme, one of 
the following is observed 
 

Case I: 
 if            (4) 

or 
 

Case II: 
 if .  (5) 

 

For Case II, although 1: :J m nY +  is not observed, 
but  means that the  

failure took place before  and no failure took 
place between  and  (i.e., 

) are not observed. 

The conventional Type-I progressive 
censoring scheme needs the pre-specification of 

 and also  (see Cohen 1963, 

1966 for details). The choices of  are not 
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trivial. For the conventional Type-II progressive 
censoring scheme the experimental time is 
unbounded. In the proposed censoring scheme 
the choice of  depends on how much 
maximum experimental time the experimenter 
can afford to continue and also the experimental 
time is bounded. 
 
Maximum Likelihood Estimators (MLEs) 

Based on the observed data, the 
likelihood function for Case I is 
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and for Case II, the MLE is 
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both are constant. 
The logarithm of (6) and (7), can be 

written without the constant terms as 
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Here  and 

 for 

Case-I and Case-II respectively. It is assumed 
that , otherwise the MLEs do not exist. 

Taking derivatives with respect to  
and  of (9) and equating them to zero results 
in 

,           (10) 
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Here, : : : :
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for Case-I and Case-II respectively. Note that 
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and the MLE of  can be obtained by solving 
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A simple iterative scheme is proposed to 

obtain the MLE of  from (13). Starting with 

an initial guess of , for example,  obtain 

 and proceed in this way to obtain 

 The iterative procedures stops 

when  which is some pre-

assigned tolerance limit. Once the MLE of  is 
obtained the MLE of  can be obtained from 
(12). Since the MLE’s, when they exist, are not 
in compact forms, the following approximate 
MLE’s and its’ explicit expressions are 
proposed. 
 
Approximate Maximum Likelihood Estimators 
(AMLEs) 

Using the following notations 
 and  the likelihood 

equation of the observed data  for Case-I is 
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and for Case II is 
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Ignoring the constant term, the following log-
likelihood results from (15) is 
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From (16) the following approximate MLE’s of 
 and  are obtained (see Appendix 1), 
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For Case-II, ignoring the constant term, 
the log-likelihood is obtained as 
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In this case the approximate MLE’s are (see 
Appendix 2) 
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Here  and  are the same as above for 

 

 and  
 

Results 
Because the performance of the different 
methods cannot be compared theoretically, 
Monte Carlo simulations are used to compare 
the performances of the different methods 
proposed for different parameter values and for 
different sampling schemes. The term different 
sampling schemes mean different sets of  

and different  values. The performances of 
the MLEs and AMLEs estimators of the 
unknown parameters are compared in terms of 
their biases and mean squared errors (MSEs) for 
different censoring schemes. The average 
lengths of the asymptotic confidence intervals 
and their coverage percentages are also 
compared. All computations were performed 
using a Pentium IV processor and a FORTRAN-
77 program. In all cases the random deviate 
generator RAN2 was used as proposed in Press, 
et al. (1991).  

Because  is the scale parameter, all 
cases  have been taken in without loss of 
generality. For simulation purposes, the results 

are presented when  is of the form 1T α . The 
reason for choosing  in that form is as 
follows: if  represents the MLE or AMLE of 

, then the distribution of α̂ α  becomes 

independent of  in the case for . For 
that purpose the result is reported only for  
without loss of generality, however, these results 
can be used for any other  also. 
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Type-II progressively hybrid censored 
data is generated for a given set  

and  by using the following transformation 
for exponential distribution as suggested in 
Balakrishnan and Aggarwala (2000). 
 

 

(20) 
 

It is known that if  are i.i.d. standard 

exponential, then the spacing  are also i.i.d. 

standard exponential random variables. From 
(20) it follows that 
 

 

(21) 
 

Using (21) and parameters  and , 
Type-II progressively hybrid censored data for 
the Weibull distribution can be generated for a 
given , . If 

 then Case I results and the 

corresponding sample is 

. If , then 

Case II results and  is found such that 
 The corresponding Type-II 

hybrid censored sample is 

{ }1: : 1 : :( , ),..., ( , )m n J m n JY R Y R  and , where  

is same as defined before. 
Consider different  and . Two 

different sampling schemes have been used, 
namely, 
 
Scheme 1: 

 and  
 

Scheme 2: 
 and  

Note that Scheme 1 is the conventional 
Type-II censoring scheme and Scheme 2, is a 
typical progressive censoring scheme. In each 
case the MLEs and AMLEs are computed as 
estimates of the unknown parameters. The 95% 
asymptotic confidence intervals are calculated 
based on MLEs by replacing the MLEs by 
AMLEs. The process was replicated 1,000 
times. Average estimates, MSEs and average 
confidence lengths with coverage percentages 
were reported in Tables 1-8. 

Based on Tables 1-4 (for MLEs) and 
Tables 5-8 (for AMLEs), the following 
observations are made: As expected, for fixed  

, as  increases the biases and the MSEs 
decrease for both  and , however, for fixed 

 as  increases this may not be true. This 
shows that the effective sample size  plays 
an important role when considering the actual 
sample size . It is also observed that the 
MLEs for schemes 1 and 2 behave quite 
similarly in terms of biases and MSEs, unless 
both  and  are small. The performances in 
terms of biases and MSEs improve as  
increases. Similar results are also observed for 
AMLEs. 

Comparing different confidence 
intervals in terms of average lengths and 
coverage probabilities, it is generally observed 
that both the methods work well even for small 

 and . For both methods, it is observed that 
the average confidence lengths decrease as  
increases for fixed , or vice versa. For both 
the MLE and AMLE methods, scheme 1 and 
scheme 2 behave very similarly although the 
confidence intervals for scheme 1 tend to be 
slightly shorter than scheme 2. 
 

Data Analysis 
Kundu and Joarder (2006) analyzed the 

following two data sets obtained from Lawless 
(1982) using exponential distributions. 
 
Data Set 1 

In this case  and, if 
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sample is: 11, 35, 49, 170, 329, 958, 1,925, 
2,223, 2,400, 2,568. From the above sample 
data,  is obtained, which yields  
and  of based on MLEs and AMLEs are

1 1ˆˆ( 6.29773 10 , 8113.80176), ( 6.33116 10 , 6511.83036)α λ α λ− −= × = = × =
respectively. Using the above estimates the 95% 
asymptotic confidence interval for  and  is 
obtained based on MLEs and AMLEs which are  

, 

and 

 

respectively. 
 
Data Set 2 

Consider  and 'iR s
are same as Data Set 1. In this case the 
progressively hybrid censored sample obtained 
as: 11, 35, 49, 170, 329, 958, 1,925 and 

 The MLE and AMLEs of  and 
 are 

and 

respectively. From the above estimates the 95% 
asymptotic confidence intervals are obtained for 

 and  based on MLEs and AMLEs, which 
are 

  

and 

 

respectively. 
In both cases it is clear that if the tested 

hypothesis is , it will be rejected, this 

implies that in this case the Weibull distribution 
should be used rather than exponential.  
 

Conclusion 
This article discussed the Type-II progressively 
hybrid censored data for the two parameters 
Weibull distribution. It was observed that the 
maximum likelihood estimator of the shape 
parameter could be obtained by using an 

iterative procedure. The proposed approximate 
maximum likelihood estimators of the shape and 
scale parameters could be obtained in explicit 
forms. Although the exact confidence intervals 
could not be constructed, it was observed that 
the asymptotic confidence intervals work 
reasonably well for MLEs. Although the 
frequentest approach was used, Bayes estimates 
and credible intervals can also be obtained under 
suitable priors along the same line as Kundu 
(2007). 
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(6511.4344,6512.2264)

− −× ×

10, 2000,m T= =

7.D J= = α
λ
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Table 1: MLE Estimate for T = 0.75 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.0968(0.0862), 1.2913(94.5) 1.0751(0.0838), 1.1898(93.5) 

 1.0358(0.1611),1.6019(89.1) 1.0760(0.2937), 1.6015(88.8) 

40, 20 
 1.0898(0.0623), 1.0099(96.6) 1.0750(0.0626), 1.0167(94.9) 

 1.0111(0.0934), 1.2453(92.3) 1.413(0.1321), 1.3662(90.7) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0916(0.0554), 1.0255(94.7) 

 0.9777(0.0962), 1.6693(88.5) 0.9842(0.0902), 1.4432(91.2) 

60, 30 
 1.0473(0.0342), 0.7386(96.5) 1.0385(0.0364), 0.7681(95.1) 

 1.0109(0.0653), 0.9055(92.7) 1.0350(0.0962), 1.0315(90.9) 

80, 30 
 1.0566(0.0344), 0.7918(95.6) 1.0435(0.0302), 0.7074(96.1) 

 0.9913(0.0633), 1.0782(92.5) 1.0081(0.0731), 0.9630(92.6) 

80, 40 
 1.0401(0.0252), 0.6275(97.3) 1.0301(0.0269), 0.6501(95.6) 

 1.0060(0.0449), 0.7670(93.2) 1.0261(0.0614), 0.8732(91.7) 

100, 40 
 1.0471(0.0256), 0.6620(97.4) 1.0323(0.0219), 0.5932(96.4) 

 0.9904(0.0406), 0.878(93.4) 1.0096(0.0465), 07985(93.8) 

100, 50 
 1.0369(0.0209), 05544(96.2) 1,0281(0.0232), 0.5811(95.6) 

 0.9996(0.0292), 0.6760(93.6) 1.0185(0.0418), 0.7800(93.0) 
 
 

Table 2: MLE Estimate for T = 1.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1102(0.0841), 1.2367(96.0) 1.0719(0.0730), 1.0287(95.6) 

 0.9982(0.1171), 1.5080(92.1) 1.0383(0.1397), 1.3333(91.2) 

40, 20 
 1.0983(0.0600), 0.9891(97.7) 1.0704(0.0518), 0.8833(96.4) 

 0.9864(0.0629), 1.2035(93.7) 1.0179(0.0817), 1.1445(92.1) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0933(0.0550), 1.0249(95.2) 

 0.9781(0.0982), 1.6692(88,5) 0.9776(0.0793), 1.4394(91.6) 

60, 30 
 1.0539(0.0329), 0.7320(97.0) 1.0358(0.0291), 0.6855(95.9) 

 0.9945(0.0510), 0.8876(94.2) 1.0157(0.0616), 0.8892(92.3) 

80, 30 
 1.0567(0.0344), 0.7918(95.7) 1.0487(0.0291), 0.7049(96.9) 

 0.9906(0.0605), 1.0781(92.5) 0.9926(0.0553), 0.9508(93.9) 

80, 40 
 1.0456(0.0246), 06214(97.8) 0.0313(0.0225), 0.5879(97.0) 

 0.9927(0.0331), 0.7531(94.1) 1.0110(0.0429), 0.7624(92.2) 

100, 40 
 1.0473(0.0255), 0.6621(97.4) 1.0396(0.0211), 0.5788(97.4) 

 0.9895(0.0385), 0.8781(93.4) 0.9936(0.0364), 0.7655(94.0) 

100, 50 
 1.0397(0.0205), 0.5493(96.9) 1.0252(0.0190), 0.5216(94.7) 

 0.9927(0.0243), 0.6653(94.0) 1.0120(0.0301), 0.6773(93.5) 
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Table 3: MLE Estimate for T = 1.50 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1130(0.0833),1.2367(96.3) 1.0727(0.0630), 0.9343(95.8) 

 0.9857(0.0820), 1.5075(92.7) 1.0196(0.1079), 1.2004(92.7) 

40, 20 
 1.0992(0.0599), 0.9886(97.8) 1.0682(0.0430), 0.7962(97.5) 

 0.9841(0.0600), 1.2025(93.6) 1.0025(0.0593), 1.0237(94.4) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0932(0.0550), 1.0248(95.2) 

 0.9781(0.0982), 1.6692(88.5) 0.9779(0.0807), 1.4394(91.6) 

60, 30 
 1.0544(0.0327), 0.7320(97.2) 1.0366(0.0259), 0.6251(94.9) 

 0.9920(0.0451), 0.8875(94.2) 1.0054(0.0498), 0.8042(93.0) 

80, 30 
 1.0567(0.0344), 0.7918(95.7) 1.0492(0.0288), 0.7051(97.0) 

 0.9906(0.0605), 1.0781(92.5) 0.9900(0.0503), 09508(93.8) 

80, 40 
 1.0458(0.0245), 0.6215(97.8) 1.0308(0.0192), 0.5357(96.8) 

 0.9919(0.0312),0.7531) (94.1) 1.0031(0.0319), 0.6896(93.6) 

100, 40 
 1.0473(0.0255),0.6621(97.4) 1.0407(0.0209), 0.5785(97.7) 

 0.9895(0.0385), 08781(93.4) 0.9901(0.0322), 0.7645(94.0) 

100, 50 
 1.0397(0.0205), 0.5492(96.9) 1.0277(0.0156), 0.4768(94.7) 

 0.9928(0.0243), 0.6652(94.0) 1.0008(0.0231), 0.6138(94.7) 
 
 

Table 4: MLE Estimate for T = 2.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1130(0.0833),1.2367(96.3) 1.0754(0.062), 0.9106(96.1) 

 0.9857(0.0820), 1.5075(92.7) 1.0045(0.0882), 1.1750(92.6) 

40, 20 
 1.0992(0.0599), 0.9886(97.8) 1.0695(0.0423),0.7720(95.8) 

 0.9841(0.0600), 1.2025(93.6) 0.9966(0.0538), 0.9983(94.6) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0932(0.0550),1.0248(95.2) 

 0.9781(0.0982), 1.6692(88.5) 0.9779(0.0807), 1.4394(91.6) 

60, 30 
 1.0544(0.0327), 0.7320(97.2) 1.0379(0.0248), 0.6054(95.6) 

 0.9920(0.0451), 0.8875(94.2) 1.0004(0.0433), 0.7836(94.2) 

80, 30 
 1.0567(0.0344), 0.7918(95.7) 1.0492(0.0288), 0.7051(97.0) 

 0.9906(0.0605), 1.0781(92.5) 0.9900(0.0503), 0.9508(93.8) 

80, 40 
 1.0458(0.0245), 0.6215(97.8) 1.0321(0.0176),0.5179(96.6) 

 0.9919(0.0312),0.7531) (94.1) 0.9986(0.0283), 0.6709(94.1) 

100, 40 
 1.0473(0.0255),0.6621(97.4) 1.0407(0.0209), 0.5785(97.7) 

 0.9895(0.0385), 08781(93.4) 0.9901(0.0322), 0.7645(94.0) 

100, 50 
 1.0397(0.0205), 0.5492(96.9) 1.0286(0.0149), 0.4608(94.6) 

 0.9928(0.0243), 0.6652(94.0) 0.9986(0.0219), 0.5969(94.1) 
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Table 5: Approximate MLE Estimate for T = 0.75 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.0873(0.0847), 1.2073(94.2) 1.0814(0.0889), 1.2070(93.3) 

 1.0354(0.1640), 1.4941(89.1) 1.0104(0.3033), 1.5970(88.6) 

40, 20 
 1.0832(0.0615), 0.9924(96.2) 1.0837(0.06559), 1.0651(95.4) 

 1.01103(0.0941), 1.2224(92.2) 0.9752(0.1333), 1.4107(91.3) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0915(0.0554), 1.0236(94.5) 

 0.9792(0.0968), 1.6005(88.4) 0.9435(0.0823), 1.4270(92.8) 

60, 30 
 1.0432(0.0340), 0.7349(96.5) 1.0486(0.0386), 0.7959(95.5) 

 1.0102(0.0655), 0.900(92.7) 0.9679(1.0962), 1.0530(92.1) 

80, 30 
 1.0533(0.0342), 07870(95.5) 1.0492(0.0308), 0.7288(96.4) 

 0.9920(0.0635), 1.0714(92.5) 0.9520(0.0688), 0.9797(94.7) 

80, 40 
 1.0372(0.0251), 0.6253(97.1) 1.0409(0.0284), 0.6735(96.3) 

 1,0054(0.0450), 0.7640(93.2) 0.9588(0.0620), 0.8914(92.2) 

100, 40 
 1,0447(0,0255), 0,6593(97.2) 1.0417(0.0227), 0.6140(97.4) 

 0.9906(0.0407), 08743(93.4) 0.9463(0.0453), 08151(94.8) 

100, 50 
 1.0346(0.0208), 0.5529(96.2) 1.0392(0.0243), 0.6029(96.4) 

 0.9991(0.0292), 0.6739(93.6) 0.9512(0.0421), 0.7976(93.9) 
 
 

Table 6: Approximate MLE Estimate for T = 1.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1003(0.827),1.1683(95.3) 1.0921(0.0811), 1.0824(96.1) 

 0.9968(0.1177), 1.4208(92.0) 0.9378(0.1395), 1.3736(92.3) 

40, 20 
 1.0916(0.0592), 0.9731(97.4) 1.0936(0.0582), 0.9316(97.0) 

 0.9851(0.0628), 1.1827(93.8) 0.9175(0.0809), 1.1.822(94.3) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0933(0.0550),1.0232(94.9) 

 0.9797(0.0989), 1.6004(88.4) 0.9359(0.0703), 1.4234(93.4) 

60, 30 
 1.0497(0.0327), 0.7283(97.0) 1.0586(0.0326), 0.7217(96.7) 

 0.9936(0.0510), 0.8827(94.2) 0.9150(0.0608), 0.9169(92.7) 

80, 30 
 1.0534(0.0342), 0.7870(95.6) 1.0555(0.0296), 0.7275(97.0) 

 0.9912(0.0607), 1.0712(92.5) 0.9309(0.0476), 0.9685(96.6) 

80, 40 
 1.0426(0.0244), 0.6193(97.7) 1.0546(0.0251), 0.6189(97.2) 

 0.9921(0.0330), 0.7502(94.2) 0.9102(0.0429), 0.7863(92.3) 

100, 40 
 1.0448(0.0254), 0.6594(97.2) 1.0518(0.0218), 0.6009(98.0) 

 0.9897(0.0385), 0.8743(93.4) 0.9183(0.0311), 0.7825(95.7) 

100, 50 
 1.0374(0.0204), 0.5478(96.8) 1.0484(0.0211), 0.5489(95.6) 

 0.9922(0.0243), 0.6633(94.0) 0.9112(0.0299), 0.6984(93.7) 
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Table 7: Approximate MLE Estimate for T = 1.50 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1030(0.0819), 1.1681(95.7) 1.1153(0.0735), 1.0048(96.1) 

 0.9841(0.0820), 1.4202(92.7) 0.8709(0.0978), 1.2553(93.6) 

40, 20 
 1.0925(0.0592), 0.9726(97.6) 1.1158(0.0519), 0.8603(96.9) 

 0.9827(0.0598), 1.1818(93.7) 0.8541(0.0524), 1.0754(95.5) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0932(0.0550), 1.0231(94.9) 

 0.9797(0.0989), 1.6004(88.4) 0.9361(0.0712), 1.4233(93.4) 

60, 30 
 1.0502(0.0325), 0.7284(97.1) 1.0832(0.0313), 0.6753(95.1) 

 0.9910(0.0450), 0.8826(94.2) 0.8563(0.0443), 0.8445(92.8) 

80, 30 
 1.0534(0.0342), 0.7870(95.6) 1.0560(0.0293), 0.7277(97.2) 

 0.9912(0.0607), 1.0712(92.5) 0.9280(0.0424), 0.9684(96.6) 

80, 40 
 1.0428(0.0244), 0.6193(97.7) 1.0778(0.0232), 0.5787(95.8) 

 0.9912(0.0311), 0.7502(94.2) 0.8540(0.0287), 0.7242(92.0) 

100, 40 
 1.0448(0.0254), 0.6594(97.2) 1.0532(0.0215), 0.6009(98.3) 

 0.9897(0.0385), 0.8743(93.4) 0.9136(0.0262), 0.7816(96.8) 

100, 50 
 1.0374(0.0204), 0.5477(96.8) 1.0748(0.0188), 0.5152(94.4) 

 0.9922(0.0243), 0.6632(94.0) 0.8514(0.0205), 0.6447(91.6) 
 
 

Table 8: Approximate MLE Estimate for T = 2.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1030(0.0819), 1.1681(95.7) 1.1337(0.0710), 0.9924(96.1) 

 0.9841(0.0820), 1.4202(92.7) 0.8327(0.0690), 1.2439(95.0) 

40, 20 
 1.0925(0.0592), 0.9726(97.6) 1.1326(0.0512), 0.8454(96.0) 

 0.9827(0.0598), 1.1818(93.7) 0.8245(0.0414), 1.0610(96.1) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0932(0.0550), 1.0231(94.9) 

 0.9797(0.0989), 1.6004(88.4) 0.9361(0.0712), 1.4233(93.4) 

60, 30 
 1.0502(0.0325), 0.7284(97.1) 1.0990(0.0302), 0.6630(94.8) 

 0.9910(0.0450), 0.8826(94.2) 0.8269(0.0336), 0.8319(92.5) 

80, 30 
 1.0534(0.0342), 0.7870(95.6) 1.0560(0.0293), 0.7277(97.2) 

 0.9912(0.0607), 1.0712(92.5) 0.9280(0.0424), 0.9684(96.6) 

80, 40 
 1.0428(0.0244), 0.6193(97.7) 1.0946(0.0217), 0.5678(94.6) 

 0.9912(0.0311), 0.7502(94.2) 0.8247(0.0222), 0.7129(90.8) 

100, 40 
 1.0448(0.0254), 0.6594(97.2) 1.0532(0.0215), 0.6009(98.3) 

 0.9897(0.0385), 0.8743(93.4) 0.9136(0.0262), 0.7816(96.8) 

100, 50 
 1.0374(0.0204), 0.5477(96.8) 1.0916(0.0185), 0.5053(92.4) 

 0.9922(0.0243), 0.6632(94.0) 0.8245(0.0170), 0.6346(89.4) 
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Appendix 1 
For case-I, taking derivatives with respect to  

and  of  as defined in (16), results in 
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Clearly, (22) and (23) do not have explicit 
analytical solutions. Consider a first-order 
Taylor approximation to  

and  by expanding around 

the actual mean  of the standardized order 

statistic , where 

 and ( 1) ,ip i n= +
1i iq p= −  for  similar to 

Balakrishnan and Varadan (1991), David (1981) 
or Arnold and Balakrishnan (1989). Otherwise, 
the necessary procedures for obtaining 

 were made available by Mann 

(1971) and Thomas and Wilson (1972). Note 
that for  
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Using the approximation (24) and (25) in (22) 
and (23), results get 
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written as 
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and  for   The solution to 

the preceding equations yields the approximate 
MLE’s are 

1 2 1

1

( )c c m d
c

σμ − − +=
               (30) 

2 4

2

B B AC
A

σ − + −=                (31) 

Consider only positive root of ; these 
approximate estimators are equivalent but not 
unbiased. Unfortunately, it is not possible to 
compute the exact bias of  and  theoretically 
because of intractability encountered in finding 

the expectation of . 
 

Appendix 2 
For case-II, taking derivatives with respect to  

and  of  as defined in (18), gives 
(similar to Case-I) 
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Here again consider the first-order 
Taylor approximation to  

and  by expanding around 

the actual mean  of the standardized order 

statistic , where  are defined in 

Appendix 1. Here  is also 
exploded in the Taylor series around the point 

 where 
 

( ) ( )* 1 * *ln ln ,J J JG p qμ −= = −  ( )*
1 2J J Jp p p += +  

and .  

Note that 
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              (35) 
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Using the approximation (24), (25), (34) and 
(35) in (32) and (33) gives 
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and 
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The above two equations (36) and (37) can be 
written as 

          (38) 
 

                (39) 
where 
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1,A Jc=  ( ) ( )' ' ' ' '

1 3 1 2 ,B c d JX d c J= + − +  

' 2 ' '
1 1 2C d c d= −   and 1i iD R= + , for 

1, ,i J=  . 
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The solution to the preceding equations yields 
the approximate MLE’s are  
 

' ' '
1 2 1

'
1

( )c c J d
c

σμ − − +=
                    (40) 

 
'2 4

2

B B A C
A

σ
′ ′ ′− + −=

′
                   (41)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider only positive root of ; these 
approximate estimators are equivalent but not 
unbiased. Unfortunately, it is not possible to 
compute the exact bias of  and  theoretically 
because of intractability encountered in finding 

the expectation of '2 4B A C′ ′− . 
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