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Combining Quantum Mechanical Calculations And A χ2 Fit In A Potential Energy 
Function For The CO2 + O+ Reaction 

 
 
 

Ellen F. Sawilowsky 
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In order to compute a highly accurate statistical rate constant for the CO2 + O+ reaction, it is necessary to first 
calculate the potential energy of the system at many different geometric configurations. Quantum mechanical 
calculations are very time-consuming, making it difficult to obtain a sufficient number to allow for accurate 
interpolation. The number of quantum mechanical calculations required can be significantly reduced by using 
known relations in classical physics to calculate energy for configurations where the oxygen is relatively far 
from the CO2. A chi-squared fit to quantum mechanical points is obtained for these configurations, and the 
resulting parameters are used to generate an equation for the potential energy. This equation, combined with 
an interpolated set of quantum mechanical points to give the potential energy for configurations where the 
molecules are closer together, allows all configurations to be calculated accurately and efficiently. 
 
Key words: Potential energy surface, χ2 fit 
 

 
Introduction 

 
The reaction of carbon dioxide with the O+ oxygen 
ion is of interest because experimental rate 
measurements show that at low energies the rate is 
constant at the expected value, but at high energies 
the rate steadily decreases to values below the 
expected rate (Viggiano, et al.,1992). RRKM rate 
calculations were done for the purpose of 
explaining this experimentally observed decrease 
(Forst, 1973).  

In order to calculate the rate of reaction 
using statistical rate theories such as RRKM 
theory, the potential energy of the reacting 
molecules must be known at any geometric 
configuration that might be found near the 
transition state. This refers to the small portion of 
the potential surface that is near the maximum 
point on the minimum-energy path.  
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The accuracy of a rate calculation is directly 
related to the accuracy of the potential surface 
employed, and a good potential is needed if the 
rate calculation is to be highly accurate. Because 
calculating the potential energy at any one 
configuration involves time-consuming quantum 
mechanical calculations, constructing the potential 
surface with energies for all probable 
configurations near the transition state using 
quantum mechanical calculations becomes an 
impossible task. Instead, it is common to do 
calculations at judiciously chosen configurations 
and use interpolation to obtain good 
approximations for the energies of configurations 
for all other geometries. 

The potential is split into long and short-
range portions in order to further reduce the 
number of quantum mechanical calculations. Ab 
initio quantum mechanical calculations were done 
for the short-range portion only. At separation 
distances of 6.9 Å or greater, the long-range 
portion of the potential is invoked. It consists of a 
fit to the long range ab initio points with a 
functional form, which is a parameterized 
variation of the ion-induced dipole plus 
quadrupole potential:  
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q Q [(3cos ) 1]V
2r 2 r
α θ −

= − +           (1) 

 
where r is the distance between the ion and the 
carbon in the CO2, θ is the angle formed by the 
CO2 axis and the line connecting the ion and the 
carbon atom in the CO2, and Q is the quadrupole 
moment. 
 

Methodology 
 
Quantum Mechanical Calculations  

The short-range portion of the potential is 
calculated with the Gaussian 86 suite of programs 
(Frisch, et al., 1984). MP2 calculations are done 
using a 6-311++G** basis set. The r and ϑ values 
shown in Figure 1 below are varied appropriately. 
At separation distances (r’s in Fig. 1) of 1.9 to 6.9 
Å, the short-range portion of the potential is a grid 
of points with spacings every 15° and 0.4 Å 
connected by a spline fit. Extra data points were 
added at r = 2.3 Å and 2.1 Å and θ = 90°, 105°, 
120°, and 135° and at r = 1.9 Å and θ = 90°. The 
potential energies between the grid points were 
obtained by means of a cubic spline interpolation 
(Press, et. al, 1992). These energies are given in 
Table 1. 

 
                       O+    
                            r 
 
                          θ 
            O===C===O 
 
Fig. 1. Parameters used to describe potential 
surface 
 
 
Long Range Potential 

Because quantum chemistry calculations 
are time-consuming, it is generally more efficient 
to use classical physics to calculate the potential 
whenever accuracy allows it. Classical physics 
gives long-range potential energy terms, which are 
exact at large separation distances and provide a 
good analytic form for the long range potential as 
long as the separation distance is large.  

The two potentials which need to be 
evaluated are the potential which the O+ ion 
induces in the CO2 and that which is produced by 

the CO2’s charge distribution. The sum of these 
two potentials provides the analytic form which 
contains parameters fit to ab initio data by 
minimizing the χ2 function: 

 
Table 1. MP2/6-311++G** Energies (cm-1) 

 
 90° 105° 120° 135° 150° 165° 180° 

1.9 Å 3295 -  -  - - - - 

2.1 Å 1659 471 492 11363  - - - 

2.3 Å 1023 -463 -2744 354  - - - 

2.5 Å 
 

776 -438 -3224 -4121 2833 19351 30093 

2.9 Å 
 

627 -89 -2087 -4550 -5457 -3461 -1698 

3.3 Å 
 

565 115 -1163 -2981 -4644 -5363 -5391 

3.7 Å 
 

496 194 -663 -1899 -3710 -4048 -4332 

4.1 Å 
 

421 208 -388 -1251 -2156 -2825 -3067 

4.5 Å 
 

349 195 -236 -856 -1511 -2005 -2187 

4.9 Å 
 

286 172 -148 -609 -1095 -1465 -1604 

5.3 Å 
 

236 150 -94 -447 -818 -1101 -1208 

5.7 Å 
 

199 131 -60 -335 -625 -846 -929 

6.1 Å 
 

170 115 -38 -258 -487 -662 -727 

6.5 Å 
 

147 102 -24 -203 -387 -527 -579 

6.9 Å 
 

128 90 -19 -162 -313 -427 -469 

 
 
 

2

fit2 abinitio

n abinitio

V V
V
−

χ =∑            (2) 

 
where n is the number of points used for the fit, 
Vfit is the value of the fitted potential at each point, 
and the Vab initio are the ab initio data points used in 
the fitting process (Bevington & Robinson, 1992). 
The parameters, which are fit to the ab initio 
points, are the isotropic polarizabilities and the 
quadrupole moments of CO2. The fit uses the ab 
initio values obtained from Hartree-Fock 
calculations to begin the parameter search (Levine, 
1991). This long-range potential is used to 
describe the CO2 + O+ system at separation 
distances larger than 6.9 Å. 
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The Ion-Induced Dipole Term of the Long Range 
Potential 
 The ion-induced dipole potential,  

         V r
q

r
( ) = −

2

42
α

               (3)        

where q is the charge on the ion, α is the 
polarizability of the neutral, and r is the distance 
between the ion and the center of mass of the 
neutral, is the potential which the O+ induces in 
the CO2 (Gilbert & Smith, 1990) The 
polarizability may be expressed as a second order 
perturbation  correction to the  dipole moment 

(Levine, 1991) in a Taylor series expansion of the 
classical energy of a molecule in the presence of 
an electric field (Flyglare, 1978). 
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where W is the classical potential energy due to 
the electric field, E, and α and β are the indices for 

the coordinates.  
∂
∂ α α

W
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 in the first term of 

equation 4 is the dipole moment of the molecule 

and  
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 in the second term 

is the polarizability tensor. In the case of the CO2 
molecule, the dipole moment is zero and the off 
diagonal elements of the polarizability tensor are 
zero, reducing equation 4 to the simpler form: 
 

       W W Eo
ii i

i
= − ∑

=

1
2

2

1

3
α          (5) 

 
The minus sign in Equation 5 is added in order to 
keep the sign of the polarizability tensor consistent 
with convention. Because the energy given in 
Equation 5 is generated from the O+ point charge, 
the electric field, E , is given by: 
 

           E
q
r

= 2                    (6) 

where q is the charge on the ion and r is the 
distance between the center of mass of the CO2 
molecule and the O+ ion. The electric field vector 
points along the same direction as the vector 
connecting the center of mass of the CO2 molecule 
and the O+ ion. With θ the same angle as shown in 
the picture in Figure 1, the angle between the line 
connecting the CO2 center of mass and the O+ ion 
and the line along the body of the CO2 molecule, 
the components of the electric field vector areas 
follows, for a system lying in the x-z plane: 

      E
q
rx = 2 sin ϑ                 (7) 

      Z 2

qE cos
r

= ϑ                    (8) 

 
and the second derivative term in (5) becomes: 

( )W
q
r xx zz

( ) sin cos2
2

2 21
2 4= − +α ϑ α θ  (9) 

 
Comparing Equation 9 with Equation 3, it is clear 

that ( )α ϑ α θxx zzsin cos2 2+  is the 

anisotropic form of the polarizability, α in 
Equation 3. Equation 9 is the form of the ion-
induced dipole potential used in the program that 
fits the anisotropic polarizabilites to the ab initio 
data. The initial values in the fitting program are 
the quantum mechanical ones generated from 
MP2/6-311++G** calculations shown in Table 2. 
 In carrying out the fit, it is important to 
use the anisotropic form of the polarizability since 
otherwise all of the angular dependence of the 
long range potential is in the quadrupole term, 
giving it a physically unrealistic value, and 
possibly affecting the accuracy of the potential. 
            
Table 2. Parameters for the Long Range Potential 

 
   Ab initio   Fitted  
______________________________________ 
αxx (Å3)            1.85    1.68  
αzz (Å3)            3.24    3.68     
Θxx (Debye-Å)      -12.12  -11.89 
Θzz (Debye-Å)      -15.95  -16.53 
 
Note: ab initio calculations are done at the MP2/6-
311++G** level 
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Quadrupole Term of the Long Range Potential 
The other term of the long range potential 

is derived from the potential generated by the CO2 
molecule. The potential generated by a collection 
of charges, qα, at a point outside of the body of 
charges can be expressed as a Taylor series 
expansion 

,i
,i i

2
" '
,i ,j

i,j i j

1'
r r

1 1 ...
2 r

q q x x

q x x x x

α

αα
α α

α αα

∂  Φ = +  ∂  

 + + ∂ ∂  

∑ ∑

∂∑
           (10)  

 
where r is the distance between the origin and the 
point and xα,i is the distance between the origin 
and the charge qα (Marion & Heald, 1980). The 
first term is the monopole term, the second is the 
dipole term, and the third is the quadrupole term. 
Although there are several ways to express the 
quadrupole moment, all of them are based on this 
third term, which can also be expressed in the 
form: 

          Φ( )

,

( )3
2

5
1
6

3
= ∑

−
Q

x x r

rij
i j

i j ijδ
      (11) 

 
where the Qij are components of the quadrupole 
tensor, r is the distance from the center of mass of 
the CO2 molecule to the ion, and the xi are the 
components of the vector, r. This definition of the 
quadrupole moment is called a traceless 
quadrupole moment because the trace, 

Qii
i
∑ = 0 . If the axis along the body of the CO2 

molecule is defined as the z-axis, and the carbon 
atom is at the origin, the off-diagonal elements of 
the quadrupole tensor are zero and Qxx = Qyy. 
Because the trace is zero, Qzz = -2Qxx and there is 
only one independent element in the quadrupole 
tensor. Equation 11 becomes: 
 

 

( ) ( )
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2 2 2zz zz
5 3
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2 26r

r 3z 3cos 1
4r 4r

Q

Q Q
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 

= − − = θ −

 

 
         (12) 

 
where θ is the angle formed by the line connecting 
the carbon in CO2 and the oxygen ion and the z-
axis. The third portion of Equation 12 is the form 
used for the potential generated by the CO2 
molecule at the location of the oxygen ion. 

Quantum mechanical parameters were 
used instead of experimental ones in the long 
range potential because (a) a smooth and 
continuous transition is needed to the short range 
quantum mechanical potential, and (b) a good 
comparison between the two is needed in order to 
decide at what separation distance to change from 
the long to short range potential. The quantum 
mechanical quadrupole moments which come out 
of Gaussian 86 are not the traceless Q’s in 
Equation 12, but instead correspond to another 
definition (Hirschfelder, et al.,1954): 

 
      Θij i jq x x= ∑ α

α
α α, ,                   (13) 

 
where qi are the individual charges and xα,i is the i 
component of the vector, r, connecting the charge 
α to the origin. The analogous traceless definition 
is (Marion & Heald, 1980): 
 

  Q q x x rij i j ij= ∑ −α
α

α α α δ( ), ,3 2    (14) 

 
Substituting equation.13 into 14, 
 
             zz zz xx yy zzQ = − + +3Θ Θ Θ Θ( )  (15) 
 
and because for the CO2 molecule, Θxx = Θyy,  
 

   zz zz xxQ = −2( )Θ Θ                    (16) 
 
hence, Equation 12 becomes: 
 

          ( )Φ
Θ Θ( ) ( )

cos3
3

2
2

3 1=
−

−zz xx
r

θ    (17) 

 
The potential energy due to the electric field 
generated by the CO2 molecule at a point located a 
distance r from the carbon is: 
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           ( )V q
r

zz xx=
−

−
( )

cos
Θ Θ

2
3 13

2 θ     (18) 

 
where q is the charge on the O+ ion. Equation18 is 
the form used in the fitting program and the values 
for the quadrupole moments, Θzz and Θxx, are 
generated by Gaussian 86 and given in Table 2. 

 
Results 

 
Combination of Terms to Form the Long-Range 
Potential 
 Equations 9 and 18 are added together to 
give the final form for the long range potential. 
The two anisotropic polarizability parameters and 
the two quadrupole moment ones are optimized by 
doing the χ2 fit (Equation 2) to MP2/6-311++G** 

data points with separation distances of 6.9 Å to 
18 Å. Figure 2 shows how the long range potential 
using the optimized values obtained from the χ2 fit 
compares to the ab initio points. The long-range 
form gives a very accurate representation of the 
quantum mechanical potential at separation 
distances larger than 6.9 Å. For this reason, the 
quantum mechanical grid of points was calculated 
only for separation distances less than 6.9 Å, and 
the ion-induced dipole plus quadrupole long range 
potential was used at larger separation distances. 
Figure 3 is a contour plot of the entire potential 
surface. 
 

Conclusion 
 

It has been demonstrated that a substantial 
reduction in the amount of time required to 
produce an accurate potential surface may be 
obtained by combining the short-range quantum 
mechanical portion with the less-time intensive 
long-range one. Starting with an appropriate 
functional form, the ion-induced dipole and the 
quadrupole potentials of classical physics, the 
long-range potential was generated by doing a χ2 
fit of four parameters to the highly accurate ab 
initio quantum mechanical points. The fitted form 
of the potential provides the accuracy needed 
without resorting to difficult quantum mechanical 
calculations. 
 
 

 
Fig. 2.  Comparison of the long range potential 
with optimized parameters to ab initio points. 

 
 
Fig. 3. Contour plot of the complete potential 
surface for the CO2 + O+ system. The contour at 
the top left       corner is 548 cm-1 and that in the 
bottom of the well       is -5328 cm-1. The contours 
are spaced 226 cm-1 apart. 
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