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Maximum Tests are Adaptive Permutation Tests 

Markus Neuhäuser       Ludwig A. Hothorn 
                  Koblenz University of Applied Sciences Leibniz University of Hannover 

 
 
In some areas, e.g., statistical genetics, it is common to apply a maximum test, where the maximum of 
several competing test statistics is used as a new statistic, and the permutation distribution of the 
maximum is used for inference. Here, it is shown that maximum tests are special cases of adaptive 
permutation tests. The 30-year old idea of adaptive statistical tests is more flexible than previously 
thought when permutation tests are used, and the selector statistic is calculated for every permutation. 
Because the independence between the selector and the test statistics is no longer needed, the test 
statistics themselves can be used as selectors. Then, the maximum tests fit into the concept of adaptive 
tests. In addition to the gained flexibility, maximum tests can be more powerful than classical adaptive 
tests. 
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Introduction 
 

In this article the two-sample location problem is 
considered. Let X1, …, Xn and Y1, …, Ym denote 
two random samples. The observations within 
each sample are independent and identically 
distributed, and independence between the two 
samples is assumed. Let F1 and F2 be the 
distribution functions corresponding to 
populations 1 and 2, respectively. In the 
location-shift model the distribution functions 
are the same except perhaps for a change in their 
locations; that is, F1(t) = F2(t – θ) for every t. 
The null hypothesis is H0: θ = 0, whereas the 
alternative states θ ≠ 0.  
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Often, a normal assumption for F1 and 

F2 is not tenable. In this case, a nonparametric 
test can be performed using a linear rank statistic 
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)( , where g(i) are real valued 

scores, and Vi = 1 when the i-th smallest of the N 
= n + m observations is from the first sample and 
Vi = 0 otherwise. There is a variety of different 
scores and, consequently, it is difficult for the 
practicing statistician to select a test statistic. A 
powerful test exists for every distribution, but 
the real distribution is usually a priori unknown 
and, consequently, one needs a test that has high 
relative power across the different possible 
distributions which may be difficult for small 
sample sizes. 

In order to solve this dilemma Randles 
and Hogg (1973) and Hogg (1974) introduced 
adaptive statistical tests as a new dimension in 
distribution-free inference. The basic idea is that 
the value of a selector statistic decides which of 
some possible test statistics is applied. To be 
precise, the concept is based on the following 
lemma: 

 
(i) Let F  denote the class of distributions 
under consideration. Suppose that each of k tests 
T1, …, Tk is distribution-free over F, that is, 

α≤∈ )(Pr
0 iiH CT  for each F ∈ F, i = 1, …, k.  



MAXIMUM TESTS ARE ADAPTIVE PERMUTATION TESTS 

 

318 

(ii) Let S be some statistic (called a selector 
statistic) that is, under H0, independent of T1, …, 
Tk for each F ∈ F. Suppose we use S to decide 
which test Ti to conduct. Specifically, let MS 
denote the set of all values of S with the 
following decomposition:  

kS DDDM ∪∪∪= "21 , ∅=∩ jh DD  for 
h ≠ j, so that S ∈ Di corresponds to the decision 
to use test Ti.  

The overall testing procedure is then 
defined by:  If S ∈ Di then reject H0 if Ti ∈ Ci. 
This two-staged adaptive test is distribution-free 
under H0 over the class F, i.e., it maintains the 
level α for each F ∈ F. 

The proof of this lemma was given e.g. 
by Randles and Wolfe (1979, p. 388). Usually, 
tests based on ranks were used together with a 
selector statistic that depends on the combined 
ordered sample (Büning, 1991). The reason is 
that under the null hypothesis and in case of a 
continuous distribution, the rank vector is 
independent of the order statistics (Randles & 
Wolfe, 1979).  

During the last 30 years several adaptive 
tests were introduced, not only for the two-
sample location problem, but also for multi-
sample problems and scale tests (Beier & 
Büning, 1997, Büning, 1991, 2000, 2002). 
Freidlin et al. (2003a) proposed a test where the 
selector and the test statistics are asymptotically 
uncorrelated only. Furthermore, the concept of 
adaptive tests was applied to parametric tests 
(Neuhäuser & Hothorn, 1997). However, this 
study focused on nonparametric two-sample 
location tests. 
 In 1995, Weerahandi wrote that, “until 
recently, most of the applications involving 
nonparametric tests were performed using 
asymptotic approximations” (p. 78). Therefore, 
most adaptive tests are constructed of 
asymptotic tests. Obviously, permutation tests 
(see e.g. Good, 2000) can be combined to an 
adaptive test, too, an example is the test 
introduced by O’Gorman (2001). The aim of this 
article is to show that permutation tests can offer 
a large flexibility to the concept of adaptive tests 
and that a maximum test is an adaptive 
permutation test. 
 

The Combination of Permutation Tests 
On the one hand, one can use the 

concept of adaptive tests in the classical way. 
That is, the selector is computed once and the 
chosen test is performed, now based on the 
permutation distribution. On the other hand, 
there is an alternative: the selector may be 
calculated for each permutation. In this case, a 
permutation test is carried out using the statistic  

TP1 = ∑
=

∈
k

i
ii TDSI

1
)( , where I(.) denotes the 

indicator function. With this statistic a 
permutation test can be performed, and neither 
the independence between S and the Ti nor the 
continuousness of the underlying distribution is 
necessary, in contrast to tests based on the 
lemma given in the introduction. Note that for a 
classical adaptive test the distributions have to 
be continuous for the independence between 
rank vector and order statistics. In practice, 
however, ties frequently occur in a variety of 
settings (see e.g. Coakley & Heise, 1996). Even 
when the underlying distribution is continuous 
rounding leads to ties. For example, reaction 
times may be measured with a time clock 
graduated in tenths or hundredths of a second. 
Moreover, it is an advantage of nonparametric 
rank tests that they can also be applied to 
ordered categorical data, but when 
continuousness has to be assumed, this 
advantage is lost. 

Because the independence to the 
selector is no longer necessary one can use the 
(standardized) test statistics themselves as 
selectors. To be precise, one can perform a 
permutation test based on the statistic,  

 
TP2 = 

( ) ( )∑ >∀>=
=

k

i
ijiki TijTTITTTI

1
1 .),,max( …  

 
The second indicator function is needed because 
two statistics Ti and Tj (with i ≠ j) could have an 
equal value for a given data set. Now, it is easy 
to see that TP2 = ),,max( 1 kTT … . Thus, a 
maximum test may be regarded as an adaptive 
permutation test. 
 The use of the maximum of several 
(standardized) statistics as a new test statistic is 
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common in rather different testing problems 
(e.g. Bretz & Hothorn, 2001, Chung & Fraser, 
1958, Freidlin & Korn, 2002, Freidlin et al., 
1999, 2002, 2003b; Gastwirth & Freidlin, 2000; 
Hirotsu, 1986; Marozzi, 2004a, 2004b, 
Neuhäuser & Hothorn, 1999, Neuhäuser et al., 
2000, 2004, Zheng et al., 2002). The approach 
has the advantage that neither a selector statistic 
nor the specification of which test should be 
performed for which values of the selector is 
needed. Furthermore, a maximum test is 
possible for relatively small sample sizes. In 
contrast, a classical adaptive test needs a sample 
size of at least 20 per group to avoid too many 
misclassifications (Hill et al., 1988, Büning, 
1991, p. 238). 
 
Example 

As an example, the class of all 
continuous and symmetric distributions is 
considered. In this case the following scores g(i) 
may be useful:  

 
Gastwirth test (short tails):    
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Wilcoxon test (medium to long tails): iig =)(  
 
Median test (very long tails): 
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Above, in the parenthesis that type of 
distribution is indicated for which the test has 
high power (Büning, 1994). As a selector 

5.05.0

05.005.0

ˆˆ
ˆˆˆ
LU
LU

Q
−
−

=  is chosen as a measure for 

tailweight (Hogg, 1974); γγ UL ˆandˆ  denote the 
average of the smallest and largest γN order 
statistics, respectively, in the combined sample. 
Fractional items are used when γN is not an 
integer. The longer the tails the greater is Q̂ . 
The adaptive test can be defined as follows: 
 
If Q̂  ≤ 2,  apply the Gastwirth test, 
 
if 2 < Q̂  ≤ 7, apply the Wilcoxon test, 
 
if Q̂  > 7,  apply the Median test. 
 

The maximum test is constructed of the 
same three statistics. However, because the two-
sided alternative θ ≠ 0 is considered, the 
maximum of the absolute values of the 
standardized statistics is used. Under H0, 
expectation and variance of a linear rank statistic 
T are 
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(Büning & Trenkler, 1994, pp. 127-130). Let 
STG, STW, and STM denote the standardized 

statistic 
)(
)(

TVar
TET −

 using Gastwirth, Wilcoxon, 

and Median scores, respectively. Then, the test 
statistic of the maximum test considered here is 

( )MWG STSTSTT ,,maxmax = . Inference 

is based on the permutation distribution of this 
maximum.  

Table 1 shows type I error rates and 
powers of the univariate tests, the adaptive test 
and the maximum test. According to these 
results, the maximum test is less conservative 
than the other tests (for α  = 0.05). This finding 
also holds for other maximum tests (see e.g.  
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Neuhäuser et al., 2004). According to Table 1, 
the maximum test is more powerful than the 
adaptive test. Moreover, an important point is 
that the maximum test can be more powerful 
than the best univariate test, as it is here in the 
case of the Cauchy distribution. In contrast, the 
power of an adaptive test is always a weighted 
average of the powers of the univariate tests, i.e. 
the power of the adaptive test is always between 
the best and worst of the powers of the 
univariate tests. 
 

Conclusion 
 

The use of the maximum of several competing 
univariate statistics is quite common nowadays, 
especially in statistical genetics (see the 
references given above). Here, it is demonstrated 
that such maximum tests can be integrated 
within the 30-year old theory of adaptive tests. 
The distribution of the maximum can be 
determined by generating all possible 
permutations. The p-value of the resultant exact 
permutation test is the proportion of 
permutations yielding a statistic as supportive or 
more supportive of the alternative than the 
originally observed test statistic. When sample 
sizes are large and/or a multi-sample problem is 
considered, permutation tests can be performed 
using a simple random sample from all the 
possible permutations (see e.g. Good, 2000). 

  
 

In some applications the correlation 
between the different statistics is known and the 
(asymptotic) distribution of the maximum is 
available, an example is a multiple contrast test 
where the maximum is multivariate t-distributed 
(see e.g. Hothorn et al., 1997, Genz & Bretz, 
2002). However, to use a standard distribution is 
not generally a better way than using the 
permutation distribution. Instead, permutation 
tests may be preferable for several applications 
(Ludbrook & Dudley, 1998). Note that an 
approximation using the asymptotic distribution 
of a maximum statistic can be poor even when 
all univariate statistics are asymptotically normal 
(Freidlin & Korn, 2002). 
 Some decades ago, permutation tests 
were “almost never quick … seldom practical, 
and often … not even feasible” (Bradley, 1968, 
p. 84). Thus,   maximum   tests   based   on    the  
permutation distribution could not be carried 
out. As an alternative method to univariate tests 
the concept of maximin efficiency robust tests 
(MERT) was introduced in order to obtain a 
single robust test statistic from a set of possible 
statistics (Gastwirth, 1966, 1970). The MERT 
idea is to maximize the minimum asymptotic 
efficiency over the possible tests. 
 Recently, MERTs were compared with 
the corresponding maximum tests (Freidlin et 
al., 1999, 2002, 2003b; Freidlin & Korn, 2002, 
Gastwirth & Freidlin, 2000, Neuhäuser & 

 
Table 1. Type I error rates (simulated for the adaptive test) and simulated powers of different 
permutation tests, the adaptive test and the corresponding maximum test (n = m = 10, 
α = 0.05, 10,000 simulation runs for each configuration) 
 

 
Distribution 

 
θ 

 
Gastwirth 

test 

 
Wilcoxon 

test 

 
Median 

test 

 
Adaptive 

test 

 
Maximum test 

 
Uniform on (0, 1) 

 
0 

0.4 

 
0.042 
0.880 

 
0.043 
0.751 

 
0.023 
0.365 

 
0.042 
0.758 

 
0.049 
0.854 

 
Standard normal 

 
0 

1.5 

 
0.042 
0.755 

 
0.043 
0.854 

 
0.023 
0.625 

 
0.044 
0.834 

 
0.049 
0.835 

 
Cauchy 

 
0 
3 

 
0.042 
0.264 

 
0.043 
0.683 

 
0.023 
0.711 

 
0.039 
0.684 

 
0.049 
0.742 
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Hothorn, 1999, Neuhäuser et al., 2004, Zheng et 
al., 2002). Such a comparison depends on the 
minimum correlation ρ* between two of the 
univariate tests. When this correlation is small 
the maximum test is often preferable to the 
MERT, in particular in case of ρ* ≤ 0.5. For ρ* 
≥ 0.7 there was, however, virtually no difference 
in their powers (Freidlin et al., 1999, 2002; 
Freidlin & Korn, 2002, Gastwirth & Freidlin, 
2000, Neuhäuser et al., 2004, Zheng et al., 
2002). Other linear combinations than the 
MERT are further alternatives to the maximum 
test, see e.g. Chi and Tsai (2001). 
 Instead to use the maximum test statistic 
one may use the minimum p-value (see e.g. 
Weichert & Hothorn, 2002). Such a procedure is 
essentially Tippett’s combination, although the 
latter was introduced for independent tests. 
However, other combination functions could be 
used as well, see Pesarin (2001) for an overview 
of nonparametric combination methodology 
which is outside the scope of this article. 
However, irrespective of the method used to 
combine the different tests, it is often difficult to 
select them. This is, of course, also the case for 
the classical adaptive test. On the one hand, 
statistics with low correlation may be suitable 
because they focus on different areas of the 
alternative hypothesis. On the other hand, the 
penalty for using more than one statistic may 
also depend on the correlation as the comparison 
maximum test versus MERT does. Hence, there 
seems to be no general principle to select the test 
statistics, but, in contrast to adaptive tests, a 
maximum test neither needs a selector statistic 
nor the specification of which test should be 
performed for which values of the selector. 
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