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STATISTICAL SOFTWARE APPLICATIONS & REVIEW 
Ordinal Regression Analysis: Fitting the Proportional Odds Model 

Using Stata, SAS and SPSS 
 

Xing Liu 
Eastern Connecticut State University 

 
 
Researchers have a variety of options when choosing statistical software packages that can perform 
ordinal logistic regression analyses. However, statistical software, such as Stata, SAS, and SPSS, may use 
different techniques to estimate the parameters. The purpose of this article is to (1) illustrate the use of 
Stata, SAS and SPSS to fit proportional odds models using educational data; and (2) compare the features 
and results for fitting the proportional odds model using Stata OLOGIT, SAS PROC LOGISTIC 
(ascending and descending), and SPSS PLUM. The assumption of the proportional odds was tested, and 
the results of the fitted models were interpreted. 
 
Key words: Proportional Odds Models, Ordinal logistic regression, Stata, SAS, SPSS, Comparison. 
 
 

Introduction 
The proportional odds (PO) model, also called 
cumulative odds model (Agresti, 1996, 2002; 
Armstrong & Sloan, 1989; Long, 1997, Long & 
Freese, 2006; McCullagh, 1980; McCullagh & 
Nelder, 1989; Powers & Xie, 2000; O’Connell, 
2006), is a commonly used model for the 
analysis of ordinal categorical data and comes 
from the class of generalized linear models. It is 
a generalization of a binary logistic regression 
model when the response variable has more than 
two ordinal categories. The proportional odds 
model is used to estimate the odds of being at or 
below a particular level of the response variable. 
For example, if there are j levels of ordinal 
outcomes, the model makes J-1 predictions, each 
estimating the cumulative probabilities at or 
below the jth level of the outcome variable. This 
model can estimate the odds of being at or 
beyond a particular level of the response 
variable as well, because below and beyond a  
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particular category are just two complementary 
directions. 

Researchers currently have a variety of 
options when choosing statistical software 
packages that can perform ordinal logistic 
regression models. For example, some general 
purpose statistical packages, such as Stata, SAS 
and SPSS, all provide the options of analyzing 
proportional odds models. However, these 
statistical packages may use different techniques 
to estimate the ordinal logistic models. Long and 
Freese (2006) noted that Stata estimates cut-
points in the ordinal logistic model while setting 
the intercept to be 0; other statistical software 
packages might estimate intercepts rather than 
cut-points. Agresti (2002) introduced both the 
proportional odds model and the latent variable 
model, and stated that parameterization in SAS 
(Proc Logistic) followed the formulation of the 
proportional odds model rather than the latent 
variable model. Hosmer and Lemeshow (2000) 
used a formulation which was consistent with 
Stata’s expression to define the ordinal 
regression model by negating the logit 
coefficients. 

Because statistical packages may 
estimate parameters in the ordinal regression 
model differently following different equations, 
the outputs they produce may not be the same, 
and thus they seem confusing to applied 
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statisticians and researchers. Researchers are 
more likely to make mistakes in interpreting the 
results if ignoring the differences in parameter 
estimations using different software packages.  

It is the aim of the article to clarify the 
misunderstanding and confusion when fitting 
ordinal regression models. To date, no study has 
been conducted to demonstrate fitting the 
proportional odds model using three general-
purpose statistical packages, comparing 
differences and identifying similarities among 
them. Thus, this article seeks to fill this gap by: 
(1) demonstrating the use of Stata, SAS and 
SPSS to fit the proportional odds model; and (2) 
comparing the features and results for fitting the 
proportional odds model using Stata OLOGIT, 
SAS PROC LOGISTIC (ascending and 
descending), and SPSS PLUM. Data from a 
survey instrument TPGP (Teachers’ Perceptions 
of Grading Practices) is used to demonstrate the 
PO analysis. 
 
Theoretical Framework 

In an ordinal logistic regression model, 
the outcome variable is ordered, and has more 
than two levels. For example, students’ SES is 
ordered from low to high; childrens’ proficiency 
in early reading is scored from level 0 to 5; and a 
response scale of a survey instrument is ordered 
from strongly disagree to strongly agree. One 
appealing way of creating the ordinal variable is 
via categorization of an underlying continuous 
variable (Hosmer & Lemeshow, 2000). 

In this article, the ordinal outcome 
variable is teachers’ teaching experience level, 
which is coded as 1, 2, or 3 (1 = low; 2 = 
medium; and 3 = high) and is categorized based 
on a continuous variable, teaching years. 
Teachers with less than five years of experience 
are categorized in the low teaching experience 
level; those with between 6 and 15 years are 
categorized in the medium level; and teachers 
with 15 years or more are categorized in the high 
level. The distribution of teaching years is 
highly positively skewed. The violation of the 
assumption of normality makes the use of 
Multiple Regression inappropriate. Therefore, 
the ordinal logistic regression is the most 
appropriate model for analyzing the ordinal 
outcome variable in this case. 
 

A Latent-Variable Model 
The ordinal logistic regression model 

can be expressed as a latent variable model 
(Agresti, 2002; Greene, 2003; Long, 1997, Long 
& Freese, 2006; Powers & Xie, 2000; 
Wooldridge & Jeffrey, 2001). Assuming a latent 
variable, Y* exists, Y* = xβ + ε, can be defined 
where x is a row vector (1* k) containing no 
constant, β is a column vector (k*1) of structural 
coefficients, and ε is random error with standard 
normal distribution: ε ~ N (0, 1). 

Let Y* be divided by some cut points 
(thresholds): α1, α2, α3… αj, and α1<α2<α3…< αj. 
Considering the observed teaching experience 
level is the ordinal outcome, y, ranging from 1 to 
3, where 1= low, 2 = medium and 3 = high, 
define: 
 

Y = 
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Therefore, the probability of a teacher at each 
experience level can be computed. For example, 
 

P(y = 1) = P (y* ≤α1)  
= P(xβ + ε ≤ α1) 

= F (α1 - xβ); 
 

P(y = 2) = P (α1 <y* ≤α2) 
= F (α2- xβ) - F (α1 - xβ); 

 
P(y = 3) = P (α2 < y* ≤∞) 

= 1 - F (α2 - xβ); 
 
The cumulative probabilities can also be 
computed using the form: 
 

P(Y ≤ j) = F (αj - xβ), where j = 1, 2,…J-1. (1) 
 
General Logistic Regression Model 

In a binary logistic regression model, the 
response variable has two levels, with 1 = 
success of the events, and 0 = failure of the 
events. The probability of success is predicted 
on a set of predictors. The logistic regression 
model can be expressed as: 
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ln(Y′) = logit [π(x)] 

= ln 
( )

( )






− xπ1

xπ
 

 
= α + β1X1 + β2X2 + … βpXp.           (2) 

 
In Stata, the ordinal logistic regression model is 
expressed in logit form as follows: 
 

ln(Yj′) = logit [π(x)] 
 

= ln 
( )

( )










− xπ1

xπ

j

j
 

 
= αj + (−β1X1 -β2X2 - … -βpXp),        (3) 

 
where πj(x) = π(Y ≤ j|x1,x2,…xp), which is the 
probability of being at or below category j, given 
a set of predictors. j = 1, 2, … J -1. αj are the cut 
points, and β1, β2 …βp are logit coefficients. This 
is the form of a Proportional Odds (PO) model 
because the odds ratio of any predictor is 
assumed to be constant across all categories. 
Similar to logistic regression, in the proportional 
odds model we work with the logit, or the 
natural log of the odds. To estimate the ln (odds) 
of being at or below the jth category, the PO 
model can be rewritten as: 
 

logit [π(Y ≤ j | x1,x2,…xp)] 
 

= ln 
( )
( ) 
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= αj + (−β1X1 -β2X2 - … -βpXp)          (4) 

 
Thus, this model predicts cumulative logits 
across J -1 response categories. By transforming 
the cumulative logits, we can obtain the 
estimated cumulative odds as well as the 
cumulative probabilities being at or below the jth 
category. 

SAS uses a different ordinal logit model 
for estimating the parameters from Stata. For 
SAS PROC LOGISTIC (the ascending option), 
the ordinal logit model has the following form: 
 

logit [π(Y ≤ j | x1, x2,…xp)] 

= ln 
( )
( ) 
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= αj + β1X1 +β2X2 + … +βpXp;          (5) 

 
Using SAS with the descending option, the 
ordinal logit model can be expressed as: 
 

logit [π(Y ≥ j | x1, x2,…xp)] 
 

= ln 
( )
( ) 
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= αj + β1X1 +β2X2 + … +βpXp,         (6) 

 
where in both equations αj are the intercepts, 
and β1, β2 …βp are logit coefficients. 

SPSS PLUM (Polytomous Universal 
Model) is an extension of the generalized linear 
model for ordinal response data. It can provide 
five types of link functions including logit, 
probit, complementary log-log, cauchit and 
negative log-log. Just as Stata, the ordinal logit 
model is also based on the latent continuous 
outcome variable for SPSS PLUM, it takes the 
same form as follows: 
 

logit [π(Y ≤ j | x1, x2,…xp)] 
 

= ln 
( )
( ) 
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,... x,x|jYπ
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= αj + (−β1X1 -β2X2 - … -βpXp),        (7) 

 
where αj’s are the thresholds, and β1, β2 …βp are 
logit coefficients; j = 1, 2…J-1. 

Compared to both Stata and SPSS, SAS 
(ascending and descending) does not negate the 
signs before the logit coefficients in the 
equations, because SAS Logistic procedure 
(Proc Logistic) is used to model both the 
dichotomous and ordinal categorical dependent 
variables, and the signs before the coefficients in 
the ordinal logit model are kept consistent with 
those in the binary logistic regression model. 
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Although the signs in the equations are positive, 
SAS internally changes the signs of the 
estimated intercepts and coefficients according 
to different ordering of the dependent variable 
(with the ascending or descending option). 
 

Methodology 
Sample 

The data were collected from teachers at 
three middle schools and a teacher’s training 
school in Taizhou City, Jiangsu Province, China, 
using a survey instrument named Teachers’ 
Perceptions of Grading Practices (TPGP) (Liu, 
2004; Liu, O’Connell & McCoach, 2006). A 
total of 147 teachers responded to the survey 
with the response rate of 73.5%. The outcome 
variable of interest is teachers’ teaching 
experiences, which is an ordinal categorical 
variable with 1 = low, 2 = medium and 3 = high. 

Explanatory variables included gender 
(female = 1; male = 2) and a set of scale scores 
from the TPGP survey instrument The 
instrument included five scales measuring the 
importance of grading, the usefulness of 
grading, student effort influencing grading,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

student ability influencing grading, and teachers’ 
grading habits. Composite scale scores were 
created by taking a mean of all the items for 
each scale. Table 1 displays the descriptive 
statistics for these independent variables. 

The proportional odds model was first 
fitted with a single explanatory variable using 
Stata (V. 9.2) OLOGIT. Afterwards, the full-
model was fitted with all six explanatory 
variables. The assumption of proportional odds 
for both models was examined using the Brant 
test. Additional Stata subcommands 
demonstrated here included FITSTAT and 
LISTCEOF of Stata SPost (Long & Freese, 
2006) used for the analysis of post-estimations 
for the models. The results of fit statistics, cut 
points, logit coefficients and cumulative odds of 
the independent variables for both models were 
interpreted and discussed. The same model was 
fit using SAS (V. 9.1.3) (ascending and 
descending), and SPSS (V. 13.0), and the 
similarities and differences of the results using 
all three programs were compared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Descriptive Statistics for All Variables, n = 147 

Variable 

Teaching Experience Level 

1 
n = 70 
47.6% 

2 
n = 45 
30.6% 

3 
n = 32 
21.8% 

Total 
n = 147 
100% 

% Gender 
(Female) 

74.3% 66.7% 50% 66.7% 

Importance 3.33 (.60) 3.31 (.63) 3.55 (.79) 3.37 (.66) 

Usefulness 3.71 (.61) 3.38 (.82) 3.70 (.66) 3.60 (.70) 

Effort 3.77 (.50) 3.79 (.46) 3.80 (.68) 3.78 (.53) 

Ability 3.74 (.40) 3.75 (.54) 3.87 (.51) 3.77 (.47) 

Habits 3.38 (.66) 3.57 (.66) 3.49 (.60) 3.46 (.65) 
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Results 
Proportional Odds Model with a Single 
Explanatory Variable 

OLOGIT is the Stata program 
estimating ordinal logistic regression models of 
ordinal outcome variable on the independent 
variables. In this example, the outcome variable, 
teaching was followed immediately by the 
independent variable, gender. Figure 1 displays 
the Stata output for the one-predictor 
proportional odds model. 

The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 5.29, p = 
.0215, indicated that the logit regression 
coefficient of the predictor, gender was 
statistically different from 0, so the full model 
with one predictor provided a better fit than the 
null  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

model with no independent variables in 
predicting cumulative probability for teaching 
experience level. The likelihood ratio R2

L = 
.0172, which is the Pseudo R2, and is also called 
McFadden’s R2, suggested that the relationship 
between the response variable, teaching 
experience, and the predictor, gender was small. 
More measures of fit were obtained using SPost 
subcommand fitstat (Long & Freese, 2006). In 
addition to the deviance statistic and 
McFadden’s R2, several other types of R2 

statistics were reported (Figure2). The 
information measures, AIC and BIC, were used 
to compare either nested or non-nested models. 
Smaller AIC and BIC statistics indicate the 
better fitting model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Stata Proportional Odds Model Example: Gender 
. ologit teaching gender 
 
Iteration 0:   log likelihood = -153.99556 
Iteration 1:   log likelihood = -151.35669 
Iteration 2:   log likelihood = -151.35194 
 
Ordered logistic regression                       Number of obs   =        147 
                                                  LR chi2(1)      =       5.29 
                                                  Prob > chi2     =     0.0215 
Log likelihood = -151.35194                       Pseudo R2       =     0.0172 
 
------------------------------------------------------------------------------ 
    teaching |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      gender |   .7587563   .3310069     2.29   0.022     .1099947    1.407518 
-------------+---------------------------------------------------------------- 
       /cut1 |   .9043487   .4678928                     -.0127044    1.821402 
       /cut2 |   2.320024   .5037074                      1.332775    3.307272 
------------------------------------------------------------------------------ 

Figure 2: Measures of Fit Statistics 
. fitstat 
 
Measures of Fit for ologit of teaching 
 
Log-Lik Intercept Only:       -153.996   Log-Lik Full Model:           -151.352 
D(144):                        302.704   LR(1):                           5.287 
                                         Prob > LR:                       0.021 
McFadden's R2:                   0.017   McFadden's Adj R2:              -0.002 
ML (Cox-Snell) R2:               0.035   Cragg-Uhler(Nagelkerke) R2:      0.040 
McKelvey & Zavoina's R2:         0.038                               
Variance of y*:                  3.419   Variance of error:               3.290 
Count R2:                        0.476   Adj Count R2:                    0.000 
AIC:                             2.100   AIC*n:                         308.704 
BIC:                          -415.918   BIC':                           -0.297 
BIC used by Stata:             317.675   AIC used by Stata:             308.704 
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The estimated logit regression 
coefficient, β = .7588. z = 2.29, p = .022, 
indicating that gender had a significant effect on 
teacher’s teaching experience level. Substituting 
the value of the coefficient into the formula (4), 
logit [π(Y ≤ j | gender)] = αj + (−β1X1), we 
calculated logit [π(Y ≤ j | gender)] = αj - .7588 
(gender). OR = e(-.7588) = .468, indicating that 
male teachers were .468 times the odds for 
female teachers of being at or below at any 
category, i.e., female teachers were more likely 
than male teachers to be at or below a particular 
category, because males were coded as 2 and 
girls as 1. 

The results table reports two cut-points: 
_cut1 and_cut2. These are the estimated cut-
points on the latent variable, Y*, used to 
differentiate the adjacent levels of categories of 
teaching experiences. When the response 
category is 1, the latent variable falls at or below 
the first cut point, α1. When the response 
category is 2, the latent variable falls between 
the first cut point α1 and the second cut point α2, 
and when the response category reaches 3 if the 
latent variable is at or beyond the second cut 
point α2. 

To estimate the cumulative odds being 
at or below a certain category, j for gender, the 
logit form of proportional odds model was used, 
logit [π(Y ≤ j | gender)] = αj - .7588 (gender). 
For example, when Y ≤ 1, α1, .9043 is the first 
cut point for the model. Substituting it into the 
formula (4) results in logit [π(Y ≤ j | gender)] = 
.9043 - .7588 (gender). For girls (x = 1), logit  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[π(Y ≤ 1 | gender)] = .1455. By exponentiating 
the logit, the odds for female teachers of being at 
or below experience category 1 is calculated, 
e.1455= 1.157. For male teachers (x = 2), logit 
[π(Y ≤ 1 | gender)] = .9043 - .7588*2 = -.6133, 
so the odds for male teachers being at or below 
teaching experience category 1, e-.6133=.542. 
Odds ratio of male teachers versus female 
teachers = .542/1.157 = .468. Transforming the 
cumulative odds, results in the cumulative 
probabilities by using p = odds/(1+odds). 

The Stata program brant was used to test 
the proportional odds assumption. Brant (1990) 
proposed a test of proportional odds assumption 
for the ordinal logistic model by examining the 
separate fits to the underlying binary logistic 
models. A non-significant omnibus test indicates 
that the proportional odds assumption is not 
violated. It also provides tests for each 
individual independent variable. When only one 
independent variable exists in the model, the 
results of the omnibus test and individual test are 
the same. The Brant test of parallel regression 
assumption yields χ2

1 = .40 (p > .527), indicating 
that the proportional odds assumptions for the 
full-model was upheld. This suggests that the 
effect of gender, the explanatory variable, was 
constant across separate binary models fit to the 
cumulative cut points. Figure 3 also shows the 
estimated coefficient from j-1 binary logistic 
regression models. Each logistic regression 
model estimates the probability of being at or 
beyond teaching experience level j. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Brant Test of Parallel Regression (Proportional Odds) Assumption 
. brant, detail 
Estimated coefficients from j-1 binary regressions 
 
               y>1         y>2 
gender   .66621777   .91021169 
 _cons  -.78882009  -2.5443422 
 
Brant Test of Parallel Regression Assumption 
 
    Variable |      chi2   p>chi2    df 
-------------+-------------------------- 
         All |      0.40    0.527     1 
-------------+-------------------------- 
      gender |      0.40    0.527     1 
---------------------------------------- 
 
A significant test statistic provides evidence that the parallel regression 
assumption has been violated. 
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The Proportional Odds Model can also estimate 
the ln(odds) of being at or beyond category j, 
given a set of predictors. Again, these ln(odds) 
can be transformed into the cumulative odds, 
and cumulative probabilities as well. For 
example, the cumulative probability of a 
teacher’s teaching experience can be estimated 
at or beyond category 3, P(Y ≥ 3), which is the 
complementary probability when Y ≤ 2, at or 
beyond category 2, P(Y ≥ 2), and P(Y ≥ 1), 
which equals 1.  

In Stata, when estimating the odds of 
being beyond category j, or at or beyond j+1, the 
sign of the cut points needs to be reversed and 
their magnitude remain unchanged because the 
cut points were estimated from the right to the 
left of the latent variable, Y*, that is, from the 
direction when Y = 3 approaches Y = 1. 
Therefore, two cut points from right to left turn 
to -2.32 and - .904. When the predictor is 
dichotomous, a positive sign of the logit 
coefficient indicates that it is more likely for the 
group (x = 1) to be at or beyond a particular 
category than for the relative group (x = 0). 
When the predictor is continuous, a positive 
coefficient indicates that when the value of the 
predictor variable increases, the probability of 
being at or beyond a particular category 
increases. 

Using Stata syntax listcoef, the odds of 
being at or beyond a particular category at 2.136 
can be obtained, which was constant across all  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cumulative categories. It also indicated that male 
teachers were 2.136 times the odds for female 
teachers of being at or beyond any category, i.e., 
male teachers were more likely than female 
teachers to be at or beyond a particular category. 
Figure 4 displays the results of Stata listcoef. 
Adding option percent after listcoef, the result of 
percentage change in odds of being at or beyond 
a particular category can be obtained when the 
predictor, gender, goes from males (x = 2) to 
females (x = 1). 
 
Proportional Odds Model with Six Explanatory 
Variables 

Next, a proportional odds model was fit 
with eight explanatory variables, which is 
referred to as the Full Model. Figure 5 displays 
the results for the fitting of the full model with 
six explanatory variables. 

Before interpreting the results of the full 
model, the assumption of proportional odds was 
first examined. The Stata brant command 
provides the results of the Brant test of parallel 
regression (Proportional Odds) assumption for 
the full model with six predictors and tests for 
each independent variable. It also provides the 
estimated coefficient from j-1 binary logistic 
regression models results of two separate binary 
logistic regression models. The data are 
dichotomized according to the cumulative 
probability   pattern   so    that   each    logistic  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Results of Stata listcoef 
. listcoef, help 
 
ologit (N=147): Factor Change in Odds  
 
  Odds of: >m vs <=m 
 
---------------------------------------------------------------------- 
    teaching |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
      gender |   0.75876    2.292   0.022   2.1356   1.4318     0.4730 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in odds for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 
   SDofX = standard deviation of X 
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regression model estimates the probability of 
being at or beyond teaching experience level j. 
For the omnibus Brant test, χ2

6 = 8.10, p = .230, 
indicating that the proportional odds 
assumptions for the full-model was upheld. 
Examining the Brant tests for each individual 
independent variable indicated that the Brant test 
of the assumption of parallel regression 
(proportional odds) were upheld for gender, 
importance, effort, ability and habits. For 
usefulness, the Brant test, χ2

1 = 4.03, p = .045, 
which is very close to .05, therefore, it may also 
be concluded that the PO assumption for this 
variable is nearly upheld. Checking the 
estimated coefficients for each independent 
variable across two binary logistic regression 
models shows that the logit coefficients for all  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the variables were similar across two binary 
logistic models, supporting the results of the 
Brant test of proportional odds assumption. 

The log likelihood ratio Chi-Square test, 
LR χ2

(6) = 13.738, p = .033, indicating that the 
full model with six predictor provided a better fit 
than the null model with no independent 
variables in predicting cumulative probability 
for teaching experience. The likelihood ratio R2

L 
= .045, much larger than that of the gender-only 
model, but still small, suggesting that the 
relationship between the response variable, 
teaching experience, and six predictors, was still 
small. Compared with the gender-only model, 
all R2statistics of the full-model shows 
improvement (see Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Brant Test of Parallel Regression (Proportional Odds) Assumption 
. brant, detail 
 
Estimated coefficients from j-1 binary regressions 
 
                   y>1         y>2 
    gender   .74115294   .86086025 
importance   .64416122   .46874536 
usefulness  -.94566294  -.19259753 
    effort   .09533898  -.03621639 
   ability   .26862373   .68349765 
    habits   .48959286  -.02795948 
     _cons  -2.7097459  -5.7522624 
 
Brant Test of Parallel Regression Assumption 
 
    Variable |      chi2   p>chi2    df 
-------------+-------------------------- 
         All |      8.10    0.231     6 
-------------+-------------------------- 
      gender |      0.08    0.772     1 
  importance |      0.24    0.622     1 
  usefulness |      4.03    0.045     1 
      effort |      0.10    0.746     1 
     ability |      0.66    0.418     1 
      habits |      2.15    0.142     1 
---------------------------------------- 
 
A significant test statistic provides evidence that the parallel 
regression assumption has been violated. 
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The Stata listcoef command (Figure 8) 
produced more detailed results of logit 
coefficients and cumulative odds (exponentiated 
coefficients). For the proportional odds model, 
interpretation of cumulative odds is independent 
on the ancillary parameters (cut points) because 
they are constant across all levels of the 
response variable. 

The effects of the independent variables 
can be interpreted in several ways, including 
how they contribute to the odds and their 
probabilities of being at or beyond a particular 
category. They can also be interpreted as how 
these variables contribute to the odds of being at 
or below a particular category, if the sign is 
reversed before the estimated logit coefficients 
and corresponding cumulative odds are 
computed. In terms of odds ratios, male teachers 
were 2.241 times the odds for female teachers to 
be at or beyond a particular category 
(OR=2.241), after controlling the effects of other 
predictors in the model. The usefulness of 
grading with a corresponding OR significantly 
less than 1.0 has significant negative effects in 
the model. These cumulative odds are associated 
with a teacher being in lower teaching 
experience categories rather than in higher 
categories. For a one unit increase in the 
usefulness of grading, the odds ratio of being in 
higher teaching experience categories versus 
lower categories was .53 times lower, after 
controlling for the effects of other variables. 
However, variables whose corresponding ORs 
are significantly greater than 1.0 have significant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
positive effects on the response variable in the 
model. For example, the importance of grading 
(OR=1.778) had a positive effect on teachers 
being in higher teaching experience categories. 
For a one unit increase in the importance of 
grading, the odds ratio of being in higher 
teaching experience categories versus lower 
categories was 1.778 times greater, given the 
effects of other predictors are held constant. 
Variables such as student ability and teacher’s 
grading habits, whose corresponding ORs were 
greater than 1.0, but were not statistically 
significant, had positive effects on the response 
variable, but these effects may be due to chance 
and need further investigation. Independent 
variables with ORs close to 1.0 have no effect 
on the response variable. For example, student 
effort influencing grading was not associated 
with teaching experience in this model 
(OR=1.0266, p=.946). 
 
Comparison of Results of a Single-Variable PO 
Model Using Stata, SAS, and SPSS 

Table 2 shows a comparison of the 
results for Stata OLOGIT with results from SAS 
PROC LOGISTIC with the ascending and 
descending options, and SPSS PLUM. The 
similarities and differences between these results 
should be noted, otherwise, it could be 
misleading to interpret the results in the same 
way, disregarding their different 
parameterizations. In estimating proportional 
odds models, Stata sets the intercept to 0, and 
estimates the cut points, while SAS ascending  

Figure 7: Measure of Fit Statistics for Full-Model 
. fitstat 
 
Measures of Fit for ologit of teaching 
 
Log-Lik Intercept Only:       -153.996   Log-Lik Full Model:           -147.127 
D(139):                        294.253   LR(6):                          13.738 
                                         Prob > LR:                       0.033 
McFadden's R2:                   0.045   McFadden's Adj R2:              -0.007 
ML (Cox-Snell) R2:               0.089   Cragg-Uhler(Nagelkerke) R2:      0.102 
McKelvey & Zavoina's R2:         0.098                               
Variance of y*:                  3.646   Variance of error:               3.290 
Count R2:                        0.429   Adj Count R2:                   -0.091 
AIC:                             2.111   AIC*n:                         310.253 
BIC:                          -399.417   BIC':                           16.205 
BIC used by Stata:             334.177   AIC used by Stata:             310.253 
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estimates the intercepts and set the cut points to 
0. Comparing Stata with SAS (ascending), the 
different choice of parameterization does not 
influence the magnitude of cut points (or 
intercepts) and coefficients. However, it does 
determine the sign before these estimates. 

When estimating the odds of being at or 
below a response category, the estimates for the 
cut points using Stata are the same as the 
intercepts using SAS ascending in both sign and 
magnitude. The first cut point, α1 in Stata 
estimation is the same as the first intercept α1 in 
SAS ascending estimation, because there is no 
first intercept α1 in Stata estimation. Using Stata 
and SAS (the ascending option), the estimated 
logit coefficients are the same in magnitude but 
are opposite in sign. Using Stata, the estimated 
logit coefficient β = .759. Substituting it into the 
logit form (4), we get logit [π(Y ≤ j | gender)] = 
αj  −(.759)*(gender) = αj -.759*(gender). OR = 
e(-.759) = .468, indicating that male teachers were 
.468 times the odds for female teachers of being 
at or below at any category, that is, female 
teachers were more likely than male teachers to 
be at or below a particular teaching experience 
level. Using SAS ascending, the estimated logit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
coefficient, β = -.759. Substituting it into its 
corresponding logit form (5) results in the same 
equation: logit [π(Y ≤ j | gender)] = αj -
.759*(gender). Therefore, the same results of 
estimated cumulative odds and cumulative 
probability were obtained using Stata and SAS 
ascending. 

Comparing the results of the 
proportional odds model using Stata and SAS 
with the descending option, it was found that 
estimated cut points for Stata and the estimated 
intercepts for SAS descending are the same in 
magnitude but are opposite in sign. Using Stat 
and SAS descending, the estimated logit 
coefficients are the same in both magnitude and 
sign. To estimate the odds of being at or beyond 
a particular teaching experience level using 
Stata, it is only necessary to reverse the sign of 
the estimated cut points. The estimated logit 
coefficient is β = .759. Exponentiating this 
results in e (.759) =2.136, indicating male teachers 
are 2.136 times greater than female teachers to 
be at or beyond a particular category. In other 
words, female teachers are less likely than male 
teachers to be at or beyond a certain category. 
 

Figure 8: Results of Logit Coefficient, Cumulative Odds, and Percentage Change in Odds 
. listcoef, help 
 
ologit (N=147): Factor Change in Odds  
 
  Odds of: >m vs <=m 
 
---------------------------------------------------------------------- 
    teaching |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
      gender |   0.80695    2.318   0.020   2.2411   1.4648     0.4730 
  importance |   0.57547    1.897   0.058   1.7780   1.4601     0.6578 
  usefulness |  -0.63454   -2.322   0.020   0.5302   0.6402     0.7029 
      effort |   0.02625    0.068   0.946   1.0266   1.0140     0.5283 
     ability |   0.34300    0.825   0.409   1.4092   1.1752     0.4707 
      habits |   0.31787    1.088   0.277   1.3742   1.2282     0.6466 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in odds for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 
   SDofX = standard deviation of X 
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Using Stata and SPSS, when estimating 
the effects of predictors on the log odds of being 
at or below a certain category of the outcome 
variable, the sign before the coefficients are both 
minus rather than plus. In other words, the 
effects of predictors are subtracted from the cut 
points or thresholds. SPSS PLUM labels the 
estimated logits for the predicator variables 
LOCATION. When the predicator variable is 
continuous, the estimated logit coefficients are 
the same as those estimated by Stata OLOGIT in 
both magnitude and sign. However, SPSS 
PLUM is different from Stata OLOGIT in this 
aspect: when the predictor variable is 
categorical, for example gender, with 1 = female 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 2 = male, the estimated coefficient is only 
displayed for the category with smaller value, 
i.e., when gender = 1. The category with larger 
value, gender = 2, is the reference category, and 
has an estimate of 0. If gender is coded with 1 = 
female and 0 = male, the estimated coefficient is 
displayed for the case when gender = 0, and the 
estimated coefficient for female (gender = 1) is 
0. Using SPSS PLUM, the estimated logit 
coefficient, β = -.759 for the case when female = 
1, and β = 0 for the case when male = 2. 
Substituting it into the logit form (7) results in 
logit [π(Y ≤ j | gender)] = αj  −(−.759)*(gender) 
= αj +.759*(gender). By exponentiating, OR = e 
(.759) = 2.136, indicating that female teachers are 

Table 2: Results of Proportional Odds Model with a Single Variable Using Stata, SAS 
(Ascending and descending) and SPSS: A Comparison 

Model 
Estimates 

STATA 
SAS 

(Ascending) 
SAS 

(Descending) 
SPSS 

P(Y ≤ j) P(Y ≤ j) P(Y ≥ j) P(Y ≤ j) 

Cutpoints (Stata)/ 
Intercept (SAS)/ 

Threshold (SPSS) 

_cut1(α1) = .904 α1 = .904 α3 = -2.32 α1 = -.613 

_cut2(α2) = 2.32 α2 = 2.32 α2 = -.904 α2  = .803 

Gender 
(Male = 2) 

.759 -.759 .759 0 

Gender 
(Female = 1) 

   -.759 

LR R2 .017 .017 .017 .017 

Brant Test 
(Omnibus Test)a 

χ2
1 = .40 (p > 

.527) 
   

Score Testb  χ2
1 = .4026 

(p = .5258) 
χ2

1 = .4026 
(p = .5258) 

χ2
1 = .392 

(p > .530) 

Model Fit 
LR χ2

(1) = 5.29,  
p = .0215 

LR χ2
(1) = 5.29,  

p = .0215 
LR χ2

(1) = 5.29, 
p = .0215 

LR χ2
(1) = 5.287, 

p = .021 

a. Brant test for proportional odds assumption. 
b. Score test for proportional odds assumption. 
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2.136 times the odds for male teachers of being 
at or below at a particular teaching experience 
level. This result is equivalent to that of Stata. 

The parameter estimation for the 
categorical predictor in SPSS PLUM makes the 
threshold values in the ordinal logit model 
different from those estimated by Stata 
OLOGIT. These differences can be observed in 
the results of the proportional odds model using 
Stata, SAS (ascending and descending), and 
SPSS (Table 2). In SPSS PLUM, the threshold 
estimates are for the case when gender = 2 (male 
teachers), while in Stata and SAS, the cut points 
or intercepts are for case when gender = 1 
(female students). 

Equivalent results of estimated logit can 
be obtained using different estimates of 
cutpoints (thresholds) and logit coefficients 
fitted by Stata and SPSS. For example, using 
SPSS, the predicted logit for male teachers 
(gender = 2) of being at or below teaching 
experience level 1, logit [π(Y ≤ 1 | gender)] = 
α1  − 0*(gender) = -.613 +0*(2) = -.613; the 
predicted logit for female teachers (gender = 1) 
of being at or below teaching experience level 1, 
logit [π(Y ≤ 1 | gender)] = α1  −(−.759)*(gender) 
= -.613 + .759*1 = .146. Using Stata, the 
predicted logit for male teachers (gender = 2) of 
being at or below teaching experience level 1, 
logit [π(Y ≤ 1| gender)] = α1  −(.759)*(gender) = 
.904 -.759*2 = -.614; the predicted logit for 
female teachers (gender =1) of being at or below 
teaching experience level 1, logit [π(Y ≤ 1 | 
gender)] = α1  −(.759)*(gender) = .904 - .759*1 
= .145. 

To test the proportional odds 
assumption, Stata uses the Brant test of parallel 
regression assumption with the result χ2

1 = .40 p 
> .527; SAS uses ascending and descending 
score test and has the same results χ2

1 = .4026, p 
= .5258; SPSS uses a test of parallel lines with 
the result χ2

1 = .392, p > .530. All tests produce 
similar results in that the proportional odds 
model assumption is upheld. Across the models, 
the omnibus likelihood ratio tests produce the 
same results, indicating the proportional odds 
model with one variable (gender) has better fit 
than the null model. Features of the ordinal 
logistic regression analysis using Stata, SAS and 
SPSS are shown and compared in Table 3. 

Conclusion 
In this article, the use of proportional odds 
models was illustrated to predict teachers’ 
teaching experience level from a set of measures 
of teachers’ perceptions of grading practices. A 
single independent variable model and a full-
model with six independent variables were fitted 
and compared. The assumptions of proportional 
odds for both models were examined. It was 
found that the assumption of proportional odds 
for both the single-variable model and the full-
model was upheld. 

Results from the proportional odds 
model revealed that the usefulness of grading 
had a negative effect on the prediction of 
teaching experience level (OR = .53), while the 
importance of grading practices had a positive 
effect on the experience level (OR = 1.78), after 
controlling for the effects of other variables. 
Although student effort influencing teachers’ 
grading practices (OR = 1.41) and teachers’ 
grading habits (OR = 1.37) had positive effects 
on teaching experience level, these effects were 
not found to be significant. Compared to male 
teachers, female teachers were more likely to be 
at or below a particular category, or in other 
words, males were more likely to be at or 
beyond an experience level. Student effort 
influencing grading was not associated with 
teachers’ teaching experience level in the model. 

These findings suggest that teachers 
with longer teaching experience tended to feel 
the grading practices are more important than 
the teachers with fewer years of teaching. 
However, teachers with longer teaching 
experiences tended to doubt the usefulness of 
grading in their teaching; this may be due in part 
to their requirement of conducting test-oriented 
teaching in China. In addition, the gender 
difference suggests that female teachers were 
more easily categorized as inexperienced 
teachers; this may be due to greater numbers of 
female students receiving the opportunities of 
higher education in recent years and their 
choosing teaching as their profession. The 
frequencies of new female teachers are currently 
greater than those of new male teachers in 
China. 

Comparing the results using Stata and 
SAS, it was found that both packages produced 
the same or similar results in model fit statistics,  
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and the test of proportional odds assumption. 
The estimated coefficients and cut points 
(thresholds) were the same in magnitude but 
may be reversed in sign. Comparing the results 
using Stata and SPSS, it was found that although 
the ordinal logit models are based on latent 
continuous response variables for both packages, 
SPSS PLUM estimated the logit coefficient for 
the category with smaller value when the 
predictor variable was categorical, and thus the 
estimated thresholds were different from those 
estimated by Stata. Researchers should 
understand the differences of parameterization 
of ordinal logistic models using Stata and other 
statistical packages. Researchers should pay 
attention to the sign before the estimated logit 
coefficients and the cut points in the model, and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
exercise caution in interpreting the results.  

In educational research, ordinal 
categorical data is frequently used and 
researchers need to understand and be familiar 
with the ordinal logistic regression models 
dealing with the internally ordinal outcome 
variables. In some situations, Ordinary Least 
Squares (OLS) techniques may be used for 
preliminary analysis of such data by treating the 
ordinal scale variable as continuous. However, 
ignoring the discrete ordinal nature of the 
variable would cause the analysis lose some 
useful information and could lead to misleading 
results. Therefore, it is crucial for researchers to 
use the most appropriate models to analyze 
ordinal categorical dependent variables. In 
addition, the role of any statistical software 

Table 3: Feature Comparisons of the Ordinal Logistic Regression Analysis Using Stata, SAS and SPSS 

 STATA SAS SPSS 

Model Specification 

Cutpoints/Thresholds    

Intercept    

Test Hypotheses of Logit Coefficients    

Maximum Likelihood Estimates 

Odds Ratio    

z-statistic or Wald Test for Parameter Estimate    

Chi-square Statistic for Parameter Estimate    

Confidence Interval for Parameter Estimate    

Fit Statistics 

Loglikelihood    

Goodness-of-Fit Test    

Pseudo R-Square    

Test of PO Assumption 

Omnibus Test of Assumption of Proportional Odds    

Test of Assumption of Proportional Odds for Individual 
Variables 

   

Association of Predicted Probabilities  
and Observed Responses 
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package is a tool for researchers. The choice of 
software is the preference of researchers; it is 
therefore not the purpose of the study to suggest 
which one is the best for ordinal logistic 
regression analysis. This demonstration clarifies 
some of the issues that researchers must consider 
in using different statistical packages when 
analyzing ordinal data. 
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