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Inferences about the Population Mean: Empirical Likelihood versus Bootstrap-t 
 
 
 
 
 
 
 
 
 

 
 
 
 

Rand R. Wilcox 
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The problem of making inferences about the population mean, μ, is considered. Known theoretical results 
suggest that a Bartlett corrected empirical likelihood method is preferable to two basic bootstrap 
techniques: a symmetric two-sided bootstrap-t and an equal-tailed bootstrap-t. However, simulations in 
this study indicate that, when the sample size is small, these two bootstrap methods are generally better in 
terms of Type I errors and probability coverage. As the sample size increases, situations are found where 
the Bartlett corrected empirical likelihood method performs better than the equal-tailed bootstrap-t, but 
the symmetric bootstrap-t gives the best results. None of the four methods considered are always 
satisfactory in terms of probability coverage or Type I errors, particularly when dealing with skewed 
distributions where the expected proportion of points flagged as outliers is somewhat high. If this 
proportion is 0.14, for example, all four methods can be unsatisfactory even with n=300, but if sampling 
from a symmetric distribution or a skewed distribution with relatively light tails the results suggest using 
a symmetric two-sided bootstrap-t method. 
 
Key words: Level robust methods, Bartlett correction, bootstrap-t. 
 
 

Introduction 
One of the fundamental goals in statistics is 
making inferences about the population mean, μ; 
the classic and routinely used method to 
accomplish this is Student’s t-test. However, 
when sampling from a skewed distribution, 
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Student’s t is known to be unsatisfactory in 
terms of Type I errors as well as probability 
coverage when computing a confidence interval 
(Rosenblum & van der Laan, 2009; Westfall & 
Young, 1993; Wilcox, 2005). With a relatively 
light-tailed distribution such as the lognormal, 
roughly meaning that the expected proportion of 
points declared outliers is relatively small, 
Student’s t requires a sample size of about n = 
200 in order to achieve reasonably accurate 
control over the probability of a Type I error. 
With a heavier-tailed distribution (a g-and-h 
distribution with g = h = 0.5), where the 
expected proportion of outliers is approximately 
0.14 (based on the boxplot rule in Frigge, 
Hoaglin & Iglewicz, 1989), n > 300 is required. 
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As a result, numerous alternative methods have 
been proposed. One general approach is to use 
nonparametric techniques, which include 
empirical likelihood methods (Owen, 2001) as 
well as bootstrap methods (Efron & Tibshirani, 
1993). Asymptotic results suggest that a Bartlett 
corrected empirical likelihood approach is 
superior to using a bootstrap-t method 
(DiCiccio, Hall & Romano, 1991). However, 
with small to moderate sample sizes, it appears 
that little or nothing is known regarding how 
these two approaches compare. Moreover, 
simulation results on the empirical likelihood 
technique are limited to a rather narrow range of 
situations. 

This study compared two basic 
variations of the bootstrap-t method to two 
variations of the empirical likelihood method. A 
minor result is that the simulations support 
extant results that the Bartlett corrected 
empirical likelihood method is preferable to the 
basic empirical likelihood technique. A practical 
issue, however, is whether a Bartlett corrected 
empirical likelihood method provides better 
control over the Type I error probability, versus 
a bootstrap-t method, when dealing with small to 
moderate sample sizes. Yet another issue is the 
extent to which a Bartlett corrected empirical 
likelihood method gives improved results when 
sampling from a heavy-tailed distribution, 
particularly when the distribution is also skewed. 

With n = 20, none of the methods 
compared are satisfactory among all of the 
distributions considered; none of the methods 
are satisfactory when sampling from a skewed, 
heavy-tailed distribution with 300n £ . With a 
small sample size, the simulations indicate that 
the bootstrap-t methods are generally better than 
the empirical likelihood methods. As the sample 
size gets large, situations are found where the 
Bartlett corrected empirical likelihood method 
performs better than the equal-tailed bootstrap-t, 
but all indications point to the symmetric 
bootstrap-t as best for general use. 

Let 1, , nX X  be a random sample from 

a distribution with mean μ. Note that Rosenblum 
and van der Laan (2009) described a method for 
computing a confidence interval for the mean. 
Their method is based on Hoeffding’s inequality 
(Hoeffding, 1963), which guarantees probability 

coverage at least 1 a-  if W  can be specified 
such that with probability 1, | |iX W£ . For the 

special case 1 a-  = .95, the resulting 0.95 
confidence interval is 

( 2.72 / , 2.72 / )X W n X W n- + . 
A simple way of implementing this 

approach is to take W  to be the maximum of the 
observed | |iX  values, but a possible concern 

from a hypothesis testing point of view is that it 
is too conservative in terms of Type I errors. In 
the simulations herein, this approach was 
considered when sampling from various 
distributions, including a normal distribution, 
and based on 5,000 replications, the hypothesis 

0 0:H m m= , where 0m  is the true population 

mean, was never rejected with sample sizes n = 
20 and n = 200. Consequently, this approach 
was eliminated from consideration. 
 
Methods for Comparison:Descriptions 
Equal-Tailed Bootstrap-t 

The idea behind the bootstrap-t method 
is to use the observed data to approximate the 
distribution of 
 

/

X
T

s n

m-= , 

 
where X  and s  are the usual sample mean and 
sample standard deviation, respectively. The 
strategy begins by generating a bootstrap sample 
of size n; that is, randomly sample with 
replacement n values from 1, , nX X  yielding 
* *
1 , , nX X . Let *X  and *s  be the mean and 

standard deviation based on this bootstrap 
sample, and let 
 

*
*

*
.

/

X X
T

s n

-=                        (1) 

 

Repeat this process B times yielding * *
1 , , BT T  

and let * *
(1) BT T£ £  be the B bootstrap *T  

values written in ascending order. Let Ba= , 
rounded to the nearest integer, and u B= -  , 
in which case an estimate of the / 2a  and 1-
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/ 2a  quantiles of the distribution of T are 
*
( 1)T +  and *

( )uT , respectively. The resulting 

equal-tailed 1 a-  confidence interval for m  is 
 

* *
( ) ( 1)( , )u
s s

X T X T
n n

+- -             (2) 

 
It might seem that *

( )uT  should be used to 

compute the upper end of the confidence 
interval, not the lower end, but it can be shown 
that this not the case. Also, *

( 1)T +  is negative, 

which helps explain why *
( 1) /T s n+  is 

subtracted from X . 
 
Symmetric Bootstrap-t 

In contrast to the equal-tailed bootstrap-t 
is the symmetric confidence interval 
 

*
( )c
s

X T
n

 , 

 
where (1 )c Ba= -  rounded to the nearest 
integer and the absolute value of the right side of 

(1) is used to define *T . This symmetric two-
sided confidence interval enjoys some 
theoretical (asymptotic) advantages over the 
equal-tailed confidence interval (Hall, 1988a, 
1988b), but it is known that - for small sample 
sizes - situations arise where an equal-tailed 
confidence interval is more satisfactory (Wilcox, 
2005). 
 
Empirical Likelihood 

The empirical likelihood method can be 
used to construct a confidence interval for m , 
but for simplicity it is described in terms of 
testing 0 0:H m m= . Consider distributions pF , 

1( , , )np p p=  , supported on the sample 

1, , nX X , where iX  is assigned mass ip . For a 

specified value of m , the empirical likelihood 

L(μ) is defined to be the maximum value of ipP  

over all such distributions that satisfy 

i iX p m=å . Because ipP  attains its overall 

maximum when 1 /ip n= , it follows that the 

empirical likelihood is maximized when Xm = . 

The empirical likelihood ratio for testing 0H  is 

02 log{ ( ) / ( )}W L L Xm= - . 

When the null hypothesis is true, W  has 
approximately a Chi-squared distribution with 1 
degree of freedom. In particular, 0H  will be 

rejected at the a  level if W c³ , where c  is the 
1-a  quantile of a Chi-squared distribution with 
1 degree of freedom. 
 
Bartlett Corrected Empirical Likelihood 

The Bartlett corrected empirical 
likelihood method is applied as follows. Let 

ˆ ( ) /jj iX X nm = -å  and 

 

2 2 3
4 2 3 2

1 1ˆ ˆ ˆ ;
2 3

a m m m m- -= -  

 
the null hypothesis is rejected if 

1(1 )W an c-- ³ . 
 
Comments on Designing a Simulation Study 
Presumably there are situations where sampling 
is from a relatively light-tailed, symmetric 
distribution and outliers are relatively rare, but 
in various situations it is known that the reverse 
is true. In a review of 440 large-sample 
psychological studies, Micceri (1989) reported 
that 97% (35 of 36 studies) “of those 
distributions exhibiting kurtosis beyond the 
double exponential (3.00) also showed extreme 
or exponential asymmetry” (p. 161). Moreover, 
72% (36 of 50) of distributions that exhibited 
skewness greater than two also had tail weights 
that were heavier than the double exponential. 

In a sexual attitude study by Pedersen, 
Miller, Putcha-Bhagavatula and Yang (2002), 
skewness and kurtosis, based on 105 
participants, was estimated to be 15.9 and 256.3, 
respectively. In a related study based on 16,288 
participants, the ten variables had estimated 
skewness that ranged between 52.1 and 115.5, 
and kurtosis that ranged between 3,290 and 
13,357. Based on a boxplot, the proportion of 
points flagged as outliers ranged between 0.12 
and 0.39. Consequently, there are some practical 
reasons for considering heavy-tailed 
distributions in simulation studies as well as 
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distributions that have a fairly high degree of 
skewness. 

An important point is that extant 
simulation studies regarding empirical 
likelihood methods do not consider a very wide 
range of distributions. For example, DiCiccio, et 
al. (1991) considered a Student’s t distribution 
with 5 degrees of freedom, which has a median 
proportion of outliers (over many studies) 
approximately equal to 0.03 based on the 
boxplot rule in Frigge, Hoaglin and Iglewicz 
(1989). In addition to a normal distribution, they 
also considered a Chi-squared distribution with 
1 degree of freedom for which the median 
proportion of outliers is approximately 0.07. 
Their simulations reveal unsatisfactory control 
over the probability of a Type I error with n = 
20, but with n = 40 the Bartlett corrected version 
was found to perform reasonably well. This 
study describes situations where it performs 
poorly with n = 300. 
 

Results 
Simulations were used to study the actual Type I 
error probability when testing 0 0:H m m= . The 

distributions used were standard normal, Chi-
squared with 1 degree of freedom, Student’s t 
with 5 degrees of freedom, lognormal, 
contaminated normal, and three g-and-h 
distributions. For convenience these 
distributions are labeled distributions 1-8, 
respectively.  

The family of contaminated (or mixed) 
normal distributions used is defined as follows. 
Let X  be a standard normal random variable 
having the distribution ( ) ( )x P X xF = £ . Let e  
be any constant, 0 1e£ £  and let K  be any 
positive constant. The contaminated normal 
distribution is 
 

( ) (1 ) ( ) ( / )H x x x Ke e= - F + F . 
 
Following Tukey (1960), K = 10 and .1e =  are 
used resulting in a symmetric, heavy-tailed 
distribution, with the median proportion of 
points declared outliers approximately equal to 
0.08. The first three distributions were chosen to 
illustrate how the bootstrap-t compares to the 
empirical likelihood methods for the same 
distributions used by DiCiccio, et al. (1991). 

The g-and-h distributions (Hoaglin, 
1985) arise as follows. If Z has a standard 
normal distribution, then 
 

2exp( ) 1
exp( / 2)

gZ
W hZ

g
-

= , 

 
0g > , has a g-and-h distribution where g and h 

are parameters that determine the first four 
moments. When 0g = , 

 
2exp( / 2)W Z hZ= . 

 
The three g-and-h distributions used 

were g = h = 0.2 and 0.5, and (g, h) = (0.2, 0). 
Table 1 shows the skewness ( 1g ) and kurtosis (

2g ) for each of the g-and-h distributions 

considered. When g>0 and h>1/k, ( )kE W  is not 
defined and the corresponding entry in Table 1 
is left blank. Additional properties of the g-and-
h distribution are summarized by Hoaglin 
(1985). 
 
 
 
 
 
 
 
 
 
 
 
 
To add perspective, note that the median 
proportion of outliers generated, when dealing 
with g = h = 0.5, is approximately 0.11 when n = 
100, based on the variation of the boxplot rule 
recommended by Frigge, Hoaglin & Iglewicz 
(1989). For g = h = 0.2 it is 0.05 and for (g, h) = 
(0.2, 0) it is 0.01. For a Chi-squared distribution 
with 1 degree of freedom, 5t , the lognormal and 

the contaminated normal, the median proportion 
of outliers is approximately 0.07, 0.03, 0.08 and 
0.08, respectively. (These results are based on 
simulations with 5,000 replications.) 
Table 2 shows the estimated Type I error 
probabilities. First consider n = 20, and note that 

Table 1: Some Properties of the 
g-and-h Distribution 

g h 1g  2g  

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 

0.5 0.5   
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the Bartlett corrected empirical likelihood 
method always improves on the uncorrected 
approach. Both bootstrap methods have 
estimated Type I error probabilities less than the 
estimates using the empirical likelihood 
methods. Although the seriousness of a Type I 
error depends on the situation, Bradley (1978) 
has suggested that generally, at a minimum, the 
actual Type I error probability should be 
between 0.025 and 0.075. Based on this 
criterion, none of the methods are satisfactory. 
However, for skewed distributions for which the 
median proportion of outliers does not exceed 
0.05, the symmetric bootstrap method gives 
satisfactory results.  

The symmetric bootstrap method can be 
too conservative when sampling from a 
symmetric heavy-tailed distribution, but this 
might be judged to be less serious than having 
an actual Type I error greater than 0.075, as is 
the case when using the empirical likelihood 
methods. Note that with n = 20, the symmetric 
bootstrap method has a Type I error probability 
of 0.08 when sampling from a Chi- squared 
distribution   with    1   degree    of    freedom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Increasing the sample size to n = 25, the 
estimate drops to 0.065, and for n = 30 it is 
0.059. 

For n = 50, the empirical likelihood 
methods compete better with the bootstrap-t 
methods, but the symmetric bootstrap-t performs 
well in situations where the empirical likelihood 
methods are unsatisfactory based on Bradley’s 
criterion. Again, a criticism of the symmetric 
bootstrap-t is that for a symmetric heavy-tailed 
distribution (the contaminated normal), the Type 
I error probability drops below 0.025, but the 
other three methods have estimates greater than 
0.12. Thus, for general use, the symmetric 
bootstrap-t seems best. 

Additional simulations were conducted 
with n = 100 and it was found that the empirical 
likelihood methods continue to perform poorly 
when sampling from the heavy-tailed 
distributions considered here. With n = 200 they 
perform well when sampling from the 
contaminated normal but estimates exceed 0.15 
when sampling from the g-and-h distribution 
with g = h = 0.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Estimated Type I Error Probabilities 

n Distribution 
Empirical 
Likelihood 

(EL) 

Bartlett Corrected 
Empirical Likelihood 

(BCEL) 

Bootstrap-t, 
Equal-Tailed 

(BEQ) 

Bootstrap-t, 
Symmetric 
(BSYM) 

20 

1 0.074 0.064 0.058 0.045 
2 0.117 0.103 0.068 0.080 
3 0.075 0.059 0.067 0.036 
4 0.137 0.120 0.099 0.104 
5 0.169 0.138 0.116 0.010 
6 0.090 0.072 0.083 0.035 
7 0.094 0.080 0.083 0.047 
8 0.270 0.241 0.231 0.186 

50 

1 0.052 0.050 0.055 0.049 
2 0.074 0.069 0.055 0.059 
3 0.062 0.058 0.072 0.048 
4 0.068 0.062 0.058 0.054 
5 0.137 0.125 0.145 0.011 
6 0.061 0.057 0.073 0.037 
7 0.074 0.066 0.080 0.050 
8 0.215 0.203 0.207 0.194 
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Conclusion 
In terms of controlling the probability of a Type 
I error, the most difficult situation seems to 
occur when sampling from an asymmetric 
distribution with heavy-tails. Even using n = 300 
none of the methods considered are satisfactory. 
In particular, for the g-and-h distribution with g 
= h = 0.5, all four methods estimated Type I 
error probabilities exceeding 0.14. One of the 
main points is that - for symmetric distributions 
with heavy tails - the symmetric bootstrap-t 
avoids Type I errors well above the nominal 
level even with n = 20 (albeit with small sample 
sizes the actual level can drop below 0.025). By 
contrast, the Bartlett corrected empirical 
likelihood method has an actual level of 
approximately 0.09 with n = 100, and with n = 
200 the level drops to 0.063. Consequently, it 
seems that the symmetric bootstrap-t is best for 
general use. Except for skewed heavy-tailed 
distributions, it performs reasonably well with n 
³ 50. 
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