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Performance Ratings of an Autocovariance Base Estimator (ABE) 
in the Estimation of GARCH Model Parameters 

When the Normality Assumption is Invalid 
 

Daniel Eni 
Federal University of Petroleum 

Resources, Effurun- Nigeria 
 

 
The performance of an autocovariance base estimator (ABE) for GARCH models against that of the 
maximum likelihood estimator (MLE) if a distribution assumption is wrongly specified as normal was 
studied. This was accomplished by simulating time series data that fits a GARCH model using the Log 
normal and t-distributions with degrees of freedom of 5, 10 and 15. The simulated time series was 
considered as the true probability distribution, but normality was assumed in the process of parameter 
estimations. To track consistency, sample sizes of 200, 500, 1,000 and 1,200 were employed. The two 
methods were then used to analyze the series under the normality assumption. The results show that the 
ABE method appears to be competitive in the situations considered. 
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Introduction 
The assumption of constant variance in the 
traditional time series models of ARMA is a 
major impediment to their applications in 
financial time series data where 
heteroscedasticity is obvious and cannot be 
ignored. To solve this problem, Engle (1982) 
proposed the Autoregressive Conditional 
Heteroscedascity (ARCH) model. In his first 
application, however, Engle noted that a high 
order of ARCH is needed to satisfactorily model 
time varying variances and that many 
parameters in ARCH will create convergence 
problems for maximization routines. To address 
these difficulties, Bollerslev (1986) extended 
Engle’s model, developing the Generalized 
Autoregressive Conditional Heteroscedasticity 
(GARCH) model. GARCH models time-varying 
variances as a linear function of past square 
residuals and of its past value. It has proved  
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useful in interpreting volatility clustering effects 
and has gained wide acceptance in measuring 
the volatility of financial markets. The ARCH 
and GARCH models are both known as 
symmetric models. 

Other extensions based on observed 
characteristics of financial time series data exist 
and include some asymmetric models. Examples 
of asymmetric models are Nelson’s (1991) 
exponential GARCH (EGARCH) model, 
Glosten, Jaganathan and Runkle’s (1993) GJR-
GARCH and Zakoian’s (1994) threshold model 
(T GARCH). These model and interpret leverage 
effects, where volatility is negatively correlated 
with returns. In addition, the Fractionally 
Integrated GARCH model (FIGARCH) (Baillie, 
Bollerslev & Mikeson, 1996) was introduced to 
model long memory via the fractional operator 
(1-L)d, and the GARCH in mean model allows 
the mean to influence the variance. 

These models are popularly estimated 
by the quasi-maximum likelihood method 
(QMLE) under the assumption that the 
distribution of one observation conditional to the 
past is normal. The asymptotic properties of the 
QMLE are well established. Weiss (1989) 
showed that QMLE estimates are consistent and 
asymptotically normal under fourth moment 
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conditions. These were again shown by Ling and 
McAleer (2003) under second moment 
conditions. If the assumption of normality is 
satisfied by the data, then the method will 
produce efficient estimates; otherwise, 
inefficient estimates will be produced. Engle and 
Gonzalez-Rivera (1991) studied the loss of 
estimation efficiency inherent in QMLE and 
concluded it may be severe if the distribution 
density is heavy tailed. 

The QMLE estimator requires the use of 
a numerical optimization procedure which 
depends on different optimization techniques for 
implementation. This potentially leads to 
different estimates, as shown by Brooks, Burke 
and Perssand (2001) and McCullough and 
Renfro (1999). Both studies reported different 
QMLE estimates across various packages using 
different optimization routines. These techniques 
estimate time-varying variances in different 
ways and may result in different interpretations 
and predictions with varying implications to the 
economy. To resolve these problems, Eni and 
Etuk (2006) developed an Autocovariance Base 
Estimator (ABE) for estimating the parameters 
of GARCH models through an ARMA 
transformation of the GARCH model equation. 
The purpose of this article is to rate the 
performance of the ABE when the normality 
assumption is violated. 
 
The Autocovariance Base Estimator (ABE) 

Consider the GARCH (p, q) equation 
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or its ARMA (Max (p, q), q) transform 
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To obtain the autoregressive parameters, 

consider that the variance, )( 22
ittVar −εε  for i > 

q in equation (2) will not contain the moving 

average parameter iΒ . Hence, i = q + 1 … q + p 

is used to obtain the estimator: 
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Where Vi  is the set of variances associated with 
equation (2). The autoregressive parameters 

ii Β+α  are obtained by solving (3). 

Eni and Etuk (2006) have shown that the 
moving average parameters iB  can be obtained 

from 
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where 
 

( ) ( ) ( )0 0, , .i i i i if f αΦ = −Φ Φ = Φ Φ = + Β  

 

Note that the quantity ( ) ΦΦ
=

Vf
p

i
i

0

 is known, 

the variance V having been calculated from the 
data, and the autoregressive parameters Φ  
having been calculated from equation (3). 
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The moving average parameters Bi are found by 
solving the system: 
 

( ) 2

0

( ) 0
p

i r
i

F B f V B bσ
=

= Φ Φ − =       (5) 

 
Equation (5) is nonlinear and the solution can be 
found only through an iterative method. One 
procedure to consider is based on the Newton-
Raphson algorithm, in this case, the Br+1 solution 
is obtained from the rth approximation according 
to 
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where f(Br) and f’(Br) represent the vector 
function (5) and its derivative evaluated at B=Br. 
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The starting point for the iteration (8) is 2
rσ  = 1, 

B0 = V0, Bi = 0, i = 1 … q. 
 
Having computed the Autoregressive parameters 

)( iii B+=Φ α  and the Moving average 

parameter iB , it is simple to obtain the GARCH 

(p, q) parameters, iα , and the constant 

parameter w0, which is estimated using 
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Methodology 

The data generating process (DGP) in this study 
involved the simulation of 1,500 data points 
with 10 replications using the random number 
generator in MATLAB 5. The random number 
generator in MATLAB 5 is able to generate all 
floating point numbers in the interval 

53 532 ,  1 2− − −  . Thus, it can generate 
14922  

values before repeating itself. Note that 1,500 

data points are equivalent to 
55.102  and, with 10 

replications; results in only 13.872672  data points. 
Hence 1,500 data points with 10 replications 
were obtained without repetitions. Also, a 
program implementation was used for ARMA to 
find the QMLE (McLeod and Sales, 1983). 
Although normality would typically be assumed, 
the data points were simulated using the Log 
normal and the T-distribution with 5, 10 and 15 
degrees of freedom. 

Of the 1,500 data points generated for 
each process, the first 200 observations were 
discarded to avoid initialization effects, yielding 
a sample size of 12,000 observations, with 
results reported in sample sizes of 200, 500, 
1,000 and 1,200. These sample presentations 
enable tracking of consistency and efficiency of 
the estimators. The relative efficiency of the 
autocovariances based estimator (ABE) and the 
quasi-maximum likelihood (QML) estimators 
were studied under this misspecification of 
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distribution function. The selection criteria used 
was the Aikake information criteria (AIC). 

For simulating the data points, the 
conditional variance equation for low 
persistence due to Engle and Ng (1993) was 
adopted. 
 

1
2

1 75.005.02.0 −− ++= ttt hh ε  

 
22

1 ttt Zh=−ε  

 

and 2
tZ  is any of 

5t~Z   or Z~t10 or Z~LN(0,1) 

or Z~t15, where N = normality, tV = t-distribution 
with V degree of freedom, and LN = log normal. 
 

Results 
Apart from the parameter setting in the DGP, 
selected studies of the parameter settings 

( ) ( ), , 0,  1,  0.15,  0.85W Bα =  and 

( ) ( ), , 0,  1,  0.25,  0.65W Bα =  (Lumsdaine, 

1995), and ( ) ( )6.0,3.0,1,, =BW α  and 

( ) ( )9.0,05.0,1,, =BW α  (Chen, 2002) were 
also studied. The results obtained agree with the 
results obtained from detailed studies of the 
DGP. 

Table 1 shows the results from a sample 
size of 200 data points. The table reveals that the 
estimates are poor for QMLE and ABE. On the 
basis of the Aikate information criteria (AIC), 
however, the QMLE performed better than the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABE except under the log normal distribution 
where ABE performed better than QMLE. 

Table 2 shows that the estimates using a 
sample size of 500 are better, although still poor. 
The performance bridge between QMLE and 
ABE appears to be closing. This is observed 
from the AIC of QMLE and ABE under the 
different probability distribution functions, with 
one exception in the case of the log normality. 
Surprisingly, the QMLE method failed to show 
consistency, but it is notable that the 
performance of both methods was enhanced 
under the t-distribution as the degrees of 
freedom increase. 

Table 3 shows that both estimation 
models, QMLE and ABE, had equal 
performance ratings and gave consistent 
estimates in general. However, the ABE had an 
edge in its performance under t(5) and LN(0, 1) 
while QMLE had an edge under t(10) and t(15). 
The estimates under t(15) and t(10) were close to 
their true values for both estimation methods. 
Finally, the results shown in Table 3 are further 
confirmed by examining Table 4 where the two 
methods have nearly equal ratings based on the 
values of their AIC. 
 

Conclusion 
It is shown is this study that the ABE method is 
adequate in estimating GARCH model 
parameters and can perform as well as the 
maximum likelihood estimate for reasonably 
large numbers of data points when the 
distribution assumption is misspecified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Performance Rating of QMLE and ABE for Sample Size n = 200 

Estimates 

Estimation Method 
QMLE ABE 

W α  B AIC W α B AIC 

t (5) 0.16 0.01 0.77 -70.90 1.14 0.016 0.74 -65.312 

t (10) 0.14 0.014 0.76 -140.36 1.138 0.012 0.75 -124.31 

t (15) 0.15 0.17 0.76 -169.40 1.42 0.016 0.76 -157.21 

Ln (0, 1) 9.3 -0.2 0.86 129.17 6.2 0.20 0.81 108.23 
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