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Simulation Study Of Chemical Inhibition Modeling 
 

Pali Sen 
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University of North Florida 
 

Mary Anderson 
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The combined effects of the activities of different chemicals are of interest of this study. We simulate for the 
synthetic data, and fit experimental data for three models and estimate the parameters. We assess the fit of the 
synthetic data and the experimental data by comparing the coefficients of variation for the parameter 
estimates and identify the best model for the inhibition process. 
 
Key words: Additive model, coefficient of variation, combination model, product model 
 
 

Introduction 
 
Pharmacological data deal with the study of 
chemicals in a body. Researchers are interested in 
the distributions of these chemicals and their 
retention times. Studies by clinicians (e.g., 
Wagner, 1988; Bass, 1988; Beck, 1988) on the 
specific activities of chemicals under various 
conditions are examples. Thakur (1988), Matis 
(1988), and Jacquez (1985), to name a few, 
developed methods to study the dynamic behavior 
of chemicals using tools in mathematical 
modeling. 

Sen and Mohr (1990), and Sen, Bell, and 
Mohr (1992) studied the distribution of a chemical 
in a body and modeled its activities as nonlinear 
time-dependent functions. In this paper we 
develop mathematical models of two chemicals in 
order to study the inhibition effects of one 
chemical on the other. This inhibition between two 
chemicals may be indicated by suppression or 
amplification of their individual effects. The 
specific activities of two interacting chemicals are 
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measured on laboratory animals during an 
experiment. 

Three models are developed here for 
study: an additive model, a product model, and a 
combination model. The purpose of the study is to 
select the best model from these three models, to 
describe the inhibition effect of two interacting 
chemicals and to interpret the observed data. A 
simulation study of the models and their parameter 
estimation using the synthetic data is described in 
the result section. A numerical example of the 
evaluation of the models is also presented in the 
result section. 
 

Methodology 
 
Consider a chemical flow in a body and its 
concentration changes at different times and at 
different points. We observe the flow discretely at 
a certain location in the body and at certain times, 
and we visualize a one-compartment model with a 
single input and output from the system. After the 
initial dose of a chemical is injected into the 
system, some amount of it will escape the 
compartment and the chemical itself will slowly 
decay over time. We assume the rate changes in 
concentration, p(t), of the chemical at any time in 
the body will follow the differential equation 
given below. 
 

dp(t)/dt = -"p(t) + f(t),         (2.1)  
 

where " is the rate at which the absorbed chemical 
leaves the system. f(t) is a decreasing function of 
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the chemical applied initially, which enters the 
system and is assumed to have the form   
  

f(t) = d e 
-βt

,                                            (2.2)  
  

where d is the initial amount of the input, and β is 
the rate of absorption of the chemical.  The 
solution of the equation (2.1) may be extended for 
two chemicals, since they follow essentially the 
same equation. Hence the solution of equation 
(2.1) for each chemical is written as, 
 
pi(t)= di (exp(-βit) - exp(-"it))/(" i - βi),         (2.3) 
 
for i = 1, 2. 
 
 We now consider an ‘activator-inhibitor’ 
system for the combined concentrations, p(t), of 
the activity levels, which consists of two 
chemicals that each exhibits the mutual effect of 
inhibiting the other’s formation , Edelstein - 
Keshet, (1989). By selecting models for each of 
the combining effects, we have models that take 
the following forms:  
 
Model 1:    p(t) = p1(t) – p2(t).                          (2.4) 
 
Model 2:    p(t) = p1(t)*p2(t).                      (2.5) 
 
Model 3:    p(t) = p1(t) – p2(t) + p1(t)*p2(t)       (2.6) 
 

The rationale for these models is based on 
the physiological combination effects of two 
chemicals. Sometimes the combined effects 
produce a reduction, and at other times a surge in 
the activity levels, depending on the chemical 
balance of the concentration levels. The negative 
sign in (2.4) indicates inhibition of the first 
chemical by the second, which is an antagonistic 
effect. Next, we consider the product model since 
the combination may alternatively cause the 
effects to rise. The product of the two equations is 
similar to an interaction effect, which we believe 
is a competitor for model 1. The third model is a 
combination of models 1 and 2, which intuitively 
may be viewed as a synergistic effect. We want to 
achieve a trend to identify a best inhibition model 
using experimental and synthetic data.  

Computationally, the proposed models in 
(2.4), (2.5), and (2.6) yield different combinations 
of exponential terms. To simplify the notations, 
we use ", $, (, * instead of "1, $1, "2, $2. Here, ( 
represents the rate at which the second chemical 
leaves the system and * is the rate at which the 
second chemical is absorbed in the system. The 
initial input (di) is considered to be of the same 
amount, d, for both the chemicals. We write 
equations (2.4), (2.5), and (2.6) in the following 
equations. 

 
p(t) = d[exp(-$t) – exp(-"t)]/(" - $) – d[exp(-*t) –  
     exp(-(t)]/(( - *).                       
                                       (2.7) 
 
p(t) = d2[exp( -($t + (t)) – exp(-($t + *t)) – exp(- 
     ("t + (t)) + exp(-("t + *t))]/("-$)(*-(). (2.8) 
 
p(t) = d[exp(-$t) – exp(-"t)]/(" - $) – d[exp(-*t) –  
     exp(-(t)]/(( - *) + d2[exp( -($t + (t)) – exp(- 
     ($t + *t)) – exp(-("t + (t)) + exp(-("t + *t))]/ 
     ("-$)(*-().                                                    (2.9) 
 

The above equations are similar even 
though the combinations of the parameters are 
different in each equation. Each equation in (2.7) – 
(2.9) consists of four parameters. We compare the 
fit of the generated curves with the observed 
values and then study the errors of estimation for 
each fitted curve. 
 

Results 
 
We want to compare the models by generating 
data from the respective equations for a period of 
time. We simulate the models with four unknown 
parameters and for thirteen time points. d is a 
proportionality constant and may be set to any 
number. A value of d = 10 units is considered for 
the analysis. The random numbers are generated 
for ten sets of data at each time point 0, 30, ...360. 
The system of random numbers is perturbed by a 
sigma of 1 unit. The Monte Carlo method of the 
program is written using Fortran language and the 
Levenberg -Marquardt is used to fit the model 
parameters (Press, 1986). The initial guesses of the 
parameters and the first derivatives of the 
parameters are supplied in order for the nonlinear 
equations to converge when a chi-square value has 
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reached to a pre set number. Convergence implies 
that the best estimates of the parameters have been 
obtained, under the assumption that the model is 
adequate. Two convergence criteria are used here. 
 

1) Continue iterative method until the 
parameter values on successive iterations 
stabilize. This can be measured by the size 
of the each parameter increment relative to 
the previous parameter value. 

2) Continue till relative change in sum of 
squares on successive iterations is small. 

 
Compliance with both criteria does not guarantee 
convergence; instead it could indicate a lack of 
progress. Often a small pivot element will generate 
a large correction in the parameter values, which 
will then be rejected. This near degeneracy of the 
minimum causes the parameters to fluctuate 
around a value (a local minimum) without ever 
converging to a global minimum. 

Table 1 gives the estimated parameter 
values along with their standard errors for the data 
generated using the additive model for initial 
estimates of the parameters " = .0699, $ = .0173, 
( = .3742, and * = .057, with respective parameter 
estimates α̂  = .0958, β̂  = .00535, γ̂  = .420862, 

δ̂  = .0228. The change in the Chi-Squares is from 
186326.5 to 110324.7 with a 41% drop in the 
value. 

 
Table 1 -Parameter estimates for three models for 
the first set of simulated data± indicates 
asymptotic standard errors 

 
Model 
 

" $ ( * 

Additive 
 

.096± 

.000028 
.005± 
.000001 

.421 ± 

.00018 
.023 ± 
.000056 
 

Product 
 

.0019± 
26.5040  

.0083± 
26.5040 

15.19± 
26.5040 

-.0014± 
26.5040 
 

Combination 
 

5.816± 
.000516 

.00009± 

.000004 
.0002± 
.0000015 

.0078± 

.000019 
 

 
Table 2 gives the estimated parameter 

values along with their standard errors for the data 
generated using the combination model for initial 
estimates of the parameters " = .0818, $ = .0108, 

( = .0114, and * = .114 with respective parameter 
estimates α̂  = .845261, β̂  = .00622, γ̂  = .00669, 

δ̂  = 3.145268. The change in the Chi-Squares is a 
99% drop in the value. 

 
Table 2 -Parameter estimates for three models for 
the second set of simulated data± indicates 
asymptotic standard errors. 

 
Model 
 

" $ ( * 

Additive 
 

.1396± 

.00012 
.0004± 
.00003 

.3087 ± 

.00043 
.0015 ± 
.00003 

Product 
 

.0016± 
77.223  

.3669± 
77.229 

5.445± 
78.636 

-.0013± 
77.224 

Combination
 

.845± 

.000939 
.006± 
.00003 

-.007± 
.00003 

3.145± 
.00503 

 
Tables 1 and 2 show some similarity in the 

estimates of the parameters. We have obtained  the 
convergence criteria by all three models for the 
above two sets of parameters. It was extremely 
difficult to find the initial estimates of the 
parameters for the product model, but we included 
it in the analysis as well. The additive and the 
combination models both gave very good 
estimates of the standard errors, but the product 
model had the estimated standard errors very large 
to indicate the convergence might have reached 
locally. The data were generated using the additive 
and the combination models and both sets of data 
converged for both models 1 and 3 with good sets 
of parameter estimates, but neither set worked well 
for the product model. The coefficients of 
variation for estimated parameters fitted from the 
simulation data were calculated by dividing the 
standard errors of estimation by the estimated 
parameters for the sets given in the accompanying 
tables. 

Once the validity of the models has been 
established, we want to see how the three models 
compare at each other, we use the estimated 
parameter values from the tables to draw the 
curves for all three models and place them on the 
same axes. Figure 1 shows that all three graphs 
basically follow the same pattern but in figure 2 
the product model shows a slight fluctuation from 
the other two curves, and the combination model 
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separates from the other two at the end of 360 
minutes. These pictures confirm that all three 
models are equally good in describing the 
chemical inhibition process. 
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Figure 1. Simulated curves for three models using 
the parameter estimates in Table 1. 
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Figure 2. Simulated curves for three models using 
the parameter estimates in Table 2. 
 

The simulation study is convincing 
enough for us to look further into the models using 
the real data. The data used for this study were 
collected at the Ohio State University 
pharmacological laboratory in Columbus, Ohio. 
Researchers administered two chemicals, 
morphine and midazolam, to laboratory rats. The 
experiment is to study the effects of two 
chemicals, Midazolam and Morphine when they 
are administered simultaneously. A high dose of 
Morphine, a common anesthetic agent, may have 

an irreversible side effect on the body. Midazolam 
has been shown to either increase or decrease 
spinal activity depending on the relative combined 
concentration of morphine and midazolam , Niv 
(1988); Tejwani, (1990). Also midazolam has been 
shown to have minimal side effects even with high 
dosages.  

The purpose of their study for the 
combination effects was to see the effects of 
morphine in high doses when applied with varying 
dose levels of midazolam. Researchers especially 
want to determine if a combination level of two 
chemicals can produce the desired anesthetic 
effect that reaches high within 50 minutes to 100 
minutes and gets out of the system within 3 hours. 
The experimenters used a group of five to six 
laboratory rats to administer midazolam at three 
levels and morphine at the same three levels as a 
3X3 factorial design. 

The combined effects of those two 
chemicals were observed on the rats. The 
concentration levels for each chemical were used 
at 10:g (low), 20:g (moderate), and 30:g (high) 
and each of the nine combinations of the 
concentrations. The numbing effects of the 
combined chemicals were recorded by measuring 
the tail flickering of the rats. These measurements, 
known as the specific activities, represent the 
percentage increase over the baseline values of the 
anesthetic effects, which are due to the chemicals. 
Higher measurement readings indicate a stronger 
effect of the chemicals. 

The average percentages of the maximal 
possible effects on tail flickering of these animals 
were measured. A high number indicated the 
effect of analgesia (anesthetic effect) was strongly 
present. A descriptive study of the data has been 
published in one of the pharmacological journals, 
Rattan (1991).  

Nonlinear regression fits of the models to 
the data are obtained using the Marquardt method. 
The estimates of the parameters are also obtained. 
The procedure is iterative based on the least 
squares method. The initial guess for each 
parameter is supplied and a known value of the 
initial amount (d) of 10 units is used for each level 
of the chemicals for the observed thirteen time 
points. The coefficients of variation for estimated 
parameters fitted from the data are calculated for 
the converged sets. 

  



SEN & ANDERSON 401

To avoid repetition and lack of any further 
meaningful information, only three selected 
combination levels of midazolam and morphine 
are presented here. The tables 3, 4, and 5 show the 
estimates of the four parameters with their 
corresponding asymptotic standard errors of 
estimation.  

A well-known result is that the method of 
maximum likelihood asymptotically produces an 
estimated density, which is closest to the true 
density in the information sense. Maximizing the 
log- likelihood is equivalent to minimizing the 
expected logarithmic difference between the two 
densities. Akaike (1974) has suggested an estimate 
of the approximate loss between the true normal 
density and the approximating density. This 
estimate uses the maximum log-likelihood of the 
observation vector minus the number of 
parameters. Akaike’s information criterion (AIC) 
is a useful statistic for statistical model evaluation 
and has been widely accepted in some areas of 
statistics, Bozdogan (1987). It is calculated for 
each selected model as AIC = (n)ln(SSEs/n) + 2k, 
SAS (1990). A low value for AIC indicates a 
better fit.  

We notice in table 5, the combination data 
of both high levels of concentrations (Mor30 and 
Mid30), fit with AIC values equal to 28.89 for the 
additive model, and 34.07 for the combination 
model, those are the smallest among all other AIC 
values. The AIC values are in the similar range in 
the table 3 for the combination data of low 
morphine with high midazolam concentrations 
(Mor10 and Mid30). For the combination data of 
medium morphine with low midazolam 
concentrations (Mor20 and Mid10) in table 4, the 
AIC values are relatively high but similar for the 
additive model and the combination model and 
even higher for the product model. 

We compare the standard errors of the 
parameter estimates in these tables. In tables 3 and 
4 only the combination model has reliable 
estimated standard errors, and in table 5 models 1 
and 3 have reliable estimated standard errors. So 
the combination model is the only one that is 
holding steady for the data. 

 
 
 
 
 

Table 3 -Parameter estimates of three models for 
low level of Morphine± indicates asymptotic 
standard errors. * = Concentration Level. 
Level* " $ ( * AIC 

Mor10 
Mid30 
Model 1 

.0383 ± 
2.469 
  

.0382 ± 
2.4645 
  

.3771 ± 
617.19 

.3765 ± 
616.3 
   

56.42318072  

Mor10 
Mid30 
Model 2 

.2005 ± 
0.0000 

.1748 ± 
263.9 

.0001 ± 
27.961 

-.1400± 
74.52 

53.15877737  
 

Mor10 
Mid30 
Model 3 

.0809 ± 

.0423 
.0168 ± 
.0178 

.0120 ± 

.0152 
.1431 ± 
.0676 

53.46542876  
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Figure 3. Distribution of Morphine 10:g and 
Midazolam 30:g with predicted models. 
 
 
Table 4 -Parameter estimates of three models for 
medium level of Morphine ± indicates asymptotic 
standard errors. 
 
Level*   "   $ (   *   AIC  

  
Mor20 
Mid10 
Model 1 

.0836 ± 

.0050 
   

.0027 ± 

.0005 
   

67739± 
.0000 

47398± 
.0000 
   

64.50291081  

Mor20 
Mid10 
Model 2 

-.0286 ± 
.0016 

.4917 ± 
6.972 

.0299 ± 
0.0000 

.4951 ± 
7.8581 

74.11086129  
 

Mor20 
Mid10 
Model 3 

.1445 ± 

.0876 
.0012 ± 
.0008 

.0094 ± 
0.0130 

.1828 ± 

.1063 
63.81358576  
 

Note: * = Concentration Level. 



SIMULATION STUDY OF CHEMICAL INHIBITION MODELING 402

0

20

40

60

80

100

120

0 40 80 120 160 200 240 280 320 360

Time (in minutes)

%
 o

f s
pe

ci
fic

 a
ct

iv
iti

es

observed

pred(model 1)

pred(model 2)

pred(model 3)

Figure 4. Distribution of Morphine 20:g and 
Midazolam 10:g with predicted models. 

 
 
 
 
Table 5 -Parameter estimates of three models for 
high level of Morphine± indicates asymptotic 
standard errors. 
 
Level*   "    $    (    *   AIC  

  
Mor30 
Mid30 
Model 1 

.0699 ± 

.0082 
   

.0173 ± 

.0020 
   

.3742 ± 

.1141 
.0570 ± 
.0489 
   

28.89092708  

Mor30 
Mid30 
Model 2 

.0796 ± 
0.0000 

.0705 ± 
14528 

.0288 ± 
701.31 

-.0446 ± 
1396 

68.71982797  
 

Mor 30 
Mid 30 
Model 3 

.0818 ± 

.0286 
.0108 ± 
.0235 

.0114 ± 

.0396 
.1141 ± 
.0267 

34.07428277  
 

Note: * = Concentration Level. 
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     Figure 5. Distribution of Morphine 30:g and 
     Midazolam 30:g with predicted models. 

 
 
Figures 3 – 5, refer to the respective tables 

3 - 5, show the actual data with the estimated fitted 
lines by the models 1, 2, and 3.  The estimated 
parameter values from the tables are used to draw 
the respective fitted curves and placed them with 
the original data points. Figure 3 shows a very 
close fit by all three curves, figure 4 shows very 
different fit by all three of them and figure 5 again 
shows very good fit by all three models.  

We now focus on the estimated values to 
decide how good these fits are. Tables 3 - 5 show a 
lack of reliability in the measurements of the 
coefficients of variation by the product model for 
all of its estimated parameter values. They are 
quite large, indicating that the convergence may 
have reached locally, which is also the case with 
the simulation results for the product model, even 
though it fit the experimental data in figures 3 and 
5. Table 3 shows only the combination model with 
a set of reasonable coefficients of variation for it’s 
estimated parameter values but all curves fit data 
well. The standard errors for estimated parameter 
values for the other two models are large in Table 
3. For the combination and addition models in 
table 5, the parameter estimates are extremely 
good with mostly low coefficients of variation, 
and all three models fit well. The estimated 
standard errors with the low coefficients of 
variation may be used to make the confidence 
intervals for the parameters for the combination 
model. 
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Conclusion 
 
The AIC criteria has been criticized in literature 
for adding two times the number of parameters of 
the model in the calculation, but we overcome this 
criticism by having equal number of parameters 
for each model. The AIC values are used heavily 
in the literature for model comparisons, but how 
low is a value to be considered for a good fit. Our 
studies show that the values range from 28.89 to 
74.11 for the set of data that we have used. It is 
then reasonable to suggest that this range of AIC 
values meet the standards since they meet the 
convergence criteria for the study.  
 However to select a best model, only the 
AIC criteria may not be enough, the estimated 
parameter values also play a key role in 
determining a good model. One does not need to 
do the testing of hypothesis to decide if the 
estimated values are acceptable or not, as the 
coefficients of variation are instant indicators for 
the decision. The coefficients of variation for the 
estimated parameters are always large for the 
product model, but they are low for the 
combination model with no exception, indicating 
that the combination model is probably a better 
choice. This indicates that the coefficients of 
variation should also be considered for the choice 
of a model.  

When we look into the simulation of the 
models, we find that all three models generate 
extremely similar patterns. The data under study 
contain a lot of variations for measurements and 
has only thirteen time points for each set. This 
may contribute to some of the convergence 
problems for model 1, which sometimes produces 
unusable estimates of the parameters in tables 3 
and 4. Otherwise the simulation results in tables 1 
and 2 are perfectly fine for the additive model. The 
combination model always did extremely well for 
fitting the data, estimating the parameters with low 
coefficients of variations, but producing the AIC 
values similar to the other two models.  
 This study indicates that there are a 
number of conceivable reasons why a particular 
model should be chosen. Beyond the reasonable 
AIC values, we looked into the fit and the 
coefficients of variation for estimating the 
parameters. This study showed that the reliable 
estimates of the parameter values were obtained 
from the combination model always, from the 

additive model sometimes and none of the times 
from the product model. The fit of the models are 
extremely close in two of the three graphs shown 
here. The models 1 and 2 have the potential for 
simpler interpretation of an inhibition model as 
being either an additive or a multiplicative in 
nature, but as we have seen the estimated 
parameter values are not always reliable, whereas 
a combination of the two models produces reliable 
estimates of the parameters. 

In conclusion we would like to remark 
that AIC criteria are a very simple technique to 
identify the goodness of fit, but we need other 
statistical techniques as well to evaluate a model. 
This paper addresses the issue to identify a model 
that will best describe the inhibition process, even 
though that may not be a flawless model for the 
entire process. The models are based on simple 
approach to the physical description of the 
inhibition process with a few parameters. The data 
we have used for the numerical example may be 
modeled by much complicated equations than 
these models can describe. Any chemical 
interaction is a complicated process but the 
observable data points are restricted. Moreover, 
this type of experiment requires live subjects for 
study, which makes it harder to collect a large set 
of data. The proposed models have only four 
parameters to estimate and require a moderate size 
of the data set. In real experimental process if 
more data is available, the initial equation set up 
must be more elaborate before the three proposed 
models could be introduced. The simulation 
results and the numerical example show that the 
combination model better describe the inhibition 
effects of two chemicals. 
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Combining Quantum Mechanical Calculations And A χ2 Fit In A Potential Energy 
Function For The CO2 + O+ Reaction 
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In order to compute a highly accurate statistical rate constant for the CO2 + O+ reaction, it is necessary to first 
calculate the potential energy of the system at many different geometric configurations. Quantum mechanical 
calculations are very time-consuming, making it difficult to obtain a sufficient number to allow for accurate 
interpolation. The number of quantum mechanical calculations required can be significantly reduced by using 
known relations in classical physics to calculate energy for configurations where the oxygen is relatively far 
from the CO2. A chi-squared fit to quantum mechanical points is obtained for these configurations, and the 
resulting parameters are used to generate an equation for the potential energy. This equation, combined with 
an interpolated set of quantum mechanical points to give the potential energy for configurations where the 
molecules are closer together, allows all configurations to be calculated accurately and efficiently. 
 
Key words: Potential energy surface, χ2 fit 
 

 
Introduction 

 
The reaction of carbon dioxide with the O+ oxygen 
ion is of interest because experimental rate 
measurements show that at low energies the rate is 
constant at the expected value, but at high energies 
the rate steadily decreases to values below the 
expected rate (Viggiano, et al.,1992). RRKM rate 
calculations were done for the purpose of 
explaining this experimentally observed decrease 
(Forst, 1973).  

In order to calculate the rate of reaction 
using statistical rate theories such as RRKM 
theory, the potential energy of the reacting 
molecules must be known at any geometric 
configuration that might be found near the 
transition state. This refers to the small portion of 
the potential surface that is near the maximum 
point on the minimum-energy path.  
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The accuracy of a rate calculation is directly 
related to the accuracy of the potential surface 
employed, and a good potential is needed if the 
rate calculation is to be highly accurate. Because 
calculating the potential energy at any one 
configuration involves time-consuming quantum 
mechanical calculations, constructing the potential 
surface with energies for all probable 
configurations near the transition state using 
quantum mechanical calculations becomes an 
impossible task. Instead, it is common to do 
calculations at judiciously chosen configurations 
and use interpolation to obtain good 
approximations for the energies of configurations 
for all other geometries. 

The potential is split into long and short-
range portions in order to further reduce the 
number of quantum mechanical calculations. Ab 
initio quantum mechanical calculations were done 
for the short-range portion only. At separation 
distances of 6.9 Å or greater, the long-range 
portion of the potential is invoked. It consists of a 
fit to the long range ab initio points with a 
functional form, which is a parameterized 
variation of the ion-induced dipole plus 
quadrupole potential:  
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